1
|
Synthesis of naturally occurring β-l-arabinofuranosyl-l-arabinofuranoside structures towards the substrate specificity evaluation of β-l-arabinofuranosidase. Bioorg Med Chem 2022; 68:116849. [PMID: 35653870 DOI: 10.1016/j.bmc.2022.116849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Methyl β-l-arabinofuranosyl-(1 → 2)-, -(1 → 3)-, and -(1 → 5)-α-l-arabinofuranosides have been stereoselectively synthesized through 2-naphthylmethyl ether-mediated intramolecular aglycon delivery (NAP-IAD), whose β-linkages were confirmed by NMR analysis on the 3JH1-H2 coupling constant and 13C chemical shift of C1. The NAP-IAD approach was simply extended for the synthesis of trisaccharide motifs possessing β-l-arabinofuranosyl-(1 → 5)-l-arabinofuranosyl non-reducing terminal structure with the branched β-l-arabinofuranosyl-(1 → 5)-[α-l-arabinofuranosyl-(1 → 3)]-α-l-arabinofuranosyl and the liner β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl structures in olive arabinan and dinoflagellate polyethers, respectively. The results on the substrate specificity of a bifidobacterial β-l-arabinofuranosidase HypBA1 using the regioisomers indicated that HypBA1 could hydrolyze all three linkages however behaved clearly less active to β-(1 → 5)-linked disaccharide than other two regioisomers including the proposed natural degradation product, β-(1 → 2)-linked one from plant extracellular matrix such as extensin. On the other hand, Xanthomonas XeHypBA1 was found to hydrolyze all three disaccharides as the substrate with higher specificity to β-(1 → 2)-linkage than bifidobacterial HypBA1.
Collapse
|
2
|
Sala-Pérez M, Alpermann TJ, Krock B, Tillmann U. Growth and bioactive secondary metabolites of arctic Protoceratium reticulatum (Dinophyceae). HARMFUL ALGAE 2016; 55:85-96. [PMID: 28073550 DOI: 10.1016/j.hal.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 06/06/2023]
Abstract
Harmful algal blooms are mainly caused by marine dinoflagellates and are known to produce potent toxins that may affect the ecosystem, human activities and health. Such events have increased in frequency and intensity worldwide in the past decades. Numerous processes involved in Global Change are amplified in the Arctic, but little is known about species specific responses of arctic dinoflagellates. The aim of this work was to perform an exhaustive morphological, phylogenetical and toxinological characterization of Greenland Protoceratium reticulatum and, in addition, to test the effect of temperature on growth and production of bioactive secondary metabolites. Seven clonal isolates, the first isolates of P. reticulatum available from arctic waters, were phylogenetically characterized by analysis of the LSU rDNA. Six isolates were further characterized morphologically and were shown to produce both yessotoxins (YTX) and lytic compounds, representing the first report of allelochemical activity in P. reticulatum. As shown for one of the isolates, growth was strongly affected by temperature with a maximum growth rate at 15°C, a significant but slow growth at 1°C, and cell death at 25°C, suggesting an adaptation of P. reticulatum to temperate waters. Temperature had no major effect on total YTX cell quota or lytic activity but both were affected by the growth phase with a significant increase at stationary phase. A comparison of six isolates at a fixed temperature of 10°C showed high intraspecific variability for all three physiological parameters tested. Growth rate varied from 0.06 to 0.19d-1, and total YTX concentration ranged from 0.3 to 15.0pg YTXcell-1 and from 0.5 to 31.0pgYTXcell-1 at exponential and stationary phase, respectively. All six isolates performed lytic activity; however, for two isolates lytic activity was only detectable at higher cell densities in stationary phase.
Collapse
Affiliation(s)
- Manuel Sala-Pérez
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Tilman J Alpermann
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, D-60325 Frankfurt a.M., Germany
| | - Bernd Krock
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Urban Tillmann
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| |
Collapse
|
3
|
Dominguez HJ, Paz B, Daranas AH, Norte M, Franco JM, Fernández JJ. Dinoflagellate polyether within the yessotoxin, pectenotoxin and okadaic acid toxin groups: Characterization, analysis and human health implications. Toxicon 2010; 56:191-217. [DOI: 10.1016/j.toxicon.2009.11.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/11/2009] [Accepted: 11/09/2009] [Indexed: 11/26/2022]
|
4
|
Gerssen A, Pol-Hofstad IE, Poelman M, Mulder PP, van den Top HJ, de Boer J. Marine toxins: chemistry, toxicity, occurrence and detection, with special reference to the Dutch situation. Toxins (Basel) 2010; 2:878-904. [PMID: 22069615 PMCID: PMC3153220 DOI: 10.3390/toxins2040878] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/14/2010] [Accepted: 04/22/2010] [Indexed: 11/29/2022] Open
Abstract
Various species of algae can produce marine toxins under certain circumstances. These toxins can then accumulate in shellfish such as mussels, oysters and scallops. When these contaminated shellfish species are consumed severe intoxication can occur. The different types of syndromes that can occur after consumption of contaminated shellfish, the corresponding toxins and relevant legislation are discussed in this review. Amnesic Shellfish Poisoning (ASP), Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish Poisoning (DSP) and Azaspiracid Shellfish Poisoning (AZP) occur worldwide, Neurologic Shellfish Poisoning (NSP) is mainly limited to the USA and New Zealand while the toxins causing DSP and AZP occur most frequently in Europe. The latter two toxin groups are fat-soluble and can therefore also be classified as lipophilic marine toxins. A detailed overview of the official analytical methods used in the EU (mouse or rat bioassay) and the recently developed alternative methods for the lipophilic marine toxins is given. These alternative methods are based on functional assays, biochemical assays and chemical methods. From the literature it is clear that chemical methods offer the best potential to replace the animal tests that are still legislated worldwide. Finally, an overview is given of the situation of marine toxins in The Netherlands. The rat bioassay has been used for monitoring DSP and AZP toxins in The Netherlands since the 1970s. Nowadays, a combination of a chemical method and the rat bioassay is often used. In The Netherlands toxic events are mainly caused by DSP toxins, which have been found in Dutch shellfish for the first time in 1961, and have reoccurred at irregular intervals and in varying concentrations. From this review it is clear that considerable effort is being undertaken by various research groups to phase out the animal tests that are still used for the official routine monitoring programs.
