1
|
Johnston CI, Silva A, Hodgson W, Isbister GK. Investigating skeletal muscle biomarkers for the early detection of Australian myotoxic snake envenoming: an animal model pilot study. Clin Toxicol (Phila) 2024; 62:280-287. [PMID: 38804832 DOI: 10.1080/15563650.2024.2349690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Myotoxicity is an important toxidrome that can occur with envenoming from multiple Australian snake types. Early antivenom administration is an important strategy to reduce the incidence and severity of myotoxicity. The current gold standard biomarker, serum creatine kinase activity, does not rise early enough to facilitate early antivenom administration. Several other skeletal muscle biomarkers have shown promise in other animal models and scenarios. The aim of this study was to examine the predictive values of six skeletal muscle biomarkers in a rat model of Australian snake myotoxicity. METHODS Sprague-Dawley rats were anaesthetised and administered either Pseudechis porphyriacus (red-bellied black snake) or Notechis scutatus (tiger snake) venom, or normal saline via intramuscular injection. Blood samples were collected. Assays were performed for serum creatine kinase skeletal muscle troponin-I concentration, skeletal muscle troponin-C concentration, myoglobin activity, skeletal muscle myosin light chain-1 concentration, and creatine kinase-MM activity. Serum markers were plotted against time, with comparison of area under the concentration (or activity)-time curve. The predictive values of six skeletal muscle biomarkers were examined using receiver operating characteristic curves. RESULTS There was no difference in area under the serum creatine kinase activity-time curve between venom and control groups. Serum creatine kinase-MM activity rose early in the venom treated rats, which had a significantly greater area under the serum activity-time curve. No difference in area under the serum concentration-time curve was demonstrated for the other biomarkers. Creatine kinase-MM activity had a superior predictive values than creatine kinase activity at 0-4 hours and 0-10 hours after venom administration, as indicated by area under the receiver operating characteristic curves (95 per cent confidence intervals) of 0.91 (0.78-1.00) and 0.88 (0.73-1.00) versus 0.79 (0.63-0.95) and 0.66 (0.51-0.80). DISCUSSION The limitations of serum creatine kinase activity in early detection of myotoxicity were demonstrated in this rat model. CONCLUSION Serum creatine kinase-MM activity was superior for early detection of Australian myotoxic snake envenoming.
Collapse
Affiliation(s)
| | - Anjana Silva
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Wayne Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
2
|
In Vitro Toxicity of Chinese Russell’s Viper (Daboia siamensis) Venom and Neutralisation by Antivenoms. Toxins (Basel) 2022; 14:toxins14070505. [PMID: 35878244 PMCID: PMC9317331 DOI: 10.3390/toxins14070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Daboia siamensis (Russell’s viper) is a highly venomous and medically important snake in China, as well as much of Asia. There is minimal information on the pharmacological activity of the venom of the Chinese species, and currently no commercially available specific antivenom in China. This has led to the use of non-specific antivenoms to treat D. siamensis envenomation. In this study, the in vitro neurotoxicity and myotoxicity of D. siamensis venom was examined and the efficacy of four antivenoms was investigated, including the recently developed Chinese D. siamensis monovalent antivenom (C-DsMAV) and three commercially available antivenoms (Thai D. siamensis (Thai-DsMAV) monovalent antivenom, Deinagkistrodon acutus monovalent antivenom (DaAV), and Gloydius brevicaudus monovalent antivenom (GbAV). D. siamensis venom (10–30 µg/mL) caused the concentration-dependent inhibition of indirect twitches in the chick biventer cervicis nerve muscle preparation, without abolishing contractile responses to exogenous agonists ACh or CCh, indicating pre-synaptic neurotoxicity. Myotoxicity was also evident at these concentrations with inhibition of direct twitches, an increase in baseline tension, and the partial inhibition of ACh, CCh, and KCl responses. The prior addition of C-DsMAV or Thai-DsMAV prevented the neurotoxic and myotoxic activity of D. siamensis venom (10 µg/mL). The addition of non-specific antivenoms (GbAV and DaAV) partially prevented the neurotoxic activity of venom (10 µg/mL) but failed to neutralize the myotoxic effects. We have shown that D. siamensis venom exhibits in vitro weak presynaptic neurotoxicity and myotoxicity, which can be prevented by the pre-addition of the Chinese and Thai Russell’s viper antivenoms. Non-specific antivenoms were poorly efficacious. There should be further development of a monospecific antivenom against D. siamensis envenomation in China.
