1
|
Krecsák L, Bauer AM, Westerström A, Wahlgren R, Tomović L, Stille BO, Åhlander E. Assessment of the Linnaean type material of the Nose-horned viper, Vipera ammodytes (Linnaeus, 1758). Zootaxa 2024; 5537:24-48. [PMID: 39646352 DOI: 10.11646/zootaxa.5537.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Within the framework of surveys investigating the origins of Linnaean taxa, we assessed the evidence supporting historical taxonomic and nomenclatural proposals and decisions regarding the nose-horned viper (Vipera ammodytes). The viper was described as Coluber ammodytes Linnaeus, 1758 from "the Orient." Bruno (1968) assessed the pre-Systema Naturae Ed. 10 sources and designated the specimen described in detail by Linnaeus as the lectotype of the species and restricted the type locality to near Castello Nuovo di Duino (Trieste, Venezia Giulia NW), NE Italy. We used a two-pronged approach using literary sources and statistical analyses to show that previous type locality restrictions suggested by different authors (including Bruno), were made incorrectly, without a proper assessment of the history or the morphological characteristics of the existing type material. Our surveys suggest that the lectotype was collected by the Swedish diplomat Edvard Carleson (1704-1767) in Belgrad Forest (Belgrad Ormanı), Belgrad village, Istanbul Metropolitan Municipality, Türkiye, between August 1738 and June 1746. In light of our results, the populations currently known as V. a. montandoni Boulenger, 1904 become the nominotypical subspecies, with the type locality Belgrad Forest (Belgrad Ormanı), Belgrad village, Istanbul Metropolitan Municipality, Türkiye. Nose-horned viper populations from the north-western and central parts of the distribution range of the species that were regarded as nominotypical, thus become Vipera ammodytes illyrica (Laurenti, 1768).
Collapse
Affiliation(s)
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship; Villanova University; 800 Lancaster Avenue; Villanova; Pennsylvania 19085; USA.
| | | | | | - Ljiljana Tomović
- University of Belgrade; Faculty of Biology; Studentski trg 16; 11000 Belgrade; Serbia.
| | | | - Erik Åhlander
- Swedish Museum of Natural History; Department of Zoology; PO Box 50007; SE-10405 Stockholm; Sweden.
| |
Collapse
|
2
|
Alonazi M, Krayem N, Alharbi MG, Khayyat AIA, Alanazi H, Horchani H, Ben Bacha A. Functional Characterization and Anti-Tumor Effect of a Novel Group II Secreted Phospholipase A 2 from Snake Venom of Saudi Cerastes cerates gasperetti. Molecules 2023; 28:6517. [PMID: 37764293 PMCID: PMC10536776 DOI: 10.3390/molecules28186517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development.
Collapse
Affiliation(s)
- Mona Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Route de Soukra 3038, Sfax BP 1173, Tunisia;
| | - Mona G. Alharbi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Humidah Alanazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Habib Horchani
- Science Department, College of Rivière-Du-Loup, Rivière-Du-Loup, QC G5R 1R1, Canada;
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| |
Collapse
|
3
|
Schulte L, Damm M, Avella I, Uhrig L, Erkoc P, Schiffmann S, Fürst R, Timm T, Lochnit G, Vilcinskas A, Lüddecke T. Venomics of the milos viper ( Macrovipera schweizeri) unveils patterns of venom composition and exochemistry across blunt-nosed viper venoms. Front Mol Biosci 2023; 10:1254058. [PMID: 37719269 PMCID: PMC10500195 DOI: 10.3389/fmolb.2023.1254058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Snakebite is a neglected tropical disease and a globally important driver of death and morbidity. Vipers of the genus Macrovipera (Viperidae: Viperinae) are among the snakes of higher medical importance in the Old World. Despite the medical relevance of Macrovipera venoms, the knowledge regarding them is heterogeneously distributed with virtually all works conducted so far focusing on subspecies of Macrovipera lebetinus, while other species within the genus are largely overlooked. Here we present the first proteomic evaluation of the venom from the Greek endemic Milos viper (Macrovipera schweizeri). In line with clinical symptoms typically elicited by Macrovipera envenomations, Milos viper venom primarily comprises coagulotoxic and cytotoxic protein families, such as metalloproteinases (svMP) and serine proteases (svSP). Methods: We conducted comparative bioactivity assays on venoms from M. schweizeri and the M. lebetinus subspecies M. lebetinus cernovi, M. lebetinus obtusa, and M. lebetinus turanica, and showed that they all exhibit similarities in levels of cytotoxicity proteolytic activity, and inhibition of prokaryotic growth. Lastly, we compared Macrovipera venom profiles by 1D-SDS-PAGE and RP-HPLC, as well as our proteomic data with previously published Macrovipera venom proteomes. Results and discussion: The analyzes performed to reveal that a general venom profile seems to be conserved across blunt-nosed vipers, and that, M. schweizeri envenomations, similarly to those caused by other blunt-nosed vipers, are able to cause significant tissue damage. The present work represents an important starting point for the development of comparative studies across the full taxonomic range of the genus Macrovipera and can potentially help optimize the treatment of envenomations caused by M. schweizeri.
