1
|
A simple and economic three-step process for producing highly purified Fab’ fragments directly from the egg yolk water-soluble fraction. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123486. [PMID: 36219924 DOI: 10.1016/j.jchromb.2022.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
|
2
|
Leiva CL, Geoghegan P, Lammer M, Cangelosi A, Mariconda V, Celi AB, Brero ML, Chacana P. In vivo neutralization of bee venom lethality by IgY antibodies. Mol Immunol 2021; 135:183-190. [PMID: 33930713 DOI: 10.1016/j.molimm.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Bee venom is a complex mixture of molecules, among which melittin and phospholipase A2 (PLA2) are the toxic components involved in envenoming accidents with multiple honeybee stings. Traditionally, the treatment of envenomings has been based on the administration of specific antibodies to neutralize the deleterious effects of toxins. An alternative to mammalian polyclonal antibodies is the use of egg yolk immunoglobulins (IgY) due to their advantages regarding animal welfare and lower costs of production as compared to the conventional production methods. In this work, a novel composition containing specific IgY antibodies was developed. After four immunizations, IgY extracted from the egg yolks was able to recognize several components of the bee venom, including melittin and PLA2. The performance of IgY to neutralize the lethal activity was evaluated in a mouse model by using one median lethal dose (LD50) of the bee venom. The effective dose of the IgY extract was determined as 30.66 μg/mg. These results demonstrate the feasibility to produce IgY-based antivenoms to treat envenomings by multiple bee stings.
Collapse
Affiliation(s)
- Carlos Leónidas Leiva
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Geoghegan
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Mónica Lammer
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Virginia Mariconda
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Ana Beatriz Celi
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - María Luisa Brero
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Pablo Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|
4
|
Leiva CL, Cangelosi A, Mariconda V, Farace M, Geoghegan P, Brero L, Fernández-Miyakawa M, Chacana P. IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy. Toxicon 2019; 163:84-92. [DOI: 10.1016/j.toxicon.2019.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
5
|
Aranda-Uribe IS, Ortega E, Martínez-Cordero E. Immunization of BALB/c mice with pigeon IgY induces the production of anti-IgG autoantibodies. Autoimmunity 2017; 50:336-345. [PMID: 28699799 DOI: 10.1080/08916934.2017.1344974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The breakdown of immunological tolerance due to the activation of autoreactive B and T cells triggers physiopathological processes. An example of such conditions is the production of IgG autoantibodies specific for the Fc portion of IgG (anti-Fcγ IgG). Previous reports have shown that patients with pigeon-related hypersensitivity pneumonitis exhibit an increase in the serum levels of anti-Fcγ IgG. There is no in vivo model for the study of this condition and the immunological mechanisms of tolerance breakdown associated with sensitization by pigeon antigens are still unknown. In this work, we show that the repeated immunization of BALB/c mice with pigeon IgY during 16-weeks induces the production of anti-Fcγ IgG and keeps their high levels for seven weeks. The late appearance of anti-Fcγ IgG autoantibodies in the plasma is similar to what has been reported in other experimental autoimmune models. With the occurrence of anti-Fcγ IgG, there is a reduction in the proportion of Foxp3 + cells (regulatory T cells, Tregs) within the population of splenic CD4 + CD25 + T cells. Thus, our data showed that the immunization of BALB/c mice with IgY promotes the production of anti-Fcγ IgG along with a decrease in Tregs in the spleen. We propose that immunization of mice with pigeon antigens, like IgY can provide a model to study the immunological mechanisms involved in the development of pigeon-related hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- Ivan Sammir Aranda-Uribe
- a Facultad de Medicina , Universidad Nacional Autónoma de México, Posgrado Ciencias Biológicas , México City , México.,b Laboratorio de Autoinmunidad , Unidad de Investigación INER , México City , México
| | - Enrique Ortega
- c Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , México City , México
| | | |
Collapse
|
6
|
Navarro D, Vargas M, Herrera M, Segura Á, Gómez A, Villalta M, Ramírez N, Williams D, Gutiérrez JM, León G. Development of a chicken-derived antivenom against the taipan snake (Oxyuranus scutellatus) venom and comparison with an equine antivenom. Toxicon 2016; 120:1-8. [DOI: 10.1016/j.toxicon.2016.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