Collapse
|
3
|
Thakshila P, Hodgson WC, Isbister GK, Silva A. In Vitro Neutralization of the Myotoxicity of Australian Mulga Snake ( Pseudechis australis) and Sri Lankan Russell's Viper ( Daboia russelii) Venoms by Australian and Indian Polyvalent Antivenoms. Toxins (Basel) 2022; 14:302. [PMID: 35622549 PMCID: PMC9144940 DOI: 10.3390/toxins14050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
We studied the neutralisation of Sri Lankan Russell's viper (Daboia russelii) and Australian mulga snake (Pseudechis australis) venom-induced myotoxicity by Indian (Vins and Bharat) and Australian (Seqirus) polyvalent antivenoms, using the in vitro chick biventer skeletal muscle preparation. Prior addition of Bharat or Vins antivenoms abolished D. russelii venom (30 µg/mL)-mediated inhibition of direct twitches, while Australian polyvalent antivenom was not protective. Bharat antivenom prevented, while Vins and Australian polyvalent antivenoms partially prevented, the inhibition of responses to exogenous KCl. Myotoxicity of Mulga venom (10 µg/mL) was fully neutralised by the prior addition of Australian polyvalent antivenom, partially neutralised by Vins antivenom but not by Bharat antivenom. Although the myotoxicity of both venoms was partially prevented by homologous antivenoms when added 5 min after the venom, with an increasing time delay between venom and antivenom, the reversal of myotoxicity gradually decreased. However, antivenoms partially prevented myotoxicity even 60 min after venom. The effect of antivenoms on already initiated myotoxicity was comparable to physical removal of the toxins by washing the bath at similar time points, indicating that the action of the antivenoms on myotoxicity is likely to be due to trapping the toxins or steric hindrance within the circulation, not allowing the toxins to reach target sites in muscles.
Collapse
Affiliation(s)
- Prabhani Thakshila
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura 50008, Sri Lanka;
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Geoffrey K. Isbister
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW 2298, Australia
| | - Anjana Silva
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura 50008, Sri Lanka;
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
4
|
Liang Q, Huynh TM, Konstantakopoulos N, Isbister GK, Hodgson WC. An Examination of the Neutralization of In Vitro Toxicity of Chinese Cobra ( Naja atra) Venom by Different Antivenoms. Biomedicines 2020; 8:biomedicines8100377. [PMID: 32992934 PMCID: PMC7599741 DOI: 10.3390/biomedicines8100377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/23/2023] Open
Abstract
The Chinese Cobra (Naja atra) is an elapid snake of major medical importance in southern China. We describe the in vitro neurotoxic, myotoxic, and cytotoxic effects of N. atra venom, as well as examining the efficacy of three Chinese monovalent antivenoms (N. atra antivenom, Gloydius brevicaudus antivenom and Deinagkistrodon acutus antivenom) and an Australian polyvalent snake antivenom. In the chick biventer cervicis nerve-muscle preparation, N. atra venom (1–10 µg/mL) abolished indirect twitches in a concentration-dependent manner, as well as abolishing contractile responses to exogenous acetylcholine chloride (ACh) and carbamylcholine chloride (CCh), indicative of post-synaptic neurotoxicity. Contractile responses to potassium chloride (KCl) were also significantly inhibited by venom indicating myotoxicity. The prior addition of Chinese N. atra antivenom (0.75 U/mL) or Australian polyvalent snake antivenom (3 U/mL), markedly attenuated the neurotoxic actions of venom (3 µg/mL) and prevented the inhibition of contractile responses to ACh, CCh, and KCl. The addition of Chinese antivenom (0.75 U/mL) or Australian polyvalent antivenom (3 U/mL) at the t90 time point after the addition of venom (3 µg/mL), partially reversed the inhibition of twitches and significantly reversed the venom-induced inhibition of responses to ACh and CCh, but had no significant effect on the response to KCl. Venom (30 µg/mL) also abolished direct twitches in the chick biventer cervicis nerve-muscle preparation and caused a significant increase in baseline tension, further indicative of myotoxicity. N. atra antivenom (4 U/mL) prevented the myotoxic effects of venom (30 µg/mL). However, G. brevicaudus antivenom (24 U/mL), D. acutus antivenom (8 U/mL) and Australian polyvalent snake antivenom (33 U/mL) were unable to prevent venom (30 µg/mL) induced myotoxicity. In the L6 rat skeletal muscle myoblast cell line, N. atra venom caused concentration-dependent inhibition of cell viability, with a half maximal inhibitory concentration (IC50) of 2.8 ± 0.48 μg/mL. N. atra antivenom significantly attenuated the cytotoxic effect of the venom, whereas Australian polyvalent snake antivenom was less effective but still attenuated the cytotoxic effects at lower venom concentrations. Neither G. brevicaudus antivenom or D. acutus antivenom were able to prevent the cytotoxicity. This study indicates that Chinese N. atra monovalent antivenom is efficacious against the neurotoxic, myotoxic and cytotoxic effects of N. atra venom but the clinical effectiveness of the antivenom is likely to be diminished, even if given early after envenoming. The use of Chinese viper antivenoms (i.e., G. brevicaudus and D. acutus antivenoms) in cases of envenoming by the Chinese cobra is not supported by the results of the current study.
