1
|
Xin K, Sun R, Xiao W, Lu W, Sun C, Lou J, Xu Y, Chen T, Wu D, Gao Y. Short Peptides from Asian Scorpions: Bioactive Molecules with Promising Therapeutic Potential. Toxins (Basel) 2025; 17:114. [PMID: 40137887 PMCID: PMC11946205 DOI: 10.3390/toxins17030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Scorpion venom peptides, particularly those derived from Asian species, have garnered significant attention, offering therapeutic potential in pain management, cancer, anticoagulation, and infectious diseases. This review provides a comprehensive analysis of scorpion venom peptides, focusing on their roles as voltage-gated sodium (Nav), potassium (Kv), and calcium (Cav) channel modulators. It analyzed Nav1.7 inhibition for analgesia, Kv1.3 blockade for anticancer activity, and membrane disruption for antimicrobial effects. While the low targeting specificity and high toxicity of some scorpion venom peptides pose challenges to their clinical application, recent research has made strides in overcoming these limitations. This review summarizes the latest progress in scorpion venom peptide research, discussing their mechanisms of action, therapeutic potential, and challenges in clinical translation. This work aims to provide new insights and directions for the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Ruize Sun
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Wanyang Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| |
Collapse
|
2
|
Miyashita M, Sakai S, Okabe R, Kawai S, Kishimoto T, Kitanaka A, Mitani N, Nakagawa Y. Identification and synthesis of a long-chain antimicrobial peptide from the venom of the Liocheles australasiae scorpion. J Pept Sci 2025; 31:e3661. [PMID: 39489539 DOI: 10.1002/psc.3661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Scorpion venom contains linear peptides without disulfide bonds in addition to peptides with disulfide bonds. Many such linear peptides have an amphiphilic α-helical structure, often with antimicrobial activity and can be classified into three groups based on their molecular size. Among them, long-chain antimicrobial peptides consisting of more than 40 residues have not been thoroughly studied due to the difficulty of synthesizing them. We have previously reported a transcriptome analysis of the venom gland of Liocheles australasiae that revealed precursor sequences of long-chain antimicrobial peptides. In the study reported here, we identified the mature structure of one such long-chain antimicrobial peptide, LaCT1, which we synthesized using chemical ligation to confirm its structure and evaluate its biological activities. The result showed that LaCT1 exhibited significant antimicrobial activity. In addition, we identified its partial peptides consisting of an N- or C-terminal region, which may be generated by enzymatic cleavage in the venom. Among them, only the peptide containing the N-terminal half region was active. LaCT1 also not only showed insecticidal activity but also synergistically enhanced the effects of another insecticidal peptide identified in L. australasiae venom as well. These results provide insights into the role of antimicrobial peptides in scorpion venom.
Collapse
Affiliation(s)
| | - Shoichi Sakai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Okabe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sayaka Kawai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Naoya Mitani
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
3
|
Sakai S, Fujita Y, Juichi H, Nakagawa Y, Miyashita M. Chemical synthesis and functional characterization of LaIT3, an insecticidal two-domain peptide in Liocheles australasiae venom. Toxicon 2024; 238:107564. [PMID: 38113946 DOI: 10.1016/j.toxicon.2023.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
LaIT3, belonging to the β-KTx family, is an insecticidal peptide in the venom of the Liocheles australasiae scorpion. Peptides in the family consist of two structural domains: an N-terminal domain with an α-helical structure common to antimicrobial peptides and a C-terminal domain with a structure stabilized by three disulfide bonds common to ion-channel blocking peptides. However, the contribution of each domain of LaIT3 to its activity remained unknown. In addition, some peptidic components are known to be enzymatically cleaved in the venom, which generates partial peptides. In our study, we searched for partial peptides of LaIT3 using LC/MS analysis and found peptides generated by cleavage at the central region of LaIT3. We subsequently synthesized full-length LaIT3 and its partial peptides to evaluate their insecticidal activity. The results, showing that only full-length LaIT3 is active, indicate that the insecticidal activity of LaIT3 depends on the presence of both N-terminal and C-terminal domains. Furthermore, LaIT3 did not exhibit the cytolytic activity against insect cells and showed only weak antibacterial activity. These findings suggest that its action is not due to a simple membrane disruption effect but instead due to actions on specific target molecules, including ion channels.
Collapse
Affiliation(s)
- Shoichi Sakai
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuumi Fujita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hironori Juichi
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Labropoulou V, Wang L, Magkrioti C, Smagghe G, Swevers L. Single domain von Willebrand factor type C "cytokines" and the regulation of the stress/immune response in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22071. [PMID: 38288483 DOI: 10.1002/arch.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.
Collapse
Affiliation(s)
- Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Luoluo Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Christiana Magkrioti
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Guy Smagghe
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Entomology, Guizhou University, Guizhou, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| |
Collapse
|
5
|
Nystrom GS, Ellsworth SA, Rokyta DR. The remarkably enzyme-rich venom of the Big Bend Scorpion (Diplocentrus whitei). Toxicon 2023; 226:107080. [PMID: 36907567 DOI: 10.1016/j.toxicon.2023.107080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Scorpion venoms have long been studied for their peptide discovery potential, with modern high-throughput venom-characterization techniques paving the way for the discovery of thousands of novel putative toxins. Research into these toxins has provided insight into the pathology and treatment of human diseases, even resulting in the development of one compound with Food and Drug Administration (FDA) approval. Although most of this research has focused on the toxins of scorpion species considered medically significant to humans, the venom of harmless scorpion species possess toxins that are homologous to those from medically significant species, indicating that harmless scorpion venoms may also serve as valuable sources of novel peptide variants. Furthermore, as harmless scorpions represent a vast majority of scorpion species diversity, and therefore venom toxin diversity, venoms from these species likely contain entirely new toxin classes. We sequenced the venom-gland transcriptome and venom proteome of two male Big Bend scorpions (Diplocentrus whitei), providing the first high-throughput venom characterization for a member of this genus. We identified a total of 82 toxins in the venom of D. whitei, 25 of which were identified in both the transcriptome and proteome, and 57 of which were only identified in the transcriptome. Furthermore, we identified a unique, enzyme-rich venom dominated by serine proteases and the first arylsulfatase B toxins identified in scorpions.