|
7
|
Harris MS, Hartman D, Lemos BR, Erlich EC, Spence S, Kennedy S, Ptak T, Pruitt R, Vermeire S, Fox BS. AVX-470, an Orally Delivered Anti-Tumour Necrosis Factor Antibody for Treatment of Active Ulcerative Colitis: Results of a First-in-Human Trial. J Crohns Colitis 2016; 10:631-40. [PMID: 26822613 DOI: 10.1093/ecco-jcc/jjw036] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/15/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS AVX-470 is an oral, polyclonal bovine-derived anti-tumour necrosis factor (TNF) antibody in development for treatment of inflammatory bowel disease (IBD). AVX-470 neutralizes TNF locally in the gastrointestinal tract, minimizing systemic exposure. This was a double-blind, placebo-controlled, first-in-human trial designed to assess the safety, pharmacokinetics, immunogenicity and preliminary efficacy of 4 weeks of AVX-470 in patients with active ulcerative colitis (UC). METHODS Thirty-seven patients with active UC were randomized and 36 received AVX-470 (0.2, 1.6 or 3.5g/day) or placebo over 4 weeks. Endoscopic activity was assessed by colonoscopy pre- and post-treatment. The primary endpoint was safety. Secondary endpoints included pharmacokinetics and immunogenicity. Clinical and endoscopic response and remission were assessed as exploratory endpoints. RESULTS Thirty-three (92%) patients completed treatment and follow-up. The incidence of adverse events was similar across treatment groups and no allergic reactions or opportunistic infections were reported. AVX-470 therapy did not induce human anti-bovine antibodies (HABA). Bovine immunoglobulin (Ig) with TNF binding capacity was detected in stool, while bovine Ig levels in serum were low. Across all AVX-470 doses, 25.9% of patients achieved clinical response compared with 11.1% on placebo, with greatest improvements in the 3.5g/day group associated with proximal colon endoscopic improvement and reductions in serum CRP and IL-6. CONCLUSIONS AVX-470 was safe and well tolerated in this first-in-human trial in UC, with efficacy trends for clinical, endoscopic and biomarker endpoints in the highest dose group (3.5g/day). Results suggest benefit of an orally delivered locally active agent in moderate to severe UC. CLINICAL TRIAL REGISTRATION NUMBER This trial was registered with Clinicaltrials.gov as study NCT01759056 and with EudraCT as study 2012-004859-27.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Theadore Ptak
- Toronto Digestive Disease Associates, Toronto, Canada
| | - Ronald Pruitt
- Nashville Medical Research Institute, Nashville, TN, USA
| | | | | |
Collapse
|
8
|
Li J, Xu Y, Wang X, Li Y, Wang L, Li X. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. Int Immunopharmacol 2016; 35:149-154. [DOI: 10.1016/j.intimp.2016.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/06/2016] [Accepted: 02/22/2016] [Indexed: 12/27/2022]
|
9
|
Díaz P, Malavé C, Zerpa N, Vázquez H, D'Suze G, Montero Y, Castillo C, Alagón A, Sevcik C. IgY pharmacokinetics in rabbits: implications for IgY use as antivenoms. Toxicon 2014; 90:124-33. [PMID: 25111201 DOI: 10.1016/j.toxicon.2014.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 12/18/2022]
Abstract
This paper presents the first study of chicken IgY pharmacokinetics (PK) in rabbits. We measured IgY blood serum concentrations using a specific high sensitivity ELISA method. The fast initial component observed when studying horse Fab, F(ab')2 or IgG was absent from IgY PK. During the first 80 min of observation there was only a single slow exponential decay, which sped up afterward to the point that IgY became undetectable after 216 h of observation; due to this time course, PK parameters were determined with trapezoidal integration. The most significant IgY pharmacokinetic parameters determined were (all presented as medians and their 95% confidence interval): Area Under the Curve = 183.8 (135.2, 221.5) mg·h·L(-1); Distribution volume of the central compartment·[Body Weight (BW)](-1) = 46.0 (21.7, 70.3) mL·kg(-1); Distribution volume in steady state·BW(-1) = 56.8 (44.4, 68.5) mLkg(-1); Mean Residence Time = 40.1 (33.6, 48.5) h; Total plasma clearance·BW(-1) = 1.44 (1.15, 1.66) mL·h(-1)·kg(-1). Anti IgY IgG titers determined by ELISA increased steadily after 72 h, and reached 2560 (1920, 5760) dilution(-1) at 264 h; anti-chicken IgG concentrations rose up to 3.19 (2.31, 6.17) μg/mL in 264 h. Our results show that IgY PK lacks the fast initial decay observed in other PK studies using horse IgG, F(ab')2 or Fab, remains in the body 39.0 (28.7, 47.2) % much as IgG and is ≈3 times more immunogenic that horse IgG in rabbits.