Collapse
Affiliation(s)
- Qing Liang
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton 3800, Australia; (Q.L.); (T.M.H.); (N.K.); (G.K.I.)
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd, Guangzhou 510120, China
| | - Tam Minh Huynh
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton 3800, Australia; (Q.L.); (T.M.H.); (N.K.); (G.K.I.)
| | - Nicki Konstantakopoulos
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton 3800, Australia; (Q.L.); (T.M.H.); (N.K.); (G.K.I.)
| | - Geoffrey K. Isbister
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton 3800, Australia; (Q.L.); (T.M.H.); (N.K.); (G.K.I.)
- Clinical Toxicology Research Group, University of Newcastle, Callaghan 2308, Australia
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton 3800, Australia; (Q.L.); (T.M.H.); (N.K.); (G.K.I.)
- Correspondence:
| |
Collapse
|
5
|
Weinstein SA, Mirtschin PJ, Tristram H, Lawton L, White J. Local morbidity from red-bellied black snake (Pseudechis porphyriacus, Elapidae) envenoming: Two cases and a brief review of management. Toxicon 2018; 142:34-41. [DOI: 10.1016/j.toxicon.2017.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 11/16/2022]
|
6
|
Pla D, Bande BW, Welton RE, Paiva OK, Sanz L, Segura Á, Wright CE, Calvete JJ, Gutiérrez JM, Williams DJ. Proteomics and antivenomics of Papuan black snake (Pseudechis papuanus) venom with analysis of its toxicological profile and the preclinical efficacy of Australian antivenoms. J Proteomics 2016; 150:201-215. [PMID: 27650695 DOI: 10.1016/j.jprot.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/28/2022]
Abstract
The Papuan black snake (Pseudechis papuanus Serpentes: Elapidae) is endemic to Papua New Guinea, Indonesian Papua and Australia's Torres Strait Islands. We have investigated the biological activity and proteomic composition of its venom. The P. papuanus venom proteome is dominated by a variety (n≥18) of PLA2s, which together account for ~90% of the venom proteins, and a set of low relative abundance proteins, including a short-neurotoxic 3FTx (3.1%), 3-4 PIII-SVMPs (2.8%), 3 cysteine-rich secretory proteins (CRISP; 2.3%) 1-3 l-amino acid oxidase (LAAO) molecules (1.6%). Probing of a P. papuanus cDNA library with specific primers resulted in the elucidation of the full-length nucleotide sequences of six new toxins, including vespryn and NGF not found in the venom proteome, and a calglandulin protein involved in toxin expression with the venom glands. Intravenous injection of P. papuanus venom in mice induced lethality, intravascular haemolysis, pulmonary congestion and oedema, and anticoagulation after intravenous injection, and these effects are mainly due to the action of PLA2s. This study also evaluated the in vivo preclinical efficacy of Australian black snake and polyvalent Seqirus antivenoms. These antivenoms were effective in neutralising the lethal, PLA2 and anticoagulant activities of P. papuanus venom in mice. On the other hand, all of the Seqirus antivenoms tested using an antivenomic approach exhibited strong immunorecognition of all the venom components. These preclinical results suggest that Australian Seqirus1 antivenoms may provide paraspecific protection against P. papuanus venom in humans. SIGNIFICANCE PARAGRAPH The toxicological profile and proteomic composition of the venom of the Papuan black snake, Pseudechis papuanus, a large diurnal snake endemic to the southern coast of New Guinea and a handful of close offshore islands, were investigated. Intravenous injection of P. papuanus venom in mice induced intravascular hemolysis, pulmonary congestion and edema, anticoagulation, and death. These activities could be assigned to the set of PLA2 molecules, which dominate the P. papuanus venom proteome. This study also showed that Australian Seqirus black snake or polyvalent antivenoms were effective in neutralising the lethal, PLA2 and anticoagulant activities of the venom. These preclinical results support the continued recommendation of these Seqirus antivenoms in the clinical management of P. papuanus envenoming in Australia, Papua New Guinea or Indonesian Papua Province.