Collapse
Affiliation(s)
- Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
6
|
So WL, Leung TCN, Nong W, Bendena WG, Ngai SM, Hui JHL. Transcriptomic and proteomic analyses of venom glands from scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus. Peptides 2021; 146:170643. [PMID: 34461138 DOI: 10.1016/j.peptides.2021.170643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022]
Abstract
Scorpion venom contains a cocktail of differing peptides and proteins. Previous studies focused on the identification of species-specific components in scorpion venoms, and whether there could be peptides and/or proteins conserved in the venom gland of a scorpion ancestor has been rarely investigated. Here, using a combination of transcriptomic and proteomic approaches, putative conserved toxins from the venom glands of scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus were identified and compared. Similar to other studies, more than half of the conserved toxins are predominantly proteins including proteases. On the other hand, unique venom peptides, including ion channel toxins were revealed specifically in the M. martensii. The sodium channel toxin peptides revealed in M. martensii consolidated that scorpions in the Buthidae are able to envenomate their prey wih highly neurotoxic venom. This study suggested that these conserved proteins had already formed part of the arsenal in the venom gland of the common ancestor of scorpions, and likely perform important functional roles in envenomation during scorpion evolution.
Collapse
Affiliation(s)
- Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas C N Leung
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Sai Ming Ngai
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Daoudi K, Malosse C, Lafnoune A, Darkaoui B, Chakir S, Sabatier JM, Chamot-Rooke J, Cadi R, Oukkache N. Mass spectrometry-based top-down and bottom-up approaches for proteomic analysis of the Moroccan Buthus occitanus scorpion venom. FEBS Open Bio 2021; 11:1867-1892. [PMID: 33715301 PMCID: PMC8255848 DOI: 10.1002/2211-5463.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Buthus occitanus (B. occitanus) is one of the most dangerous scorpions in the world. Despite the involvement of B. occitanus scorpion in severe cases of envenomation in Morocco, no study has focused yet on the proteomic composition of the Moroccan B. occitanus scorpion venom. Mass spectrometry‐based proteomic techniques are commonly used in the study of scorpion venoms. The implementation of top‐down and bottom‐up approaches for proteomic analyses facilitates screening by allowing a global view of the structural aspects of such complex matrices. Here, we provide a partial overview of the venom of B. occitanus scorpion, in order to explore the diversity of its toxins and hereafter understand their effects. To this end, a combination of top‐down and bottom‐up approaches was applied using nano‐high liquid chromatography coupled to nano‐electrospray tandem mass spectrometry (nano‐LC‐ESI MS/MS). The LC‐MS results showed that B. occitanus venom contains around 200 molecular masses ranging from 1868 to 16 720 Da, the most representative of which are those between 5000 and 8000 Da. Interestingly, combined top‐down and bottom‐up LC‐MS/MS results allowed the identification of several toxins, which were mainly those acting on ion channels, including those targeting sodium (NaScTxs), potassium (KScTxs), chloride (ClScTxs), and calcium channels (CaScTx), as well as antimicrobial peptides (AMPs), amphipathic peptides, myotropic neuropeptides, and hypothetical secreted proteins. This study reveals the molecular diversity of B. occitanus scorpion venom and identifies components that may have useful pharmacological activities.
Collapse
Affiliation(s)
- Khadija Daoudi
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Christian Malosse
- Mass spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Ayoub Lafnoune
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Bouchra Darkaoui
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Salma Chakir
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | - Julia Chamot-Rooke
- Mass spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Rachida Cadi
- Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco
| |
Collapse
|
8
|
Zhao Z, Zhang K, Zhu W, Ye X, Ding L, Jiang H, Li F, Chen Z, Luo X. Two new cationic α-helical peptides identified from the venom gland of Liocheles australasiae possess antimicrobial activity against methicillin-resistant staphylococci. Toxicon 2021; 196:63-73. [PMID: 33836178 DOI: 10.1016/j.toxicon.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Methicillin-resistant staphylococci have become growing threats to human health, and novel antimicrobials are urgently needed. Natural antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics. Here, two novel cationic α-helical antimicrobial peptides, Lausporin-1 and Lausporin-2, were identified from the venom gland of the scorpion L. australasiae through a cDNA library screening strategy. Biochemical analyses demonstrated that Lausporin-1 and Lausporin-2 are cationic α-helical amphipathic molecules. Antimicrobial assays demonstrated that the two peptides possess antibacterial activities against several species of antibiotic-resistant staphylococci. Importantly, they are active against methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus capitis, with the minimum inhibitory concentrations ranging from 2.5 to 10 μg/ml. Moreover, both peptides can induce dose-dependent plasma membrane disruptions of the bacteria. In short, our work expands the knowledge of the scorpion L. australasiae venom-derived AMPs and sheds light on the potential of Lausporin-1 and Lausporin-2 in the development of novel drugs against methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
9
|
Miyashita M, Mitani N, Kitanaka A, Yakio M, Chen M, Nishimoto S, Uchiyama H, Sue M, Hotta H, Nakagawa Y, Miyagawa H. Identification of an antiviral component from the venom of the scorpion Liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon 2020; 191:25-37. [PMID: 33340503 DOI: 10.1016/j.toxicon.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
Scorpion venom contains a variety of biologically active peptides. Among them, neurotoxins are major components in the venom, but it also contains peptides that show antimicrobial activity. Previously, we identified three insecticidal peptides from the venom of the Liocheles australasiae scorpion, but activities and structures of other venom components remained unknown. In this study, we performed a transcriptome analysis of the venom gland of the scorpion L. australasiae to gain a comprehensive understanding of its venom components. The result shows that potassium channel toxin-like peptides were the most diverse, whereas only a limited number of sodium channel toxin-like peptides were observed. In addition to these neurotoxin-like peptides, many non-disulfide-bridged peptides were identified, suggesting that these components have some critical roles in the L. australasiae venom. In this study, we also isolated a component with antiviral activity against hepatitis C virus using a bioassay-guided fractionation approach. By integrating mass spectrometric and transcriptomic data, we successfully identified LaPLA2-1 as an anti-HCV component. LaPLA2-1 is a phospholipase A2 having a heterodimeric structure that is N-glycosylated at the N-terminal region. Since the antiviral activity of LaPLA2-1 was inhibited by a PLA2 inhibitor, the enzymatic activity of LaPLA2-1 is likely to be involved in its antiviral activity.
