1
|
Wu Q, Zhang Q, Jin C, Liu X, Yu H. CircHOMER1 promotes silica-induced pulmonary fibrosis by binding to HuR and stabilizing NOX4 mRNA. Cell Signal 2025; 128:111638. [PMID: 39909178 DOI: 10.1016/j.cellsig.2025.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Silicosis, one of the serious occupational diseases, is mainly manifested by pulmonary fibrosis induced by long-term exposure to silica particles in workplace. Evidence demonstrates that circular RNAs (circRNAs) are interesting regulators of pulmonary fibrosis process. So, further elucidation of the role of circRNAs may provide a new perspective into mechanisms driving pulmonary fibrosis and silicosis. METHODS The characteristics of circRNA homer scaffold protein 1 (hsa_circ_0006916, circHOMER1) was assessed using Actinomycin D, RNase R, and nucleoplasmic separation assay. The histopathological examination and Enzyme-linked immunosorbent assay (ELISA) were used to confirm circHOMER1 function in mouse lung tissues under silica particle exposure. The expression of circHOMER1, human antigen R (HuR) and NADPH oxidase 4 (NOX4) was identified by western blot or RT-qPCR assay. The RNA immunoprecipitation (RIP) assay and plasmid co-transfection were used to analyze the interaction between circHOMER1, HuR and NOX4. RESULTS We confirmed an upregulated circHOMER1 in silicosis fibrosis. Functional assays showed that the knockdown of circHOMER1 suppressed the viability of fibroblasts and the production of fibrotic molecules and alleviated the histology fibrotic changes in lung tissues from mouse exposed to silica particles. Mechanistically, we found that circHOMER1 directly bound to HuR and promoted its protein expression in fibroblasts. And, circHOMER1 further regulated HuR/NOX4 signaling axis through HuR to stabilize NOX4 mRNA, which enhanced the production of reactive oxygen species (ROS), thereby promoting the silicosis fibrosis process. CONCLUSION This study revealed the role of circHOMER1 in silica-induced pulmonary fibrosis, suggesting that the inhibition of circHOMER1 may be a potential therapeutic approach to relieve the pathological process of silicosis.
Collapse
Affiliation(s)
- Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou 221004, China.
| | - Qianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunmeng Jin
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Liu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongmin Yu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
2
|
Liu B, Liu W, Li H, Zhai N, Lv C, Song X, Yang S. circ0066187 promotes pulmonary fibrogenesis through targeting STAT3-mediated metabolism signal pathway. Cell Mol Life Sci 2025; 82:79. [PMID: 39969586 PMCID: PMC11839971 DOI: 10.1007/s00018-025-05613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/12/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial pneumonia, with increasing incidence and prevalence. One of the cellular characteristics is the differentiation of fibroblasts to myofibroblasts. However, the metabolic-related signaling pathway regulated by circular RNAs (circRNAs) during this process remains unclear. Here, we demonstrated that circ0066187 promoted fibroblast-to-myofibroblast differentiation by metabolic-related signaling pathway. Mechanism analysis research identified that circ0066187 directly targeted signal transducer and activator of transcription 3 (STAT3)-mediated metabolism signal pathway to enhance fibroblast-to-myofibroblast differentiation by sponging miR-29b-2-5p, resulting in pulmonary fibrosis. Integrative multi-omics analysis of metabolomics and proteomics revealed three pathways co-enriched in proteomics and metabolomics, namely, Protein digestion and absorption, PI3K-Akt signaling pathway, and FoxO signaling pathway. In these three signaling pathways, seven differentially expressed metabolites such as L-glutamine, L-proline, adenosine monophosphate (AMP), L-arginine, L-phenylalanine, L-lysine and L-tryptophan, and six differentially expressed proteins containing dipeptidyl peptidase-4 (DPP4), cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2), fibroblast growth factor 2 (FGF2), collagen type VI alpha 1 (COL6A1) and superoxide dismutase 2 (SOD2) were co-enriched. Gain-and loss-of-function studies and rescue experiments were performed to verify that circ0066187 promoted STAT3 expression by inhibiting miR-29b-2-5p expression to control the above metabolites and proteins. As a result, these metabolites and proteins provided the material basis and energy requirements for the progression of pulmonary fibrosis. In conclusion, circ0066187 can function as a profibrotic metabolism-related factor, and interference with circ0066187 can prevent pulmonary fibrosis. The finding supported that circ0066187 can be a metabolism-related therapeutic target for IPF treatment.
