1
|
Sivagurunathan K, Jegathesan N. A Sting Beyond the Skin: Jellyfish Envenomation Presenting With Paralytic Ileus and Acute Urinary Retention. Cureus 2025; 17:e82281. [PMID: 40376313 PMCID: PMC12079151 DOI: 10.7759/cureus.82281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
Jellyfish envenomation typically causes localized pain and systemic reactions, but rare complications such as acute urinary retention and paralytic ileus can occur. We report a case of a 21-year-old fisherman from northern Sri Lanka who developed urinary retention and paralytic ileus following a jellyfish sting. He initially experienced severe pain and itching, followed by acute urinary retention, progressive abdominal distension, vomiting, and absent bowel opening. Imaging confirmed paralytic ileus without mechanical obstruction. The patient was managed conservatively with catheterization, bowel rest, intravenous fluids, analgesia, and nasogastric decompression, leading to full recovery within 48 hours. Although the exact mechanism remains unclear, previous studies have hypothesized that jellyfish neurotoxins may affect autonomic regulation. This study highlights the need for awareness of rare urological and gastrointestinal complications following jellyfish stings and emphasizes the importance of timely supportive management.
Collapse
|
2
|
Espín-Angulo J, Vela D. Exploring the Venom Gland Transcriptome of Bothrops asper and Bothrops jararaca: De Novo Assembly and Analysis of Novel Toxic Proteins. Toxins (Basel) 2024; 16:511. [PMID: 39728769 PMCID: PMC11728684 DOI: 10.3390/toxins16120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 12/28/2024] Open
Abstract
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of Bothrops asper and Bothrops jararaca, using data from NCBI. Bioinformatics tools were used to assemble, identify, and compare potentially novel proteins in both species, and we performed functional annotation with BLASTX against the NR database. While previous assemblies have been performed for B. jararaca, this is the first assembly of the B. asper venom gland transcriptome. Proteins with potentially novel functions were identified, including arylsulfatase and dihydroorotate dehydrogenase, among others, that could have implications for venom toxicity. These results suggest that the identified proteins may contribute to venom toxic variation and provide new opportunities for antivenom research. The study improves the understanding of the protein composition of Bothrops venom and suggests new possibilities for the development of treatments and antivenoms.
Collapse
Affiliation(s)
- Joseph Espín-Angulo
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Doris Vela
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| |
Collapse
|
3
|
Isbister GK. The critical time period for administering antivenom: golden hours and missed opportunities. Clin Toxicol (Phila) 2024; 62:277-279. [PMID: 38804828 DOI: 10.1080/15563650.2024.2352026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Antivenom is widely accepted as an effective treatment for snake envenomation. This is despite very limited evidence supporting clinical effectiveness for major envenomation syndromes, and is mainly based on pre-clinical studies and observational studies without control groups. EFFECTIVENESS OF EARLY ANTIVENOM Although antivenom exhibits efficacy by binding to snake toxins and preventing toxic injury in animals if pre-mixed with venom, this efficacy does not always translate to clinical effectiveness. There are many irreversible venom mediated effects that antivenom cannot neutralise or reverse, such as pre-synaptic neurotoxicity and myotoxicity. Fortunately, early antivenom appears to prevent some of these. PRACTICALITIES OF ADMINISTERING ANTIVENOM EARLY With good evidence that early antivenom prevents some envenomation syndromes, the time between bite and antivenom administration must be reduced. This requires improving the initial assessment of snakebite patients, and improving early decision making based on clinical effects. CONCLUSION Until there are improved, simplified, easy to use, rapid and inexpensive tests, whether available in the laboratory or preferably at the bedside that identify systemic envenomation, the key to early antivenom administration is early assessment and decision making based on systemic symptoms, including nausea, vomiting, headache and abdominal pain.
Collapse
|
4
|
Piontek M, Andreosso A, Smout M. Rapid and permanent cytotoxic effects of venom from Chiropsella bronzie and Malo maxima on human skeletal and cardiac muscle cells. Toxicon 2023; 233:107250. [PMID: 37572796 DOI: 10.1016/j.toxicon.2023.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Jellyfish envenomation is a global public health risk; Cubozoans (box jellyfish) are a prevalent jellyfish class with some species causing potent and potentially fatal envenomation in tropical Australian waters. Previous studies have explored the mechanism of action of venom from the lethal Cubozoan Chironex fleckeri and from Carukia barnesi (which causes "Irukandji syndrome"), but mechanistic knowledge to develop effective treatment is still limited. This study performed an in-vitro cytotoxic examination of the venoms of Chiropsella bronzie and Malo maxima, two understudied species that are closely related to Chironex fleckeri and Carukia barnesi respectively. Venom was applied to human skeletal muscle cells and human cardiomyocytes while monitoring with the xCELLigence system. Chiropsella bronzie caused rapid cytotoxicity at concentrations as low as 58.8 μg/mL. Malo maxima venom caused a notable increase in cell index, a measure of cell viability, followed by cytotoxicity after 24-h venom exposure at ≥11.2 μg/mL on skeletal muscle cells. In contrast, the cardiomyocytes mostly showed significant increased cell index at the higher M. maxima concentrations tested. These findings show that these venoms can exert cytotoxic effects and Malo maxima venom mainly caused a sustained increase in cell index across both human cell lines, suggesting a different mode of action to Chiropsella bronzie. As these venoms show different real-world envenomation symptoms, the different cellular toxicity profiles provide a first step towards developing improved understanding of mechanistic pathways and novel envenomation treatment.