Collapse
Affiliation(s)
- Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Naoya Mitani
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Kitanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mao Yakio
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ming Chen
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan
| | - Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hak Hotta
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
10
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
11
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
12
|
Juichi H, Miyashita M, Nakagawa Y, Miyagawa H. Isolation and characterization of the insecticidal, two-domain toxin LaIT3 from the Liocheles australasiae scorpion venom. Biosci Biotechnol Biochem 2019; 83:2183-2189. [PMID: 31448688 DOI: 10.1080/09168451.2019.1654849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel insecticidal peptide (LaIT3) was isolated from the Liocheles australasiae venom. The primary structure of LaIT3 was determined by a combination of Edman degradation and MS/MS de novo sequencing analysis. Discrimination between Leu and Ile in MS/MS analysis was achieved based on the difference in side chain fragmentation assisted by chemical derivatization. LaIT3 was determined to be an 84-residue peptide with three intrachain disulfide bonds. The sequence similarity search revealed that LaIT3 belongs to the scorpine-like peptides consisting of two structural domains: an N-terminal α-helical domain and a C-terminal cystine-stabilized domain. As observed for most of the scorpine-like peptides, LaIT3 showed significant antibacterial activity against Escherichia coli, which is likely to be caused by its membrane-disrupting property.
Collapse
Affiliation(s)
- Hironori Juichi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
13
|
Grashof DGB, Kerkkamp HMI, Afonso S, Archer J, Harris DJ, Richardson MK, Vonk FJ, van der Meijden A. Transcriptome annotation and characterization of novel toxins in six scorpion species. BMC Genomics 2019; 20:645. [PMID: 31409288 PMCID: PMC6693263 DOI: 10.1186/s12864-019-6013-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Venom has evolved in parallel in multiple animals for the purpose of self-defense, prey capture or both. These venoms typically consist of highly complex mixtures of toxins: diverse bioactive peptides and/or proteins each with a specific pharmacological activity. Because of their specificity, they can be used as experimental tools to study cell mechanisms and develop novel medicines and drugs. It is therefore potentially valuable to explore the venoms of various animals to characterize their toxins and identify novel toxin-families. This study focuses on the annotation and exploration of the transcriptomes of six scorpion species from three different families. The transcriptomes were annotated with a custom-built automated pipeline, primarily consisting of Basic Local Alignment Search Tool searches against UniProt databases and filter steps based on transcript coverage. Results We annotated the transcriptomes of four scorpions from the family Buthidae, one from Iuridae and one from Diplocentridae using our annotation pipeline. We found that the four buthid scorpions primarily produce disulfide-bridged ion-channel targeting toxins, while the non-buthid scorpions have a higher abundance of non-disulfide-bridged toxins. Furthermore, analysis of the “unidentified” transcripts resulted in the discovery of six novel putative toxin families containing a total of 37 novel putative toxins. Additionally, 33 novel toxins in existing toxin-families were found. Lastly, 19 novel putative secreted proteins without toxin-like disulfide bonds were found. Conclusions We were able to assign most transcripts to a toxin family and classify the venom composition for all six scorpions. In addition to advancing our fundamental knowledge of scorpion venomics, this study may serve as a starting point for future research by facilitating the identification of the venom composition of scorpions and identifying novel putative toxin families. Electronic supplementary material The online version of this article (10.1186/s12864-019-6013-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Freek J Vonk
- IBL, Leiden University, Leiden, The Netherlands.,Naturalis Biodiversity Center Leiden, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Dissecting Toxicity: The Venom Gland Transcriptome and the Venom Proteome of the Highly Venomous Scorpion Centruroides limpidus (Karsch, 1879). Toxins (Basel) 2019; 11:toxins11050247. [PMID: 31052267 PMCID: PMC6563264 DOI: 10.3390/toxins11050247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Venom glands and soluble venom from the Mexican scorpion Centruroides limpidus (Karsch, 1879) were used for transcriptomic and proteomic analyses, respectively. An RNA-seq was performed by high-throughput sequencing with the Illumina platform. Approximately 80 million reads were obtained and assembled into 198,662 putative transcripts, of which 11,058 were annotated by similarity to sequences from available databases. A total of 192 venom-related sequences were identified, including Na+ and K+ channel-acting toxins, enzymes, host defense peptides, and other venom components. The most diverse transcripts were those potentially coding for ion channel-acting toxins, mainly those active on Na+ channels (NaScTx). Sequences corresponding to β- scorpion toxins active of K+ channels (KScTx) and λ-KScTx are here reported for the first time for a scorpion of the genus Centruroides. Mass fingerprint corroborated that NaScTx are the most abundant components in this venom. Liquid chromatography coupled to mass spectometry (LC-MS/MS) allowed the identification of 46 peptides matching sequences encoded in the transcriptome, confirming their expression in the venom. This study corroborates that, in the venom of toxic buthid scorpions, the more abundant and diverse components are ion channel-acting toxins, mainly NaScTx, while they lack the HDP diversity previously demonstrated for the non-buthid scorpions. The highly abundant and diverse antareases explain the pancreatitis observed after envenomation by this species.
Collapse
|
15
|
Rojas-Azofeifa D, Sasa M, Lomonte B, Diego-García E, Ortiz N, Bonilla F, Murillo R, Tytgat J, Díaz C. Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:54-67. [PMID: 30517877 DOI: 10.1016/j.cbpc.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Venoms of medically important scorpions from Buthidae family have been intensively studied, in contrast to non-buthid venoms, for which knowledge is scarce. In this work, we characterized the venom of a Diplocentridae species, Didymocentrus krausi, a small fossorial scorpion that inhabits the Tropical Dry Forest of Central America. D. krausi venom soluble fraction contains proteases with enzymatic activity on gelatin and casein. Mass spectrometry and venomic analysis confirmed the presence of elastase-like, cathepsin-O-like proteases and a neprilysin-like metalloproteinase. We did not detect phospholipase A2, C or D, nor hyaluronidase activity in the venom. By homology-based venom gland transcriptomic analysis, NDBPs, a β-KTx-like peptide, and other putative toxin transcripts were found, which, together with a p-benzoquinone compound present in the venom, could potentially explain its direct hemolytic and cytotoxic effects in several mammalian cell lines. Cytotoxicity of D. krausi venom was higher than the effect of venoms from two buthid scorpion species distributed in Costa Rica, Centruroides edwardsii and Tityus pachyurus. Even though D. krausi venom was not lethal to mice or crickets, when injected in mouse gastrocnemius muscle at high doses it induced pathological effects at 24 h, which include myonecrosis, weak hemorrhage, and inflammatory infiltration. We observed an apparent thrombotic effect in the skin blood vessels, but no in vitro fibrinogenolytic activity was detected. In crickets, D. krausi venom induced toxicity and paralysis in short periods of time.