Collapse
Affiliation(s)
- Davinia Pla
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Benjamin W Bande
- Charles Campbell Toxinology Centre, School of Medicine & Health Sciences, University of Papua New Guinea, Boroko, NCD, Papua New Guinea
| | - Ronelle E Welton
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Owen K Paiva
- Charles Campbell Toxinology Centre, School of Medicine & Health Sciences, University of Papua New Guinea, Boroko, NCD, Papua New Guinea
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Christine E Wright
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia; Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - David J Williams
- Charles Campbell Toxinology Centre, School of Medicine & Health Sciences, University of Papua New Guinea, Boroko, NCD, Papua New Guinea; Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
7
|
Red-bellied black snake (Pseudechis porphyriacus) envenomation in the dog: Diagnosis and treatment of nine cases. Toxicon 2016; 117:69-75. [DOI: 10.1016/j.toxicon.2016.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
|
8
|
Viala VL, Hildebrand D, Trusch M, Arni RK, Pimenta DC, Schlüter H, Betzel C, Spencer PJ. Pseudechis guttatus venom proteome: Insights into evolution and toxin clustering. J Proteomics 2014; 110:32-44. [DOI: 10.1016/j.jprot.2014.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 01/02/2023]
|
9
|
Hart AJ, Hodgson WC, O'Leary M, Isbister GK. Pharmacokinetics and pharmacodynamics of the myotoxic venom of Pseudechis australis (mulga snake) in the anesthetised rat. Clin Toxicol (Phila) 2014; 52:604-10. [PMID: 24940643 DOI: 10.3109/15563650.2014.914526] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Myotoxicity is a common clinical effect of snake envenoming and results from either local or systemic myotoxins in snake venoms. Although numerous myotoxins have been isolated from snake venoms, there has been limited study on the relationship between the time course of venom concentrations (pharmacokinetics) and the time course of muscle injury measured as a rise in creatine kinase (CK) (pharmacodynamics). OBJECTIVE The aim of this study was to develop an in vivo model of myotoxicity to investigate the time course of myotoxicity and the effect of antivenom. MATERIALS AND METHODS Anesthetised rats were administered Pseudechis australis (mulga snake) venom either through i.v., i.m. or s.d. route, including a range of doses (5-100 μg/kg). Serial blood samples were collected for measurement of venom using enzyme immunoassay and measurement of CK and creatinine. Antivenom was administered before, 1 and 6 h after venom administration to investigate its effect on muscle injury. Plots of venom and CK versus time were made and the area under the curve (AUC) was calculated. RESULTS There was a significant dose-dependent increase in CK concentration after administration of P. australis venom, which was greatest for i.v. administration. Timed measurement of venom concentrations showed a rapid absorption through s.d. and i.m. routes and a delayed rise in CK concentrations following any route. Antivenom prevented myotoxicity shown by a decrease in the CK AUC, which was most effective if given earliest. There was a rise in creatinine following i.v. venom administration. CONCLUSION The study shows the delayed relationship between venom absorption and the rise in CK, consistent with the delayed onset of myotoxicity in human envenoming. Antivenom prevented myotoxicity more effectively if given earlier.