Collapse
Affiliation(s)
- Bo Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Nailiang Zhai
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
- Shandong Key Lab of Complex Medical Intelligence and Aging, Yantai, 264003, Shandong, China
| | - Xiaodong Song
- Shandong Key Lab of Complex Medical Intelligence and Aging, Yantai, 264003, Shandong, China
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
3
|
Zhou Z, Xie Y, Wei Q, Zhang X, Xu Z. Revisiting the role of MicroRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1470875. [PMID: 39479511 PMCID: PMC11521927 DOI: 10.3389/fcell.2024.1470875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic pulmonary fibrosis disease characterized by alveolar epithelial cell damage, fibroblast proliferation and activation, excessive extracellular matrix deposition, and abnormal epithelial-mesenchymal transition (EMT), resulting in tissue remodeling and irreversible structural distortion. The mortality rate of IPF is very high, with a median survival time of 2-3 years after diagnosis. The exact cause of IPF remains unknown, but increasing evidence supports the central role of epigenetic changes, particularly microRNA (miRNA), in IPF. Approximately 10% of miRNAs in IPF lung tissue exhibit differential expression compared to normal lung tissue. Diverse miRNA phenotypes exert either a pro-fibrotic or anti-fibrotic influence on the progression of IPF. In the context of IPF, epigenetic factors such as DNA methylation and long non-coding RNAs (lncRNAs) regulate differentially expressed miRNAs, which in turn modulate various signaling pathways implicated in this process, including transforming growth factor-β1 (TGF-β1)/Smad, mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathways. Therefore, this review presents the epidemiology of IPF, discusses the multifaceted regulatory roles of miRNAs in IPF, and explores the impact of miRNAs on IPF through various pathways, particularly the TGF-β1/Smad pathway and its constituent structures. Consequently, we investigate the potential for targeting miRNAs as a treatment for IPF, thereby contributing to advancements in IPF research.
Collapse
Affiliation(s)
| | | | | | | | - Zhihao Xu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
4
|
Jin C, Tao X, Zhang W, Xu H, Wu Y, Chen Q, Li S, Ning A, Wang W, Wu Q, Chu M. Multi-omics and multi-stages integration identified a novel variant associated with silicosis risk. Arch Toxicol 2024; 98:2907-2918. [PMID: 38811393 DOI: 10.1007/s00204-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Assessing the association between candidate single-nucleotide polymorphisms (SNPs) identified by multi-omics approaches and susceptibility to silicosis. RNA-seq analysis was performed to screen the differentially expressed mRNAs in the fibrotic lung tissues of mice exposed to silica particles. Following this, we integrated the SNPs located in the above human homologenes with the silicosis-related genome-wide association study (GWAS) data to select the candidate SNPs. Then, expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database. Next, we validated the associations between the functional eQTL-SNPs and silicosis susceptibility by additional case-control study. And the contribution of the identified SNP and its host gene in the fibrosis process was further validated by functional experiments. A total of 12 eQTL-SNPs were identified in the screening stage. The results of the validation stage suggested that the variant T allele of rs419540 located in IL12RB1 significantly increased the risk of developing silicosis [additive model: odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.11-2.85, P = 0.017]. Furthermore, the combination of GWAS and the results of validation stage also indicated that the variant T allele of rs419540 in IL12RB1 was associated with increased silicosis risk (additive model: OR = 2.07, 95% CI 1.38-3.12, P < 0.001). Additionally, after knockdown or overexpression of IL12RB1, the levels of pro-inflammatory factors, such as IL-12, IFN-γ, and other pro-inflammatory factors, were correspondingly decreased or increased. The novel eQTL-SNP, rs419540, might increase the risk of silicosis by modulating the expression levels of IL12RB1.
Collapse
Affiliation(s)
- Chunmeng Jin
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiong Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Siqi Li
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anhui Ning
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wei Wang
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi, Wuxi, Jiangsu, China.