Collapse
Affiliation(s)
- Daniela Rojas-Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Elia Diego-García
- Cátedras CONACYT-El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico; Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Renato Murillo
- Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San José, Costa Rica
| | - Jan Tytgat
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
16
|
Romero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel) 2018; 10:E359. [PMID: 30189638 PMCID: PMC6162517 DOI: 10.3390/toxins10090359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as "other venom components". A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.
Collapse
Affiliation(s)
- Maria Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Carlos Eduardo Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
- Department of Integrative Biology, University of Wisconsin⁻Madison, Madison, WI 53706, USA.
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Cesar Vicente Ferreira Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
17
|
The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 2018; 151:47-62. [DOI: 10.1016/j.toxicon.2018.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
|
18
|
Cnidarian peptide neurotoxins: a new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discov Today 2018; 24:189-197. [PMID: 30165198 DOI: 10.1016/j.drudis.2018.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 01/17/2023]
Abstract
Cnidaria provide the largest source of bioactive peptides for new drug development. The venoms contain enzymes, potent pore-forming toxins and neurotoxins. The neurotoxins can immobilize predators rapidly when discharged via modifying sodium-channel-gating or blocking the potassium channel during the repolarization stage. Most cnidarian neurotoxins remain conserved under the strong influence of negative selection. Neuroactive peptides targeting the central nervous system through affinity with ion channels could provide insight leading to drug treatment of neurological diseases, which arise from ion channel dysfunctions. Although marine resources offer thousands of possible peptides, only one peptide derived from Cnidaria: ShK-186, also named dalazatide, has reached the pharmaceutical market. This review focuses on neuroprotective agents derived from cnidarian neurotoxic peptides.
Collapse
|
19
|
Santibáñez-López CE, Ontano AZ, Harvey MS, Sharma PP. Transcriptomic Analysis of Pseudoscorpion Venom Reveals a Unique Cocktail Dominated by Enzymes and Protease Inhibitors. Toxins (Basel) 2018; 10:E207. [PMID: 29783636 PMCID: PMC5983263 DOI: 10.3390/toxins10050207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
Transcriptomic and genomic analyses have illuminated the diversity of venoms in three of the four venomous arachnid orders (scorpions, spiders, and ticks). To date, no venom gland transcriptome analysis has been available for pseudoscorpions, the fourth venomous arachnid lineage. To redress this gap, we sequenced an mRNA library generated from the venom glands of the species Synsphyronus apimelus (Garypidae). High-throughput sequencing by the Illumina protocol, followed by de novo assembly, resulted in a total of 238,331 transcripts. From those, we annotated 131 transcripts, which code for putative peptides/proteins with similar sequences to previously reported venom components available from different arachnid species in protein databases. Transcripts putatively coding for enzymes showed the richest diversity, followed by other venom components such as peptidase inhibitors, cysteine-rich peptides, and thyroglobulin 1-like peptides. Only 11 transcripts were found that code for putatively low molecular mass spider toxins. This study constitutes the first report of the diversity of components within pseudoscorpion venom.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México C.P. 04510, Mexico.
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
20
|
Martinez G, Hograindleur JP, Voisin S, Abi Nahed R, Abd El Aziz TM, Escoffier J, Bessonnat J, Fovet CM, De Waard M, Hennebicq S, Aucagne V, Ray PF, Schmitt E, Bulet P, Arnoult C. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Mol Hum Reprod 2018; 23:116-131. [PMID: 27932550 DOI: 10.1093/molehr/gaw075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/18/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is it possible to identify original compounds that are able to enhance sperm motility from the venom of the scorpion Scorpio maurus palmatus? SUMMARY ANSWER We identified a potent disulfide-rich peptide (DRP) of 73 amino acids that significantly improved the motility of fresh and frozen-thawed sperm in different mammalian species, including human, and improved fertilization outcome in mouse IVF experiments. WHAT IS KNOWN ALREADY Any disturbance of sperm motility has a strong impact on fertilization and can lead to subfertility or infertility. Significant efforts have, therefore, been made to identify pharmacological drugs that might improve sperm motility. Such compounds are particularly useful in azoospermia to improve testicular sperm extraction and in the domain of cryopreservation because the motility of frozen-thawed sperm is reduced. STUDY DESIGN, SIZE, DURATION This was a basic science/medical research study aimed at identifying original compounds from a library of venoms able to enhance mammalian sperm motility, including human. We first identified in the venom of a scorpion S. m. palmatus a fraction able to potently activate sperm motility. We next purified and characterized the compound by liquid chromatography, mass spectrometry and peptide synthesis. Finally, the potency and toxicity of both purified and synthetic versions of the identified compound on sperm motility were assessed using different in vitro tests in different mammalian species. PARTICIPANTS/MATERIALS, SETTING, METHODS For human sperm, biological samples were collected from normozoospermic donors and subfertile patients attending a reproduction department for diagnostic semen analysis. Testicular sperm was collected from cynomolgus monkeys (Macaca fascicularis) euthanized for the needs of specific authorized research projects. The peptide was also tested on bovine and mouse epidydimal sperm. We measured different sperm motility parameters with a computer-assisted sperm analysis system in the presence or absence of the peptide. MAIN RESULTS AND THE ROLE OF CHANCE Size exclusion chromatography enabled us to isolate a fraction of the venom of S. m. palmatus able to increase sperm motility. By liquid chromatography and mass spectrometry, a peptide comprising 73 amino acids with 4 disulfide bridges was identified as responsible for the biological activity and called 'spermaurin'. The identity of spermaurin was confirmed by chemical synthesis. We showed that the peptide increased the motility of fresh and frozen-thawed human sperm. We observed that the potency of the peptide was higher on fresh ejaculated spermatozoa with a low motility, achieving a 100% increase of curvilinear velocity in poorly performing sperm. We also demonstrated that peptide is effective on bovine and mouse fresh epididymal, bovine frozen-thawed ejaculated and fresh non-human primate testicular sperm. Finally, in mouse IVF, the production of 2-cell embryos was increased by 24% when sperm were treated with the peptide. LIMITATIONS, REASONS FOR CAUTION This work is an in vitro evaluation of the ability of spermaurin to improve sperm motility parameters. Another limitation of this study is the small number of human sperm samples tested with the natural (n = 36) and synthetic (n = 12) peptides. Moreover, the effect of the peptide on IVF outcome was only tested in mouse and further tests with human and bovine gametes are required to confirm and extend this result in other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS This work confirms our initial study showing that venoms represent an interesting source of molecules that are able to modify sperm physiology. Moreover, this work presents the first demonstrated biological action of a venom peptide from the scorpion S. m. palmatus with sequence similarities to La1 peptide from Liocheles australasiae (Wood scorpion), a widespread family of DRPs. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work is part of the project 'LAB COM-14 LAB7 0004 01-LIPAV', funded by the program LabCom 2014 from the French Research Agency (ANR). Dr Arnoult reports grants from IMV Technologies during the conduct of the study. In addition, Drs Arnoult, Martinez, Ray and Schmitt have a patent EP16305642.7 pending containing some of the information presented in this manuscript.