Collapse
Affiliation(s)
- A J Hart
- Department of Pharmacology, Monash Venom Group, Monash University , Victoria , Australia
| | | | | | | |
Collapse
|
10
|
Hart AJ, Isbister GK, O’Donnell P, Williamson NA, Hodgson WC. Species differences in the neuromuscular activity of post-synaptic neurotoxins from two Australian black snakes (Pseudechis porphyriacus and Pseudechis colletti). Toxicol Lett 2013; 219:262-8. [DOI: 10.1016/j.toxlet.2013.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/27/2022]
|
11
|
Johnston CI, Brown SGA, O'Leary MA, Currie BJ, Greenberg R, Taylor M, Barnes C, White J, Isbister GK. Mulga snake (Pseudechis australis) envenoming: a spectrum of myotoxicity, anticoagulant coagulopathy, haemolysis and the role of early antivenom therapy - Australian Snakebite Project (ASP-19). Clin Toxicol (Phila) 2013; 51:417-24. [PMID: 23586640 DOI: 10.3109/15563650.2013.787535] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Mulga snakes (Pseudechis australis) are venomous snakes with a wide distribution in Australia. Objective. The objective of this study was to describe mulga snake envenoming and the response of envenoming to antivenom therapy. MATERIALS AND METHODS Definite mulga bites, based on expert identification or venom-specific enzyme immunoassay, were recruited from the Australian Snakebite Project. Demographics, information about the bite, clinical effects, laboratory investigations and antivenom treatment are recorded for all patients. Blood samples are collected to measure the serum venom concentrations pre- and post-antivenom therapy using enzyme immunoassay. RESULTS There were 17 patients with definite mulga snake bites. The median age was 37 years (6-70 years); 16 were male and six were snake handlers. Thirteen patients had systemic envenoming with non-specific systemic symptoms (11), anticoagulant coagulopathy (10), myotoxicity (7) and haemolysis (6). Antivenom was given to ten patients; the median dose was one vial (range, one-three vials). Three patients had systemic hypersensitivity reactions post-antivenom. Antivenom reversed the coagulopathy in all cases. Antivenom appeared to prevent myotoxicity in three patients with high venom concentrations, given antivenom within 2 h of the bite. Median peak venom concentration in 12 envenomed patients with samples was 29 ng/mL (range, 0.6-624 ng/mL). There was a good correlation between venom concentrations and the area under the curve of the creatine kinase for patients receiving antivenom after 2 h. Higher venom concentrations were also associated with coagulopathy and haemolysis. Venom was not detected after antivenom administration except in one patient who had a venom concentration of 8.3 ng/ml after one vial of antivenom, but immediate reversal of the coagulopathy. DISCUSSION Mulga snake envenoming is characterised by myotoxicity, anticoagulant coagulopathy and haemolysis, and has a spectrum of toxicity that is venom dose dependant. This study supports a dose of one vial of antivenom, given as soon as a systemic envenoming is identified, rather than waiting for the development of myotoxicity.
Collapse
Affiliation(s)
- C I Johnston
- School of Medicine Sydney, University of Notre Dame Australia, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
In vitro neurotoxic effects of Pseudechis spp. venoms: A comparison of avian and murine skeletal muscle preparations. Toxicon 2012; 63:112-5. [PMID: 23246581 DOI: 10.1016/j.toxicon.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
Two common in vitro skeletal muscle preparations used for the study of venom neurotoxicity are the indirectly stimulated chick isolated biventer cervicis nerve-muscle preparation and the rat isolated phrenic nerve-diaphragm preparation. The aim of the current study was to compare the in vitro neurotoxicity of six Pseudechis spp. (Black snakes) venoms in both avian (chicken) and mammalian (rat) skeletal muscle preparations to determine differences in sensitivity. All Pseudechis spp. venoms significantly inhibited indirect twitches, in both preparations, indicating the presence of post synaptic neurotoxins. The inhibitory effects of all venoms were more rapid in the avian preparation, except for Pseudechis colletti venom where no significant difference was seen between the murine and avian muscles. Time taken to produce 50% reduction in stimulated twitches (i.e. t(50)) was markedly shorter in the avian preparation. We have shown that the avian in vitro preparation is more sensitive to the neurotoxic activity of Pseudechis spp. than the murine preparation. This difference is likely to be due to species differences in the interaction between the neurotoxins and the nicotinic receptor binding sites as well as differences in the 'safety factor' between the preparations.