Collapse
Affiliation(s)
- Patricia Díaz
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Caridad Malavé
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Noraida Zerpa
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Hilda Vázquez
- Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gina D'Suze
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Yuyibeth Montero
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Alejandro Alagón
- Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Sevcik
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
10
|
De-Simone SG, Napoleão-Pêgo P, Teixeira-Pinto LA, Melgarejo AR, Aguiar AS, Provance DW. IgE and IgG epitope mapping by microarray peptide-immunoassay reveals the importance and diversity of the immune response to the IgG3 equine immunoglobulin. Toxicon 2014; 78:83-93. [DOI: 10.1016/j.toxicon.2013.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
11
|
Vázquez H, Olvera F, Alagón A, Sevcik C. Production of anti-horse antibodies induced by IgG, F(ab')2 and Fab applied repeatedly to rabbits. Effect on antivenom pharmacokinetics. Toxicon 2013; 76:362-9. [DOI: 10.1016/j.toxicon.2013.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
12
|
León G, Herrera M, Segura Á, Villalta M, Vargas M, Gutiérrez JM. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013; 76:63-76. [PMID: 24055551 DOI: 10.1016/j.toxicon.2013.09.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/01/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Abstract
Snake antivenoms are formulations of immunoglobulins, or immunoglobulin fragments, purified from the plasma of animals immunized with snake venoms. Their therapeutic success lies in their ability to mitigate the progress of toxic effects induced by snake venom components, when administered intravenously. However, due to diverse factors, such as deficient manufacturing practices, physicochemical characteristics of formulations, or inherent properties of heterologous immunoglobulins, antivenoms can induce undesirable adverse reactions. Based on the time lapse between antivenom administration and the onset of clinical manifestations, the World Health Organization has classified these adverse reactions as: 1 - Early reactions, if they occur within the first hours after antivenom infusion, or 2 - late reactions, when occurring between 5 and 20 days after treatment. While all late reactions are mediated by IgM or IgG antibodies raised in the patient against antivenom proteins, and the consequent formation of immune complexes, several mechanisms may be responsible for the early reactions, such as pyrogenic reactions, IgE-mediated reactions, or non IgE-mediated reactions. This work reviews the hypotheses that have been proposed to explain the mechanisms involved in these adverse reactions to antivenoms. The understanding of these pathogenic mechanisms is necessary for the development of safer products and for the improvement of snakebite envenomation treatment.
Collapse
Affiliation(s)
- Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | | | |
Collapse
|
13
|
Alvarez A, Montero Y, Jimenez E, Zerpa N, Parrilla P, Malavé C. IgY antibodies anti-Tityus caripitensis venom: purification and neutralization efficacy. Toxicon 2013; 74:208-14. [PMID: 23994592 DOI: 10.1016/j.toxicon.2013.08.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 12/27/2022]
Abstract
Tityus caripitensis is responsible for most of scorpion stings related to human incidents in Northeastern Venezuela. The only treatment for scorpion envenomation is immunotherapy based on administration of scorpion anti-venom produced in horses. Avian antibodies (IgY) isolated from chicken egg yolks represent a new alternative to be applied as anti-venom therapy. For this reason, we produced IgY antibodies against T. caripitensis scorpion venom and evaluated its neutralizing capacity. The anti-scorpion venom antibodies were purified by precipitation techniques with polyethylene glycol and evaluated by Multiple Antigen Blot Assay (MABA), an indirect ELISA, and Western blot assays. The lethality neutralization was evaluated by preincubating the venom together with the anti-venom prior to testing. The IgY immunoreactivity was demonstrated by a dose-dependent inhibition in Western blot assays where antibodies pre-absorbed with the venom did not recognize the venom proteins from T. caripitensis. The anti-venom was effective in neutralizing 2LD50 doses of T. caripitensis venom (97.8 mg of IgY neutralized 1 mg of T. caripitensis venom). Our results support the future use of avian anti-scorpion venom as an alternative to conventional equine anti-venom therapy in our country.