Collapse
Affiliation(s)
- Guillaume Martinez
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France.,Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Jean-Pascal Hograindleur
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Sébastien Voisin
- Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Roland Abi Nahed
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Tarek M Abd El Aziz
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Julien Bessonnat
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Claire-Maëlle Fovet
- Molecular Imaging Research Center, MIRCen CEA/INSERM UMR1169, Fontenay-aux-Roses F-92265, France
| | - Michel De Waard
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Sylviane Hennebicq
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans F-45071, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biochimie Génétique et Moléculaire, Grenoble F-38000, France
| | - Eric Schmitt
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France
| | - Philippe Bulet
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| |
Collapse
|
21
|
Romero-Gutierrez T, Peguero-Sanchez E, Cevallos MA, Batista CVF, Ortiz E, Possani LD. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies. Toxins (Basel) 2017; 9:E399. [PMID: 29231872 PMCID: PMC5744119 DOI: 10.3390/toxins9120399] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023] Open
Abstract
This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology.
Collapse
Affiliation(s)
- Teresa Romero-Gutierrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Cesar V F Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| |
Collapse
|
22
|
Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae). Toxicon 2017; 133:95-109. [DOI: 10.1016/j.toxicon.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
|
23
|
Ding L, Chen J, Hao J, Zhang J, Huang X, Hu F, Wu Z, Liu Y, Li W, Cao Z, Wu Y, Li J, Li S, Liu H, Wu W, Chen Z. Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine-inhibiting activities from Non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Peptides 2017; 91:13-19. [PMID: 28300672 DOI: 10.1016/j.peptides.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022]
Abstract
Non-Buthidae venomous scorpions are huge natural sources of toxin peptides; however, only a few studies have been done to understand their toxin peptides. Herein, we describe three new potential immunomodulating toxin peptides, Ctri18, Ctry68 and Ctry2908, from two non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Sequence alignment analyses showed that Ctri18, Ctry68 and Ctry2908 are three new members of the scorpion toxin α-KTx15 subfamily. Electrophysiological experiments showed that Ctri18, Ctry68 and Ctry2908 blocked the Kv1.3 channel at micromole to nanomole levels, but had weak effects on potassium channel KCNQ1 and sodium channel Nav1.4, which indicated that Ctri18, Ctry68 and Ctry2908 might have specific inhibiting effects on the Kv1.3 channel. ELISA experiments showed that Ctri18, Ctry68 and Ctry2908 inhibited IL-2 cytokine secretions of activated T lymphocyte in human PBMCs. Excitingly, consistent with the good Kv1.3 channel inhibitory activity, Ctry2908 inhibited cytokine IL-2 secretion in nanomole level, which indicated that Ctry2908 might be a new lead drug template toward Kv1.3 channels. Together, these studies discovered three new toxin peptides, Ctri18, Ctry68 and Ctry2908, with Kv1.3 channel and IL-2 cytokine-inhibiting activities from two scorpions, C. tricostatus and C. tryznai, and highlighted that non-Buthidae venomous scorpions are new natural toxin peptide sources.
Collapse
Affiliation(s)
- Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Jing Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xuejun Huang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Fangfang Hu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Zheng Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jian Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Hongyan Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Wenlong Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
24
|
Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel) 2016; 8:toxins8120367. [PMID: 27941686 PMCID: PMC5198561 DOI: 10.3390/toxins8120367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.