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Liu T, Su X, Kong X, Dong H, Wei Y, Wang Y, Wang C. Whole transcriptome sequencing identifies key lncRNAs,circRNAs, and mRNAs for exploring the pathogenesis and therapeutic target of mouse pneumoconiosis. Gene 2024; 901:148169. [PMID: 38242381 DOI: 10.1016/j.gene.2024.148169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Pneumoconiosis is a kind of lung dysfunction caused by the inhalation of mineral dust. However, the potential molecular mechanism of pneumoconiosis have not been fully elucidated. METHODS In this study, the silica-treated pneumoconiosis mice model was constructed and the transcriptome sequencing data including lncRNA, circRNA, and mRNA were obtained. Firstly, differentially expressed lncRNA, circRNA, and mRNA (DElncRNA, DEcircRNA, DEGs) between control and pneumoconiosis/silicosis samples were screened, the target miRNAs (co-pre-miRNAs) were obtained by intersecting the miRNAs predicted by DElncRNA and DEcircRNA, respectively, and the target mRNAs (co-mRNA) were obtained by intersecting the mRNAs predicted by target miRNA and DEGs. Then, the lncRNA/circRNA-miRNA-mRNA networks were constructed by Cytoscape. Next, the key mRNAs were obtained by protein-protein interaction (PPI) analysis, and the key lncRNAs/circRNAs were selected by correlation analysis. Moreover, the expression of the key lncRNAs, circRNAs and mRNAs on chromosome were studied by the "circlize" package. Furthermore, the TFs-miRNA-mRNA network was constructed and the function of DEGs were explored by Ingenuity Pathway Analysis (IPA). To demonstrate the feasibility and value of the constructed ceRNA networks, we validated key genes and mmu-miR-682 pathway. Finally, We used the Drug-Gene Interaction database to predict potential drugs that could interfere with key genes,which may help to find promising treatment. RESULTS There were 427 DElncRNAs, 107 DEcircRNAs and 1,597 DEGs between silicosis and control groups. Totals of 77 co-pre-miRNAs and 96 co-mRNA were screened, and the lncRNA/circRNA-miRNA-mRNA networks were constructed with 27 lncRNA/25 circRNAs, 74 miRNAs and 96 mRNAs. Then, 6 key mRNAs including Igf1, Klf4, Ptgs2, Epas1, Gnao1, and Il1a were obtained by PPI, and all of these key mRNAs and 10 key lncRNAs and 8 circRNAs were significantly different between the pneumoconiosis and normal groups, in which 10 lncRNAs and 9 circRNA that have not been previously studied in pneumoconiosis/silicosis can be used as new potential therapeutic targets. Moreover, the TFs-miRNA-mRNA network were constructed with 11 TFs, 1 key miRNA (mmu-miR-682) and 3 key mRNAs (Igf1, Epas1, Ptgs2). And the validation of key genes revealing by RNA-seq through experimental approaches shows the the predictive power of this study. Finally, IPA results indicated that 41 pathways were activated and 2 pathways were suppressed in pneumoconiosis/silicosis groups, and Pathogen Induced Cytokine Storm Signaling Pathway was the most significant pathway affected by pneumoconiosis/silicosis. In addition, 93 drugs were screened out by Drug-Gene Interaction database. Among them, Hydroxychloroquine was a kind of drug which associated with Il1a and Ptgs2, may be a promising treatment. CONCLUSION This study constructed the lncRNA/circRNA-miRNA-mRNA and TFs-miRNA-mRNA networks, which could deepen the potential molecular regulatory mechanism of pneumoconiosis/silicosis.
Collapse
Affiliation(s)
- Ting Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuesen Su
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hantian Dong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yangyang Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Wang
- Medical School of Shanxi Datong University, Datong, Shanxi Province, China
| | - Chen Wang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, The First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Gao FF, Chen DQ, Jiang YT, Han CF, Lin BY, Yang Z, Quan JH, Xiong YH, Chen XT. Functional roles of circular RNAs in lung injury. Front Pharmacol 2024; 15:1354806. [PMID: 38601461 PMCID: PMC11004487 DOI: 10.3389/fphar.2024.1354806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 04/12/2024] Open
Abstract
Lung injury leads to respiratory dysfunction, low quality of life, and even life-threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs produced by selective RNA splicing. Studies have reported their involvement in the progression of lung injury. Understanding the roles of circRNAs in lung injury may aid in elucidating the underlying mechanisms and provide new therapeutic targets. Thus, in this review, we aimed to summarize and discuss the characteristics and biological functions of circRNAs, and their roles in lung injury from existing research, to provide a theoretical basis for the use of circRNAs as a diagnostic and therapeutic target for lung injury.
Collapse
Affiliation(s)
- Fei-Fei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dian-Qing Chen
- Department of Hand and Foot Surgery, Armed Police Corps Hospital of Hebei, Shijiazhuang, Hebei, China
| | - Yue-Tong Jiang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Fei Han
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bi-Yun Lin
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhan Yang
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Juan-Hua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ying-Huan Xiong
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xin-Tian Chen
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Surendran A, Huang C, Liu L. Circular RNAs and their roles in idiopathic pulmonary fibrosis. Respir Res 2024; 25:77. [PMID: 38321530 PMCID: PMC10848557 DOI: 10.1186/s12931-024-02716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes. This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease. Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the management of IPF.