Collapse
|
13
|
Marcon F, Nicholson GM. Identification of presynaptic neurotoxin complexes in the venoms of three Australian copperheads (Austrelaps spp.) and the efficacy of tiger snake antivenom to prevent or reverse neurotoxicity. Toxicon 2011; 58:439-52. [DOI: 10.1016/j.toxicon.2011.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/25/2022]
|
14
|
Lane J, O’Leary M, Isbister G. Coagulant effects of black snake (Pseudechis spp.) venoms and in vitro efficacy of commercial antivenom. Toxicon 2011; 58:239-46. [DOI: 10.1016/j.toxicon.2011.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/29/2011] [Accepted: 05/31/2011] [Indexed: 11/30/2022]
|
15
|
Histopathological analysis and in situ localisation of Australian tiger snake venom in two clinically envenomed domestic animals. Toxicon 2011; 58:304-14. [DOI: 10.1016/j.toxicon.2011.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 11/21/2022]
|
16
|
Georgieva D, Seifert J, Öhler M, von Bergen M, Spencer P, Arni RK, Genov N, Betzel C. Pseudechis australis Venomics: Adaptation for a Defense against Microbial Pathogens and Recruitment of Body Transferrin. J Proteome Res 2011; 10:2440-64. [DOI: 10.1021/pr101248e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dessislava Georgieva
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory of Structural Biology of Infection and Inflammation, c/o DESY, Notkestrasse 85, Build. 22a, 22603 Hamburg, Germany
| | - Jana Seifert
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Permoser Strasse 15, 04318 Leipzig, Germany
| | - Michaela Öhler
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Permoser Strasse 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Permoser Strasse 15, 04318 Leipzig, Germany
| | - Patrick Spencer
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Av. Lineeu Prestes 2242, 05508-000 São Paulo, Brazil
| | - Raghuvir K. Arni
- Department of Physics, IBILCE/UNESP, Cristóvão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP Brazil
| | - Nicolay Genov
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory of Structural Biology of Infection and Inflammation, c/o DESY, Notkestrasse 85, Build. 22a, 22603 Hamburg, Germany
| |
Collapse
|
17
|
Churchman A, O'Leary MA, Buckley NA, Page CB, Tankel A, Gavaghan C, Holdgate A, Brown SGA, Isbister GK. Clinical effects of red‐bellied black snake (
Pseudechis porphyriacus
) envenoming and correlation with venom concentrations: Australian Snakebite Project (ASP‐11). Med J Aust 2010; 193:696-700. [DOI: 10.5694/j.1326-5377.2010.tb04108.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022]
Affiliation(s)
- Andrew Churchman
- Emergency Department, Princess Alexandra Hospital, Brisbane, QLD
| | - Margaret A O'Leary
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW
| | - Nicholas A Buckley
- Medical Professorial Unit, Prince of Wales Hospital Medical School, University of New South Wales, Sydney, NSW
| | - Colin B Page
- Emergency Department, Princess Alexandra Hospital, Brisbane, QLD
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW
| | - Alan Tankel
- Emergency Department, Coffs Harbour Base Hospital, Coffs Harbour, NSW
| | - Chris Gavaghan
- Emergency Department, Lismore Base Hospital, Lismore, NSW
| | - Anna Holdgate
- Emergency Department, Liverpool Hospital, Sydney, NSW
- Department of Anaesthetics, Emergency Medicine and Intensive Care, University of New South Wales, Sydney, NSW
| | - Simon G A Brown
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research, Perth, WA
- Emergency Medicine, Royal Perth Hospital, University of Western Australia, Perth, WA
| | - Geoffrey K Isbister
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, NSW
| |
Collapse
|
18
|
SPOTTED BLACK SNAKE (PSEUDECHIS GUTTATUS) ENVENOMATION IN A MANED WOLF (CHRYSOCYON BRACHYURUS). J Zoo Wildl Med 2007; 38:483-7. [DOI: 10.1638/1042-7260(2007)38[483:sbspge]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
O'Leary MA, Schneider JJ, Krishnan BP, Lavis C, McKendry A, Ong LK, Isbister GK. Cross-neutralisation of Australian brown and tiger snake venoms with commercial antivenoms: Cross-reactivity or antivenom mixtures? Toxicon 2007; 50:206-13. [PMID: 17467763 DOI: 10.1016/j.toxicon.2007.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 11/25/2022]
Abstract