Collapse
Affiliation(s)
- Lennart Schulte
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Maik Damm
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Ignazio Avella
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, University Port, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairão, Portugal
| | - Lilien Uhrig
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Pelin Erkoc
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Fürst
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Timm
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| |
Collapse
|
4
|
Avella I, Damm M, Freitas I, Wüster W, Lucchini N, Zuazo Ó, Süssmuth RD, Martínez-Freiría F. One Size Fits All-Venomics of the Iberian Adder ( Vipera seoanei, Lataste 1878) Reveals Low Levels of Venom Variation across Its Distributional Range. Toxins (Basel) 2023; 15:371. [PMID: 37368672 PMCID: PMC10301717 DOI: 10.3390/toxins15060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
European vipers (genus Vipera) are medically important snakes displaying considerable venom variation, occurring at different levels in this group. The presence of intraspecific venom variation, however, remains understudied in several Vipera species. Vipera seoanei is a venomous snake endemic to the northern Iberian Peninsula and south-western France, presenting notable phenotypic variation and inhabiting several diverse habitats across its range. We analysed the venoms of 49 adult specimens of V. seoanei from 20 localities across the species' Iberian distribution. We used a pool of all individual venoms to generate a V. seoanei venom reference proteome, produced SDS-PAGE profiles of all venom samples, and visualised patterns of variation using NMDS. By applying linear regression, we then assessed presence and nature of venom variation between localities, and investigated the effect of 14 predictors (biological, eco-geographic, genetic) on its occurrence. The venom comprised at least 12 different toxin families, of which five (i.e., PLA2, svSP, DI, snaclec, svMP) accounted for about 75% of the whole proteome. The comparative analyses of the SDS-PAGE venom profiles showed them to be remarkably similar across the sampled localities, suggesting low geographic variability. The regression analyses suggested significant effects of biological and habitat predictors on the little variation we detected across the analysed V. seoanei venoms. Other factors were also significantly associated with the presence/absence of individual bands in the SDS-PAGE profiles. The low levels of venom variability we detected within V. seoanei might be the result of a recent population expansion, or of processes other than directional positive selection.