Collapse
|
25
|
Zhong J, Zeng XC, Zeng X, Nie Y, Zhang L, Wu S, Bao A. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. J Proteomics 2016; 150:40-62. [PMID: 27519694 DOI: 10.1016/j.jprot.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/25/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022]
Abstract
Hadogenes is a genus of large African scorpions with 18 described species. However, little is known about the venom peptide composition of any species from Hadogenes so far. Here, we fully explored the composition of venom gland peptides from Hadogenes troglodytes using transcriptomic approach. We discovered 121 novel peptides from the scorpion, including 20 new-type peptides cross-linked with one, two, three, four or seven disulfide bridges, respectively, 11 novel K+-channel toxin-like peptides, 2 novel ryanodine receptors-specific toxin-like peptides, a unique peptide containing the cysteine knots of spider toxins, 15 novel La1-like toxins, 3 novel TIL domain-containing peptides, 5 novel peptides with atypical cysteine patterns, 19 novel antimicrobial peptides, 6 novel cysteine-free peptides and 39 new-type cysteine-free peptides. Among them, the new-type peptides are largely dominant; this highlights the unique diversity of the venom gland peptides from H. troglodytes. Some of the new peptides would serve as new molecular probes for the investigations of cellular ion channels and other receptors, or offer new templates for the development of therapeutic drugs for the treatment of ion channel-associated diseases, and infections caused by antibiotics-resistant pathogens. BIOLOGICAL SIGNIFICANCE In this study, we fully explored the composition of venom gland peptides from the scorpion Hadogenes troglodytes using transcriptomic approach. We discovered a total of 121 novel peptides from the venom glands of the scorpion, of which new-type peptides are largely dominant. These data highlight the unique diversity of the venom gland peptides from the scorpion H. troglodytes, gain insights into new mechanisms for the scorpion to subdue its prey and predators, and enlarge the protein database of scorpion venom glands. The discovery of a lot of novel peptides provides new templates for the development of therapeutic drugs, and offers new molecular materials for the basic researches of various cellular receptors, and for the evolutionary investigations of scorpion toxins.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Xin Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yao Nie
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Lei Zhang
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Shifen Wu
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Aorigele Bao
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
26
|
Estrada-Gómez S, Vargas Muñoz LJ, Saldarriaga-Córdoba M, Quintana Castillo JC. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta Trop 2016; 153:70-8. [PMID: 26477848 DOI: 10.1016/j.actatropica.2015.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 11/30/2022]
Abstract
We report the first biochemical, biological, pharmacological and partial proteomic characterization studies of the Opisthancanthus elatus venom (Gervais, 1844) from Colombia. The Reverse Phase High-Performance Liquid Chromatography venom profile showed 28 main well-defined peaks, most eluting between 20 and 45min (18-30% of acetonitrile, respectively). High-resolution mass analysis indicates the presence of 106 components ranging from 806.59742Da to 16849.4139Da. O. elatus venom showed hemolytic activity and hydrolyzed the specific substrate BapNa suggesting the presence of proteins with serine-protease activity. Collected RP-HPLC fractions eluting at 52.6, 55.5, 55.8, 56.2, and 63.9min (PLA2 region between 33 and 40% of acetonitrile), showed hemolytic activity and hydrolyzed the synthetic substrate 4-nitro-3-octanoyloxy-benzoic acid, indicating the presence of compounds with phospholipases A2 activity. These RP-HPLC fractions, showed molecular masses values up to 13978.19546Da, corroborating the possible presence of the mentioned enzymes. Tryptic digestion and MS/MS analysis showed the presence of a phospholipase like fragment, similar to on described in other Opisthacanthus genus studies. No coagulant activity was observed. No larvicidal or antimicrobial activity was observed at concentrations evaluated. Lethal and toxic activity is expected at doses above 100mg/kg, no neurotoxic effects were detected at lower doses. In conclusion, O. elatus exhibits a venom with a predominant phospholipase A2 activity than thought; mammal's neurotoxic activity is expected above the 100mg/kg, which is very high compared to the venom from other neurotoxic scorpions.
Collapse
Affiliation(s)
- Sebastián Estrada-Gómez
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Carrera 53 No. 61-30, Medellín 050010, Colombia; Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Carrera 53 No. 61-30, Medellín 050010, Colombia.
| | - Leidy Johana Vargas Muñoz
- Facultad de Medicina, Universidad Cooperativa de Colombia, Calle 50 A No. 41-20, Medellín 050010, Colombia
| | - Mónica Saldarriaga-Córdoba
- Departamento de Ciencias, Laboratorio de Biología y Bioinformática, Universidad Iberoamericana de Ciencias y Tecnología, Padre Miguel de Olivares No. 1620, Santiago de Chile, Chile
| | | |
Collapse
|
27
|
Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae
and determination of its disulfide bonding pattern. J Pept Sci 2015; 21:636-43. [DOI: 10.1002/psc.2778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
|
28
|
Quintero-Hernández V, Ramírez-Carreto S, Romero-Gutiérrez MT, Valdez-Velázquez LL, Becerril B, Possani LD, Ortiz E. Transcriptome analysis of scorpion species belonging to the Vaejovis genus. PLoS One 2015; 10:e0117188. [PMID: 25659089 PMCID: PMC4319844 DOI: 10.1371/journal.pone.0117188] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022] Open
Abstract
Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family.
Collapse
Affiliation(s)
- Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - María Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | | | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| |
Collapse
|
29
|
Kamachi S, Nagao J, Miyashita M, Nakagawa Y, Miyagawa H, Tada T. Crystallization and preliminary X-ray diffraction studies of La1 from Liocheles australasiae. Acta Crystallogr F Struct Biol Commun 2014; 70:915-7. [PMID: 25005088 PMCID: PMC4089531 DOI: 10.1107/s2053230x14010589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
A novel scorpion venom peptide, La1 from Liocheles australasiae, with a molecular weight of 7.8 kDa, is presumed to possess a single von Willebrand factor type C (VWC) domain, a common protein module, based on the position of eight Cys residues in its sequence. The biological function of La1 is still unknown. Deciphering its three-dimensional structure will be helpful in understanding its biological function. La1 was crystallized by the sitting-drop vapour-diffusion method using magnesium sulfate as a precipitant. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=63.0, b=30.2, c=32.3 Å, β=108.5°, and diffracted to 1.9 Å resolution. The calculated VM based on one molecule per asymmetric unit was 1.87 Å3 Da(-1). The solvent content was 34.1%.
Collapse
Affiliation(s)
- Saori Kamachi
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Junya Nagao
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiji Tada
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
30
|
Cao Z, Di Z, Wu Y, Li W. Overview of scorpion species from China and their toxins. Toxins (Basel) 2014; 6:796-815. [PMID: 24577583 PMCID: PMC3968362 DOI: 10.3390/toxins6030796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/29/2022] Open
Abstract
Scorpions are one of the most ancient groups of terrestrial animals. They have maintained a steady morphology over more than 400 million years of evolution. Their venom arsenals for capturing prey and defending against predators may play a critical role in their ancient and conservative appearance. In the current review, we present the scorpion fauna of China: 53 species covering five families and 12 genera. We also systematically list toxins or genes from Chinese scorpion species, involving eight species covering four families. Furthermore, we review the diverse functions of typical toxins from Chinese scorpion species, involving Na+ channel modulators, K+ channel blockers, antimicrobial peptides and protease inhibitors. Using scorpion species and their toxins from China as an example, we build the bridge between scorpion species and their toxins, which helps us to understand the molecular and functional diversity of scorpion venom arsenal, the dynamic and functional evolution of scorpion toxins, and the potential relationships of scorpion species and their toxins.