Collapse
Affiliation(s)
- Melissa Piontek
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Molecular Development of Therapeutics, James Cook University, Cairns, Queensland, Australia.
| | - Athena Andreosso
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Molecular Development of Therapeutics, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
5
|
Nwaji AR, Arieri O, Anyang AS, Nguedia K, Abiade EB, Forcados GE, Oladipo OO, Makama S, Elisha IL, Ozele N, Gotep JG. Natural toxins and One Health: a review. SCIENCE IN ONE HEALTH 2022; 1:100013. [PMID: 39076609 PMCID: PMC11262277 DOI: 10.1016/j.soh.2023.100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/28/2023] [Indexed: 07/31/2024]
Abstract
Background The One Health concept considers the interconnectivity, interactions and interdependence of humans, animals and the environment. Humans, animals and other organisms are constantly exposed to a wide range of natural toxins present in the environment. Thus, there is growing concern about the potential detrimental effects that natural toxins could pose to achieve One Health. Interestingly, alkaloids, steroids and bioactive peptides obtained from natural toxins could be used for the development of therapeutic agents. Methodology Our literature search focused on the following keywords; toxins, One Health, microbial toxins, mycotoxins, phytotoxins, phycotoxins, insect toxins and toxin effects. Google Scholar, Science Direct, PubMed and Web of Science were the search engines used to obtain primary databases. We chose relevant full-text articles and review papers published in English language only. The research was done between July 2022 and January 2023. Results Natural toxins are poisonous substances comprising bioactive compounds produced by microorganisms, invertebrates, plants and animals. These compounds possess diverse structures and differ in biological function and toxicity, posing risks to human and animal health through the contamination of the environment, causing disease or death in certain cases. Findings from the articles reviewed revealed that effects of natural toxins on animals and humans gained more attention than the impact of natural toxins on the environment and lower organisms, irrespective of the significant roles that lower organisms play to maintain ecosystem balance. Also, systematic approaches for toxin control in the environment and utilization for beneficial purposes are inadequate in many regions. Remarkably, bioactive compounds present in natural toxins have potential for the development of therapeutic agents. These findings suggest that global, comprehensive and coordinated efforts are required for improved management of natural toxins through an interdisciplinary, One Health approach. Conclusion Adopting a One Health approach is critical to addressing the effects of natural toxins on the health of humans, animals and the environment.
Collapse
Affiliation(s)
- Azubuike Raphael Nwaji
- Department of Physiology, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Onikisateinba Arieri
- Department of Industrial Chemistry and Petrochemical Technology, Faculty of Science Laboratory, University of Portharcourt, Nigeria
| | | | - Kaze Nguedia
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Cameroon
| | | | | | | | - Sunday Makama
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Ishaku Leo Elisha
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Nonyelim Ozele
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Jurbe Gofwan Gotep
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
6
|
Vaz R, Valpradinhos B, Frasco MF, Sales MGF. Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds. SENSORS (BASEL, SWITZERLAND) 2021; 21:5784. [PMID: 34502675 PMCID: PMC8434157 DOI: 10.3390/s21175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022]
Abstract
Optical biosensors are used in numerous applications and analytical fields. Advances in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis, among many other advantages. Research into bioactive natural products serves both to protect against potentially dangerous toxic compounds and to promote pharmacological innovation in drug discovery, as these compounds have unique chemical compositions that may be characterized by greater safety and efficacy. However, conventional methods for detecting these biomolecules have drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this review, an overview of recent developments in optical biosensors for the detection and monitoring of aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and applicability of these biosensors in the field of drug discovery, including high-throughput screening, are discussed. The contribution of the investigated technological advances in the timely and sensitive detection of biotoxins while deciphering the pathways to discover bioactive compounds with great health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.
Collapse
Affiliation(s)
- Raquel Vaz
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Beatriz Valpradinhos
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Manuela F. Frasco
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Maria Goreti F. Sales
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| |
Collapse
|