Collapse
Affiliation(s)
- Ignazio Avella
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Maik Damm
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Inês Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Nahla Lucchini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Óscar Zuazo
- Calle La Puebla 1, 26250 Santo Domingo de la Calzada, Spain
| | - Roderich D. Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
5
|
Siigur J, Siigur E. Biochemistry and toxicology of proteins and peptides purified from the venom of Vipera berus berus. Toxicon X 2022; 15:100131. [PMID: 35769869 PMCID: PMC9234072 DOI: 10.1016/j.toxcx.2022.100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
The isolation and characterization of individual snake venom components is important for a deeper understanding of the pathophysiology of envenomation and for improving the therapeutic procedures of patients. It also opens possibilities for the discovery of novel toxins that might be useful as tools for understanding cellular and molecular processes. The variable venom composition, toxicological and immunological properties of the common vipers (Vipera berus berus) have been reviewed. The combination of venom gland transcriptomics, bottom-up and top-down proteomics enabled comparison of common viper venom proteomes from multiple individuals. V. b. berus venom contains proteins and peptides belonging to 10–15 toxin families: snake venom metalloproteinase, phospholipases A2 (PLA2), snake venom serine proteinase, aspartic protease, L-amino acid oxidase (LAAO), hyaluronidase, 5′-nucleotidase, glutaminyl-peptide cyclotransferase, disintegrin, C-type lectin (snaclec), nerve growth factor, Kunitz type serine protease inhibitor, snake venom vascular endothelial growth factor, cysteine-rich secretory protein, bradykinin potentiating peptide, natriuretic peptides. PLA2 and LAAO from V. b. berus venom produce more pronounced cytotoxic effects in cancer cells than normal cells, via induction of apoptosis, cell cycle arrest and suppression of proliferation. Proteomic data of V. b. berus venoms from different parts of Russia and Slovakian Republic have been compared with analogous data for Vipera nikolskii venom. Proteomic studies demonstrated quantitative differences in the composition of V. b. berus venom from different geographical regions. Differences in the venom composition of V. berus were mainly driven by the age, sex, habitat and diet of the snakes. The venom variability of V. berus results in a loss of antivenom efficacy against snakebites. The effectiveness of antibodies is discussed. This review presents an overview with a special focus on different toxins that have been isolated and characterized from the venoms of V. b. berus. Their main biochemical properties and toxic actions are described. Vipera berus berus venom composition is variable among different populations. Venom contains about 15 protein/peptide families. It disturbs blood coagulation inducing pro- or anticoagulant effects. Venom contains different types of blood factor X activators. PLA2 and L-amino acid oxidase produce cytotoxic effects in cancer cells.
Collapse
|
6
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
7
|
Biological Activities and Proteomic Profile of the Venom of Vipera ursinii ssp., a very Rare Karst Viper from Croatia. Toxins (Basel) 2020; 12:toxins12030187. [PMID: 32188060 PMCID: PMC7150868 DOI: 10.3390/toxins12030187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The karst viper (Vipera ursinii ssp.) favours high-mountain dry grasslands in southern and south-eastern Croatia. It is medically less important than other Vipera species, because of its remote habitat and the very small amount of venom that it injects by its relatively short fangs. The scientific literature on Vipera ursinii deals mostly with the morphology, ecology and distribution range of this snake, due to the species’ conservation issues, while the toxinological aspects of its venom have not so far been investigated. Here we report on the composition and biological activity of the Vipera ursinii ssp. venom. Using a proteomics approach, we have identified 25 proteins in the venom that belong to seven protein families: snake venom metalloproteinase, serine protease, secreted phospholipase A2, cysteine-rich secretory protein, snake C-type lectin-like protein, serine protease inhibitor and nerve growth factor. The Vipera ursinii ssp. venom was found to be distinctively insecticidal. Its lethal toxicity towards crickets was more than five times greater than that of Vipera ammodytes ammodytes venom, while the opposite held in mice. Interestingly, the mode of dying after injecting a mouse with Vipera ursinii ssp. venom may suggest the presence of a neurotoxic component. Neurotoxic effects of European vipers have so far been ascribed exclusively to ammodytoxins and ammodytoxin-like basic secreted phospholipases A2. Structural and immunological analyses of the Vipera ursinii ssp. venom, however, confirmed that ammodytoxin-like proteins are not present in this venom.
Collapse
|
8
|
Leonardi A, Sajevic T, Pungerčar J, Križaj I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J Proteome Res 2019; 18:2287-2309. [PMID: 31017792 PMCID: PMC6727599 DOI: 10.1021/acs.jproteome.9b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
nose-horned viper, its nominotypical subspecies Vipera
ammodytes ammodytes (Vaa), in particular,
is, medically, one of the most relevant snakes in Europe. The local
and systemic clinical manifestations of poisoning by the venom of
this snake are the result of the pathophysiological effects inflicted
by enzymatic and nonenzymatic venom components acting, most prominently,
on the blood, cardiovascular, and nerve systems. This venom is a very
complex mixture of pharmacologically active proteins and peptides.
To help improve the current antivenom therapy toward higher specificity
and efficiency and to assist drug discovery, we have constructed,
by combining transcriptomic and proteomic analyses, the most comprehensive
library yet of the Vaa venom proteins and peptides.
Sequence analysis of the venom gland cDNA library has revealed the
presence of messages encoding 12 types of polypeptide precursors.