Recently it has been suggested that the Australian snake antivenoms made by CSL Ltd. are in fact not truly monovalent and may contain antibodies to other snake venoms because the horses are injected with multiple snake venoms. It is unclear to what extent various monovalent antivenoms can neutralise the effect of other venoms, whether this is due to a mixture of antibodies or true cross-reactivity, and whether this has any clinical significance. We aimed to study the immunological and functional properties of brown snake (Pseudonaja spp.) antivenom (BSAV) and tiger snake (Notechis spp.) antivenom (TSAV) against their respective venoms using enzyme immunoassays (EIA) and in vitro clotting studies. There was significant overlap between the two antivenoms with both TSAV and BSAV being detected by EIA on brown snake venom (BSV)-coated and tiger snake venom (TSV)-coated wells, respectively. In a competition EIA, increasing amounts of immunoaffinity-purified hen anti-brown antibodies (IgYp) mixed with TSAV reduced TSAV measured on TSV-coated wells. Both BSAV and TSAV prevented the clotting activity of both venoms. IgYp also prevented the clotting activity of TSV, suggesting true cross-reactivity. The cross-reactivity of TSAV and BSAV with BSV and TSV, respectively, was likely due to each being a mixture of anti-brown and anti-tiger antibodies, but there was partial cross-reactivity demonstrated by the effect of IgYp. Single-polyvalent antivenom for brown snake and tiger snake may be feasible in the future.
Collapse
Affiliation(s)
- Margaret A O'Leary
- Department of Clinical Toxicology and Pharmacology, Newcastle Mater Hospital, Newcastle, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Jansen M, McLeod M, White J, Isbister GK. Spotted black snake (Pseudechis guttatus) envenoming. Med J Aust 2007; 186:41-2. [PMID: 17229034 DOI: 10.5694/j.1326-5377.2007.tb00788.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/09/2006] [Indexed: 11/17/2022]
Abstract
We report two cases of spotted black snake (Pseudechis guttatus) envenoming. One patient experienced localised burning pain around the bite and developed nausea, vomiting, diarrhoea, upper abdominal cramping and diaphoresis. He was treated with intravenous fluids and antiemetics, but no antivenom, and was discharged 23 hours after the bite. The second patient developed a severe headache, blurred vision and mild nausea, associated with severe pain and swelling of the bitten limb that took 4 days to resolve. No antivenom was given and the patient had no sequelae. Neither patient developed significant coagulopathy, myolysis or neuromuscular paralysis. Bites by this species appear to cause effects similar to those of the more common red-bellied black snake (P. porphyriacus).
Collapse
Affiliation(s)
- Melanie Jansen
- School of Medical Practice and Population Health, University of Newcastle, Newcastle, NSW, Australia.
| | | | | | | |
Collapse
|
21
|
Isbister GK, Hooper MR, Dowsett R, Maw G, Murray L, White J. Collett's snake (Pseudechis colletti) envenoming in snake handlers. QJM 2006; 99:109-15. [PMID: 16434468 DOI: 10.1093/qjmed/hcl007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Collett's snake (Pseudechis colletti) is a member of the black snake genus and occurs in a warm temperate to sub-tropical region of central Queensland, Australia. There are no reports of bites occurring in the wild, and bites were previously thought to cause only minor effects. They are a popular snake among zoos and exotic snake keepers. AIM To investigate the clinical effects of severe envenoming by Collett's snake, and possible treatment options. DESIGN Case series. METHODS Clinical and laboratory features are described for six bites, all in snake handlers. RESULTS All six bites were from captive snakes, resulting in severe envenoming in four. Two patients were treated early with black snake antivenom, and only developed an anticoagulant coagulopathy and mild myolysis. Two developed anticoagulant coagulopathy and severe rhabdomyolysis associated with acute renal failure, requiring haemodialysis; both received antivenom >10 h after the bite, and initially received minimal fluid replacement. Other effects included thrombocytopenia, non-immune haemolytic anaemia and a marked leukocytosis. DISCUSSION Collett's snake envenoming is characterized by early generalized systemic effects (nausea, vomiting, abdominal pain, diarrhoea and headache) and an anticoagulant coagulopathy, followed in some cases by rhabdomyolysis and acute renal failure in untreated patients within 24 h. Early initiation of fluid therapy and treatment with black snake antivenom should be undertaken in all envenomed patients.