Collapse
Affiliation(s)
- Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiyong Di
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Sunagar K, Undheim EAB, Chan AHC, Koludarov I, Muñoz-Gómez SA, Antunes A, Fry BG. Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds. Toxins (Basel) 2013; 5:2456-87. [PMID: 24351712 PMCID: PMC3873696 DOI: 10.3390/toxins5122456] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent’s worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged peptides and antimicrobial peptides (AMP). We have thus demonstrated that even neglected lineages of scorpions are a rich pool of novel biochemical components, which have evolved over millions of years to target specific ion channels in prey animals, and as a result, possess tremendous implications in therapeutics.
Collapse
Affiliation(s)
- Kartik Sunagar
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal; E-Mails: (K.S.); (A.A.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Eivind A. B. Undheim
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Angelo H. C. Chan
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergio A. Muñoz-Gómez
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada; E-Mail:
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal; E-Mails: (K.S.); (A.A.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-400-193-182
| |
Collapse
|
32
|
Abdel-Rahman MA, Quintero-Hernandez V, Possani LD. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon 2013; 74:193-207. [DOI: 10.1016/j.toxicon.2013.08.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
|
33
|
He Y, Zhao R, Di Z, Li Z, Xu X, Hong W, Wu Y, Zhao H, Li W, Cao Z. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J Proteomics 2013; 89:1-14. [DOI: 10.1016/j.jprot.2013.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 11/16/2022]
|
34
|
Luna-Ramírez K, Quintero-Hernández V, Vargas-Jaimes L, Batista CV, Winkel KD, Possani LD. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon 2013. [DOI: 10.1016/j.toxicon.2012.11.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Zeng XC, Nie Y, Luo X, Wu S, Shi W, Zhang L, Liu Y, Cao H, Yang Y, Zhou J. Molecular and bioinformatical characterization of a novel superfamily of cysteine-rich peptides from arthropods. Peptides 2013; 41:45-58. [PMID: 23099316 DOI: 10.1016/j.peptides.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/17/2022]
Abstract
The full-length cDNA sequences of two novel cysteine-rich peptides (referred to as HsVx1 and MmKTx1) were obtained from scorpions. The two peptides represent a novel class of cysteine-rich peptides with a unique cysteine pattern. The genomic sequence of HsVx1 is composed of three exons interrupted by two introns that are localized in the mature peptide encoding region and inserted in phase 1 and phase 2, respectively. Such a genomic organization markedly differs from those of other peptides from scorpions described previously. Genome-wide search for the orthologs of HsVx1 identified 59 novel cysteine-rich peptides from arthropods. These peptides share a consistent cysteine pattern with HsVx1. Genomic comparison revealed extensive intron length differences and intronic number and position polymorphisms among the genes of these peptides. Further analysis identified 30 cases of intron sliding, 1 case of intron gain and 22 cases of intron loss occurred with the genes of the HsVx1 and HsVx1-like peptides. It is interesting to see that three HsVx1-like peptides XP_001658928, XP_001658929 and XP_001658930 were derived from a single gene (XP gene): the former two were generated from alternative splicing; the third one was encoded by a DNA region in the reverse complementary strand of the third intron of the XP gene. These findings strongly suggest that the genes of these cysteine-rich peptides were evolved by intron sliding, intron gain/loss, gene recombination and alternative splicing events in response to selective forces without changing their cysteine pattern. The evolution of these genes is dominated by intron sliding and intron loss.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vandendriessche T, Kopljar I, Wulff H, Diego-Garcia E, Abdel-Mottaleb Y, Vermassen E, Clynen E, Schoofs L, Snyders D, Tytgat J. Purification, molecular cloning and functional characterization of HelaTx1 (Heterometrus laoticus): the first member of a new κ-KTX subfamily. Biochem Pharmacol 2012; 83:1307-17. [PMID: 22305749 PMCID: PMC3644210 DOI: 10.1016/j.bcp.2012.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
Given their medical importance, most attention has been paid toward the venom composition of scorpions of the Buthidae family. Nevertheless, research has shown that the venom of scorpions of other families is also a remarkable source of unique peptidyl toxins. The κ-KTx family of voltage-gated potassium channel (VGPC) scorpion toxins is hereof an example. From the telson of the scorpion Heterometrus laoticus (Scorpionidae), a peptide, HelaTx1, with unique primary sequence was purified through HPLC and sequenced by Edman degradation. Based on the amino acid sequence, the peptide could be cloned and the cDNA sequence revealed. HelaTx1 was chemically synthesized and functionally characterized on VGPCs of the Shaker-related, Shab-related, Shaw-related and Shal-related subfamilies. Furthermore, the toxin was also tested on small- and intermediate conductance Ca(2+)-activated K(+) channels. From the channels studied, K(v)1.1 and K(v)1.6 were found to be the most sensitive (K(v)1.1 EC(50)=9.9±1.6 μM). The toxin did not alter the activation of the channels. Competition experiments with TEA showed that the toxin is a pore blocker. Mutational studies showed that the residues E353 and Y379 in the pore of K(v)1.1 act as major interaction points for binding of the toxin. Given the amino acid sequence, the predicted secondary structure and the biological activity on VGPCs, HelaTx1 should be included in the κ-KTX family. Based on a phylogenetic study, we rearranged this family of VGPC toxins into five subfamilies and suggest that HelaTx1 is the first member of the new κ-KTx5 subfamily.
Collapse
Affiliation(s)
- Thomas Vandendriessche
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Ivan Kopljar
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Universiteit Antwerpen, 2610 Antwerpen, Belgium
| | - Heike Wulff
- Department of Pharmacology, University of California, 451 Health Sciences Drive, GBSF 3502, Davis, CA 95616, USA
| | - Elia Diego-Garcia
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Yousra Abdel-Mottaleb
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Elke Vermassen
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Elke Clynen
- Research Group Functional Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group Functional Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Dirk Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Universiteit Antwerpen, 2610 Antwerpen, Belgium
| | - Jan Tytgat
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
37
|
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011; 11:1469-84. [PMID: 21939428 DOI: 10.1517/14712598.2011.621940] [Citation(s) in RCA: 392] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An extraordinarily diverse range of animals have evolved venoms for predation, defence, or competitor deterrence. The major components of most venoms are peptides and proteins that are often protease-resistant due to their disulfide-rich architectures. Some of these toxins have become valuable as pharmacological tools and/or therapeutics due to their extremely high specificity and potency for particular molecular targets. There are currently six FDA-approved drugs derived from venom peptides or proteins. AREAS COVERED This article surveys the current pipeline of venom-derived therapeutics and critically examines the potential of peptide and protein drugs derived from venoms. Emerging trends are identified, including an increasing industry focus on disulfide-rich venom peptides and the use of a broader array of molecular targets in order to develop venom-based therapeutics for treating a wider range of clinical conditions. EXPERT OPINION Key technical advances in combination with a renewed industry-wide focus on biologics have converged to provide a larger than ever pipeline of venom-derived therapeutics. Disulfide-rich venom peptides obviate some of the traditional disadvantages of therapeutic peptides and some may be suitable for oral administration. Moreover, some venom peptides can breach the blood brain barrier and translocate across cell membranes, which opens up the possibility of exploiting molecular targets not previously accessible to peptide drugs.