Collapse
Affiliation(s)
- Aurora Alvarez
- Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados-IDEA, Apartado 17606, Caracas 1015-A, Venezuela
| | | | | | | | | | | |
Collapse
|
14
|
High resolution fluorescence microscopy evidence on the transport of immunoglobulins. Differences between mammalian IgG, F(abʹ)2 and avian IgY. Toxicon 2013; 63:7-18. [DOI: 10.1016/j.toxicon.2012.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/18/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
|
15
|
Sevcik C, D'Suze G, Salazar V, Díaz P, Vázquez H. Horse IgG- and ostrich IgY-F(ab′)2 groups have different affinities for mice erythrocytes and lymphocytes. Implications for avian immunoglobulin therapeutic usefulness. Toxicon 2012; 60:1215-21. [DOI: 10.1016/j.toxicon.2012.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
16
|
Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011; 39:129-42. [DOI: 10.1016/j.biologicals.2011.02.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
|
17
|
Estrada R, Herrera M, Segura Á, Araya J, Boschini C, Gutiérrez JM, León G. Intravenous administration of equine-derived whole IgG antivenom does not induce early adverse reactions in non-envenomed horses and cows. Biologicals 2010; 38:664-9. [DOI: 10.1016/j.biologicals.2010.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 07/20/2010] [Accepted: 08/11/2010] [Indexed: 11/15/2022] Open
|
18
|
|
19
|
Araújo AS, Lobato ZIP, Chávez-Olórtegui C, Velarde DT. Brazilian IgY-Bothrops antivenom: Studies on the development of a process in chicken egg yolk. Toxicon 2009; 55:739-44. [PMID: 19925817 DOI: 10.1016/j.toxicon.2009.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/20/2022]
Abstract
The aims of this study were to devise a process for raising antibodies against Brazilian Bothrops venom in chicken egg yolks, to determine the best delipidation method for the preparation of the aqueous extract and to define the best purification conditions for IgY bothropic antivenom produced in eggs from hens immunized with Brazilian standard bothropic antigen. A group of nine Single Comb White Leghorn laying hens were immunized with venom from five different species of pit vipers of the genus Bothrops. The immunization process was carried out in three cycles, each performed six weeks apart. For extraction, the egg yolk was diluted 1:10 in distilled water, adjusted to a pH of 5.0, subjected to a freeze-thaw cycle, centrifuged and filtered before being precipitated with 20%(w/v) ammonium sulfate salt. This methodology retrieved 2.57 mg of IgY/ml of yolk from eggs. This preparation yielded antibodies capable of neutralizing lethal toxic activity of the pool of Bothrops sp venoms from five species, with an effective dose (ED50) of 365 microL/2 LD50 and, 1.0 mL of IgY antivenom neutralized 0.154 mg of venom.
Collapse
Affiliation(s)
- A S Araújo
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, UFMG, Av. Antônio Carlos 6627, P.O. Box 567, CEP 30123-970, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
20
|
Trott DL, Yang M, Gonzalez J, Larson AE, Tepp WH, Johnson EA, Cook ME. Egg yolk antibodies for detection and neutralization of Clostridium botulinum type A neurotoxin. J Food Prot 2009; 72:1005-11. [PMID: 19517727 DOI: 10.4315/0362-028x-72.5.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The objective of this research project was to determine the usefulness of an egg antibody platform for producing materials for the detection and neutralization of botulinum type A neurotoxin. Yield estimates for detection and neutralizing antibodies produced using methods described were calculated. Antibody specific to botulinum toxoid A (aToxoid) and toxin A (aBoNT/A) was produced by immunizing hens with botulinum toxoid A (toxoid) followed by increasing amounts of botulinum neurotoxin A (BoNT/A) in Freund incomplete adjuvant. Egg yolks were extracted with polyethylene glycol (PEG) for antibody detection and neutralization experiments. A model aToxoid/toxoid immunoassay using only egg yolk antibody was developed and had a detection limit of 1 pg/ml of toxoid. In an indirect enzyme-linked immunosorbent assay of BoNT/A-specific antibody, the aBoNT/A contained more BoNT/A-specific antibody than did the aToxoid, and aBoNT/A was as effective as commercial rabbit antibody. The aToxoid provided no protection against BoNT/A in a standard mouse neutralization assay; however, 1 mg of PEG-extracted aBoNT/A neutralized 4,000 lethal doses of BoNT/A injected intraperitoneally. Based on these results, we calculated that in 1 month one hen could produce more than 100 liters of antibody detection reagents or enough antibody to neutralize approximately 11.6 million mouse lethal doses of botulinum toxin. Utilization of an egg antibody platform is potentially rapid (28 to 70 days) and scalable to kilogram quantities using current egg production facilities with as few as 1,000 hens.
Collapse
Affiliation(s)
- D L Trott
- Department of Nutritional Science, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
León G, Segura Á, Herrera M, Otero R, de Siqueira França FO, Barbaro KC, Cardoso JLC, Wen FH, de Medeiros CR, Prado JCL, Malaque CMS, Lomonte B, Gutiérrez JM. Human heterophilic antibodies against equine immunoglobulins: assessment of their role in the early adverse reactions to antivenom administration. Trans R Soc Trop Med Hyg 2008; 102:1115-9. [DOI: 10.1016/j.trstmh.2008.04.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022] Open
|