Collapse
Affiliation(s)
- G K Isbister
- Department of Clinical Toxicology, Newcastle Mater Hospital, Edith St, Waratah NSW 2298, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Kuruppu S, Reeve S, Smith AI, Hodgson WC. Isolation and pharmacological characterisation of papuantoxin-1, a postsynaptic neurotoxin from the venom of the Papuan black snake (Pseudechis papuanus). Biochem Pharmacol 2005; 70:794-800. [PMID: 16011833 DOI: 10.1016/j.bcp.2005.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/03/2005] [Accepted: 06/03/2005] [Indexed: 11/28/2022]
Abstract
The Papuan black snake (Pseudechis papuanus) is found throughout the southern coastal regions of Papua New Guinea and is thought to occur in the adjacent region of Iriyan Jaya. Neurotoxicity is a major symptom of envenomation by this species. This study describes the isolation of the first neurotoxin papuantoxin-1 from the venom of P. papuanus. Papuantoxin-1 (6738Da), which accounts for approximately 5% of the whole venom, was purified to homogeneity using successive steps of RP-HPLC. The toxin (0.3-1.0 microM) caused concentration dependent inhibition of indirect twitches (0.1 Hz, 0.2 ms and supramaximal V) and inhibited the responses to nicotinic agonists in the chick biventer cervicis nerve-muscle preparation, indicating a postsynaptic mode of action. However, papuantoxin-1 displayed no signs of myotoxicity. Papuantoxin-1 displayed pseudo-irreversible antagonism of cumulative concentration-response curves to carbachol at the skeletal muscle nicotinic receptors with an estimated pA2 value of 6.9+/-0.3. CSL black snake antivenom, which is raised against the venom of the Australian black snake Pseudechis australis, appears to be effective in reversing the effects of papuantoxin-1. Thus, black snake antivenom should be considered for the treatment of the neurotoxic effects following envenomation by the Papaun black snake.
Collapse
Affiliation(s)
- Sanjaya Kuruppu
- Monash Venom Group, Department of Pharmacology, Monash University, Vic. 3800, Australia
| | | | | | | |
Collapse
|
23
|
Kuruppu S, Isbister GK, Hodgson WC. Phospholipase A2-dependent effects of the venom from the new guinean small-eyed snakeMicropechis ikaheka. Muscle Nerve 2005; 32:81-7. [PMID: 15803483 DOI: 10.1002/mus.20334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The New Guinean small-eyed snake (Micropechis ikaheka) is a cause of life-threatening envenoming. Previous studies on M. ikaheka venom have indicated the presence of neurotoxins as well as myotoxins. This study examined the in vitro myotoxic effects of M. ikaheka venom and the efficacy of a polyvalent antivenom in neutralizing these effects. Venom (50 microg/ml) produced a slowly developing contracture and inhibition of direct twitches of the chick biventer cervicis nerve-muscle preparation in the presence of tubocurarine (10 microM). Myotoxicity was confirmed by subsequent histological examination of tissues. This myotoxicity was prevented by the prior addition of polyvalent snake antivenom (30 U/ml). However, the addition of antivenom (30 U/ml) 1 h after venom administration failed to reverse or prevent the further inhibition of direct twitches. In addition, venom (1-10 microg/ml) produced concentration-dependent contractions of the guinea-pig isolated ileum. These effects were dependent on phospholipase A2 (PLA2) activity of the venom as evidenced by the ability of the PLA2 inhibitor 4-bromophenacyl bromide (4-BPB; 1.8 mM) to prevent this activity. This study indicates that M. ikaheka venom causes significant myotoxicity and that polyvalent snake antivenom may be a potential treatment for the myotoxic effects in patients envenomed by this species.
Collapse
Affiliation(s)
- Sanjaya Kuruppu
- Monash Venom Group, Department of Pharmacology, Building 13E, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|