Collapse
Affiliation(s)
- Glenn F King
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
38
|
|
39
|
Ma Y, Zhao Y, Zhao R, Zhang W, He Y, Wu Y, Cao Z, Guo L, Li W. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics 2010; 10:2471-85. [PMID: 20443192 DOI: 10.1002/pmic.200900763] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Scorpion venoms contain a vast untapped reservoir of natural products, which have the potential for medicinal value in drug discovery. In this study, toxin components from the scorpion Heterometrus petersii venom were evaluated by transcriptome and proteome analysis.Ten known families of venom peptides and proteins were identified, which include: two families of potassium channel toxins, four families of antimicrobial and cytolytic peptides,and one family from each of the calcium channel toxins, La1-like peptides, phospholipase A2,and the serine proteases. In addition, we also identified 12 atypical families, which include the acid phosphatases, diuretic peptides, and ten orphan families. From the data presented here, the extreme diversity and convergence of toxic components in scorpion venom was uncovered. Our work demonstrates the power of combining transcriptomic and proteomic approaches in the study of animal venoms.
Collapse
Affiliation(s)
- Yibao Ma
- College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, Wenxin L. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics 2010; 11:452. [PMID: 20663230 PMCID: PMC3091649 DOI: 10.1186/1471-2164-11-452] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/28/2010] [Indexed: 11/13/2022] Open
Abstract
Background Lychas mucronatus is one scorpion species widely distributed in Southeast Asia and southern China. Anything is hardly known about its venom components, despite the fact that it can often cause human accidents. In this work, we performed a venomous gland transcriptome analysis by constructing and screening the venom gland cDNA library of the scorpion Lychas mucronatus from Yunnan province and compared it with the previous results of Hainan-sourced Lychas mucronatus. Results A total of sixteen known types of venom peptides and proteins are obtained from the venom gland cDNA library of Yunnan-sourced Lychas mucronatus, which greatly increase the number of currently reported scorpion venom peptides. Interestingly, we also identified nineteen atypical types of venom molecules seldom reported in scorpion species. Surprisingly, the comparative transcriptome analysis of Yunnan-sourced Lychas mucronatus and Hainan-sourced Lychas mucronatus indicated that enormous diversity and vastly abundant difference could be found in venom peptides and proteins between populations of the scorpion Lychas mucronatus from different geographical regions. Conclusions This work characterizes a large number of venom molecules never identified in scorpion species. This result provides a comparative analysis of venom transcriptomes of the scorpion Lychas mucronatus from different geographical regions, which thoroughly reveals the fact that the venom peptides and proteins of the same scorpion species from different geographical regions are highly diversified and scorpion evolves to adapt a new environment by altering the primary structure and abundance of venom peptides and proteins.
Collapse
Affiliation(s)
- Zhao Ruiming
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics 2009; 10:290. [PMID: 19570192 PMCID: PMC2713264 DOI: 10.1186/1471-2164-10-290] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/01/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki. RESULTS There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date. CONCLUSION This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.
Collapse
Affiliation(s)
- Yibao Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 2009; 54:252-61. [PMID: 19379768 DOI: 10.1016/j.toxicon.2009.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 11/21/2022]
Abstract
Scorpion venom glands produce a large variety of bioactive peptides. This communication reports the identification of venom components obtained by sequencing clones isolated from a cDNA library prepared with venomous glands of the Brazilian scorpion Opisthacanthus cayaporum (Ischnuridae). Two main types of components were identified: peptides with toxin-like sequences and proteins involved in cellular processes. Using the expressed sequence tag (EST) strategy 118 clones were identified, from which 61 code for unique sequences (17 contigs and 44 singlets) with an average length of 531 base-pairs (bp). These results were compared with those previously obtained by the proteomic analysis of the same venom, showing a considerable degree of similarity in terms of the molecular masses expected and DNA sequences found. About 36% of the ESTs correspond to toxin-like peptides and proteins with identifiable open reading frames (ORFs). The cDNA sequencing results also show the presence of sequences whose putative products correspond to a scorpine-like component; three short antimicrobial peptides; three K(+)-channel blockers; and an additional peptide containing 78 amino acid residues, whose sequence resembles peptide La1 from another Ischnuridae scorpion Liocheles australiasiae, thus far with unknown function.
Collapse
|
44
|
Matsushita N, Miyashita M, Sakai A, Nakagawa Y, Miyagawa H. Purification and characterization of a novel short-chain insecticidal toxin with two disulfide bridges from the venom of the scorpion Liocheles australasiae. Toxicon 2007; 50:861-7. [PMID: 17681581 DOI: 10.1016/j.toxicon.2007.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Scorpion venoms contain a variety of peptides toxic to mammals, insects and crustaceans. Most of the scorpion toxins have been isolated from the venoms of scorpions in the family Buthidae, but little interest has been paid to non-Buthidae scorpions. In this study, we isolated a short-chain insecticidal toxin (LaIT1) from the venom of the scorpion Liocheles australasiae belonging to the Hemiscorpiidae family. This toxin showed insect toxicity against crickets at a dose of 1.0 microg/insect, but no toxicity was observed against mice even after injection of 1.0 microg of LaIT1 via the intracerebroventricular route, suggesting that the effect of the toxin is insect-selective. Edman sequencing and mass spectrometric analysis revealed that the toxin is composed of 36 amino acid residues and cross-linked by only two disulfide bridges. The pattern of the disulfide bridges was assigned by LC/MS analysis after enzymatic digestion. LaIT1 shows no sequence homology to any other known toxins, suggesting that this toxin represents a novel structural motif class.
Collapse
Affiliation(s)
- Nobuto Matsushita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|