Collapse
Affiliation(s)
- Arjen Gerssen
- RIKILT, Institute of Food Safety, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (P.P.J.M.); (H.J.T.)
- Author to whom correspondence should be addressed; ; Tel.: +0031-317-480433; Fax: 0031-317-417717
| | - Irene E. Pol-Hofstad
- Microbiological Laboratory for Health Protection, National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands;
| | - Marnix Poelman
- IMARES, Wageningen UR, Korringaweg 5, 4401 NT Yerseke, The Netherlands;
| | - Patrick P.J. Mulder
- RIKILT, Institute of Food Safety, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (P.P.J.M.); (H.J.T.)
| | - Hester J. van den Top
- RIKILT, Institute of Food Safety, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (P.P.J.M.); (H.J.T.)
| | - Jacob de Boer
- Institute for Environmental Studies, VU University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. EXPERIENTIA SUPPLEMENTUM 2010; 100:65-122. [PMID: 20358682 DOI: 10.1007/978-3-7643-8338-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Yessotoxins, a group of marine polyether toxins: an overview. Mar Drugs 2008; 6:73-102. [PMID: 18728761 PMCID: PMC2525482 DOI: 10.3390/md20080005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 11/17/2022] Open
Abstract
Yessotoxin (YTX) is a marine polyether toxin that was first isolated in 1986 from the scallop Patinopecten yessoensis. Subsequently, it was reported that YTX is produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. YTXs have been associated with diarrhetic shellfish poisoning (DSP) because they are often simultaneously extracted with DSP toxins, and give positive results when tested in the conventional mouse bioassay for DSP toxins. However, recent evidence suggests that YTXs should be excluded from the DSP toxins group, because unlike okadaic acid (OA) and dinophyisistoxin-1 (DTX-1), YTXs do not cause either diarrhea or inhibition of protein phosphatases. In spite of the increasing number of molecular studies focused on the toxicity of YTX, the precise mechanism of action is currently unknown. Since the discovery of YTX, almost forty new analogues isolated from both mussels and dinoflagellates have been characterized by NMR or LC-MS/MS techniques. These studies indicate a wide variability in the profile and the relative abundance of YTXs in both, bivalves and dinoflagellates. This review covers current knowledge on the origin, producer organisms and vectors, chemical structures, metabolism, biosynthetic origin, toxicological properties, potential risks to human health and advances in detection methods of YTXs.
Collapse
|
7
|
|
8
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2008; 25:35-94. [PMID: 18250897 DOI: 10.1039/b701534h] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
9
|
Loader JI, Hawkes AD, Beuzenberg V, Jensen DJ, Cooney JM, Wilkins AL, Fitzgerald JM, Briggs LR, Miles CO. Convenient large-scale purification of yessotoxin from Protoceratium reticulatum culture and isolation of a novel furanoyessotoxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:11093-11100. [PMID: 18052242 DOI: 10.1021/jf072704z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Yessotoxins from a large-scale culture (226 L) of Protoceratium reticulatum strain CAWD129 were harvested by filtration followed by solid-phase extraction. The extract was purified by column chromatography over basic alumina and reverse-phase flash chromatography to afford pure yessotoxin (193 mg). Isolation of yessotoxin was greatly facilitated by selection of a strain which did not produce analogues that interfered with yessotoxin isolation. In addition to yessotoxin, numerous minor yessotoxins were detected by LC-MS in other fractions. From one of these, an early eluting minor analogue with the same molecular weight as yessotoxin and a similar mass spectrometric fragmentation pattern was isolated. This analogue was identified by NMR and mass spectrometry as a novel yessotoxin analogue containing a furan ring in the side chain. This finding reveals biosynthetic flexibility of the yessotoxin pathway in P. reticulatum and confirms earlier findings of production of many minor yessotoxin analogues by this alga. Production of these analogues appeared to be a constitutive trait of P. reticulatum CAWD129.
Collapse
Affiliation(s)
- Jared I Loader
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Paz B, Riobó P, Ramilo I, Franco JM. Yessotoxins profile in strains of Protoceratium reticulatum from Spain and USA. Toxicon 2007; 50:1-17. [PMID: 17395228 DOI: 10.1016/j.toxicon.2007.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/21/2022]
Abstract
Seven strains of Protoceratium reticulatum isolated from Spain and the USA were cultured in the laboratory. Yessotoxins (YTXs) quantification and toxin profile determination were performed by LC-FLD and LC-MS/MS. The four Spanish strains were found to produce YTX and known YTX analogs, however, YTX was not detected in any of the three USA strains. Among the strains that produced YTXs, toxin production ranged between 2.9 and 28.6pg/cell. The YTX profile was substantially different between strains, in three out of the four Spanish strains YTX was the main toxin and in the fourth homoYTX was the prominent toxin. This work demonstrates that YTX is not always the main toxin in P. reticulatum and a high variability in YTX amounts and profile found in other locations is confirmed.
Collapse
Affiliation(s)
- Beatriz Paz
- Fitoplancton Tóxico, Instituto Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| | | | | | | |
Collapse
|