Collapse
Affiliation(s)
- Akshaya Surendran
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
8
|
Jiao B, Zhang Q, Jin C, Yu H, Wu Q. IRF4 Participates in Pulmonary Fibrosis Induced by Silica Particles through Regulating Macrophage Polarization and Fibroblast Activation. Inflammation 2024; 47:45-59. [PMID: 37938462 DOI: 10.1007/s10753-023-01890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 08/15/2023] [Indexed: 11/09/2023]
Abstract
Long-term exposure to silica dust can cause silicosis, which is characterized by chronic progressive inflammatory injury, fibroblast activation, and the deposition of extracellular matrix. IRF4 is involved in immune response. However, the potential regulation of IRF4 in silicosis and pulmonary fibrosis remains largely unexplored. In this study, RNA-seq analysis identified the upregulated expression of IRF4 in fibrotic lung tissues of mice exposed to silica particles. And we verified the increased expression of IRF4 in SiO2-treated macrophages and TGF-β1-treated fibroblasts. We further found that the down-regulation of IRF4 impeded the macrophage polarization and the release of pro-fibrotic factors. Moreover, the down-regulation of IRF4 alleviated the migration, invasion, and the expression of fibrotic molecules in fibroblasts. Using ChIP-qPCR assay, we confirmed that IRF4 regulated the transcriptional activity of the IL-17A promoter, thus stimulated fibroblast activation, migration and invasion. In vivo experiment, the AAV-siIRF4 was designed to interfere with the expression of IRF4 in lung tissues of mice exposed to silica particles. Whole blood, bronchoalveolar lavage fluid and lung tissues were obtained from mice at 7, 14, 28 and 56 days after silica exposure. The results showed that the leukocyte content and inflammatory factors reached a peak at day 14 and remained peak for a long time after IRF4 knockdown. Furthermore, the fibrotic responses of mouse lung tissues were alleviated after IRF4 knockdown. Our study explored the important roles of IRF4 in inflammatory and fibrotic responses, which provided a new target for the treatment of silicosis and pulmonary fibrosis.
Collapse
Affiliation(s)
- Biyang Jiao
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunmeng Jin
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongmin Yu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
9
|
Zhang S, Hu W, Lv C, Song X. Biogenesis and Function of circRNAs in Pulmonary Fibrosis. Curr Gene Ther 2024; 24:395-409. [PMID: 39005062 DOI: 10.2174/0115665232284076240207073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Wenjie Hu
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| |
Collapse
|
10
|
Li J, Chen X, Zhang B, Wang C. Circ_0035796 depletion inhibits transforming growth factor-β1-induced pulmonary fibrosis in a miR-150-5p/L1CAM-dependent manner. Autoimmunity 2023; 56:2250099. [PMID: 37822112 DOI: 10.1080/08916934.2023.2250099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The pathogenesis of pulmonary fibrosis is not fully understood. Previous work has demonstrated the important role of circular RNA (circRNA) in pulmonary fibrosis development. This study aims to analyse the role of circ_0035796 in pulmonary fibrosis and the underlying mechanism. METHODS Human foetal lung fibroblast 1 (HFL1) cells were treated with transforming growth factor-β1 (TGF-β1) to mimic a pulmonary fibrosis cell model. The expression of circ_0035796, microRNA-150-5p (miR-150-5p) and L1 cell adhesion molecule (L1CAM) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of L1CAM, collagen I and fibronectin was detected by Western blot. Cell viability was analysed by CCK-8 assay. Cell proliferation, invasion and migration were investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay, transwell invasion assay and wound-healing assay, respectively. The secretion of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) was analysed by Enzyme-linked immunosorbent assay (ELISA). Oxidative stress was assessed by detecting Superoxide Dismutase (SOD) activity and Malondialdehyde (MDA) level using commercial kits. The association of miR-150-5p with circ_0035796 and L1CAM was identified by dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation (RIP) assay. RESULTS Circ_0035796 and L1CAM expression were dramatically upregulated, while miR-150-5p expression was downregulated in TGF-β1-treated HFL1 cells. TGF-β1 treatment induced cell proliferation, migration, invasion, IL-6 and TNF-α secretion, and oxidative stress, whereas circ_0035796 depletion relieved these effects. In addition, circ_0035796 acted as a sponge of miR-150-5p and miR-150-5p combined with L1CAM. Moreover, miR-150-5p depletion attenuated circ_0035796 knockdown-mediated effects in TGF-β1-exposed HFL1 cells. The regulation of miR-150-5p on TGF-β1-induced fibroblast activation involved the downregulation of L1CAM. Further, circ_0035796 modulated L1CAM expression by interacting with miR-150-5p in TGF-β1-exposed HFL1 cells. CONCLUSION Circ_0035796 knockdown ameliorates TGF-β1-induced pulmonary fibrosis through the miR-150-5p/L1CAM axis in vitro.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing City, P.R. China
| | - Xiaohong Chen
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing City, P.R. China
| | - Baohong Zhang
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing City, P.R. China
| | - Chenlu Wang
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing City, P.R. China
| |
Collapse
|