The most abundant are those for metalloproteinase inhibitors (MPis),
bradykinin-potentiating peptides (BPPs), and natriuretic peptides
(NPs) (all three on a single precursor), snake C-type lectin-like
proteins (snaclecs), serine proteases (SVSPs), P-II and P-III metalloproteinases
(SVMPs), secreted phospholipases A2 (sPLA2s),
and disintegrins (Dis). These constitute >88% of the venom transcriptome.
At the protein level, 57 venom proteins belonging to 16 different
protein families have been identified and, with SVSPs, sPLA2s, snaclecs, and SVMPs, comprise ∼80% of all venom proteins.
Peptides detected in the venom include NPs, BPPs, and inhibitors of
SVSPs and SVMPs. Of particular interest, a transcript coding for a
protein similar to P-III SVMPs but lacking the MP domain was also
found at the protein level in the venom. The existence of such proteins,
also supported by finding similar venom gland transcripts in related
snake species, has been demonstrated for the first time, justifying
the proposal of a new P-IIIe subclass of ancestral SVMP precursor-derived
proteins.
Collapse
Affiliation(s)
- Adrijana Leonardi
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
9
|
Malina T, Krecsák L, Westerström A, Szemán-Nagy G, Gyémánt G, M-Hamvas M, Rowan EG, Harvey AL, Warrell DA, Pál B, Rusznák Z, Vasas G. Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary. Toxicon 2017; 135:59-70. [PMID: 28602828 DOI: 10.1016/j.toxicon.2017.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022]
Abstract
We have revealed intra-population variability among venom samples from several individual European adders (Vipera berus berus) within a defined population in Eastern Hungary. Individual differences in venom pattern were noticed, both gender-specific and age-related, by one-dimensional electrophoresis. Gelatin zymography demonstrated that these individual venoms have different degradation profiles indicating varying protease activity in the specimens from adders of different ages and genders. Some specimens shared a conserved region of substrate degradation, while others had lower or extremely low protease activity. Phospholipase A2 activity of venoms was similar but not identical. Interspecimen diversity of the venom phospholipase A2-spectra (based on the components' molecular masses) was detected by MALDI-TOF MS. The lethal toxicity of venoms (LD50) also showed differences among individual snakes. Extracted venom samples had varying neuromuscular paralysing effect on chick biventer cervicis nerve-muscle preparations. The paralysing effect of venom was lost when calcium in the physiological salt solution was replaced by strontium; indicating that the block of twitch responses to nerve stimulation is associated with the activity of a phospholipase-dependent neurotoxin. In contrast to the studied V. b. berus venoms from different geographical regions so far, this is the first V. b. berus population discovered to have predominantly neurotoxic neuromuscular activity. The relevance of varying venom yields is also discussed. This study demonstrates that individual venom variation among V. b. berus living in particular area of Eastern Hungary might contribute to a wider range of clinical manifestations of V. b. berus envenoming than elsewhere in Europe.
Collapse
Affiliation(s)
- Tamás Malina
- Pfizer Hungary Ltd., Medical Division, Alkotás u. 53, H-1123, Budapest, Hungary.
| | | | - Alexander Westerström
- Stockholm University, Alba Nova University Centre, Department of Physics, SE-10691, Stockholm, Sweden
| | - Gábor Szemán-Nagy
- University of Debrecen, Department of Biotechnology and Microbiology, P.O. Box 63. H-4010, Debrecen, Hungary
| | - Gyöngyi Gyémánt
- University of Debrecen, Department of Inorganic and Analytical Chemistry, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Márta M-Hamvas
- University of Debrecen, Department of Botany, Faculty of Science and Technology, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Alan L Harvey
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Balázs Pál
- University of Debrecen, Medical and Health Science Centre, Department of Physiology, Nagyerdei Krt. 98, H-4012, Debrecen, Hungary
| | - Zoltán Rusznák
- University of Debrecen, Medical and Health Science Centre, Department of Physiology, Nagyerdei Krt. 98, H-4012, Debrecen, Hungary
| | - Gábor Vasas
- University of Debrecen, Department of Botany, Faculty of Science and Technology, Egyetem tér 1, H-4010, Debrecen, Hungary; CETOX - Analytical and Toxicological Research and Consultant Ltd., Egyetem tér 1, H-4032, Debrecen, Hungary
| |
Collapse
|
10
|
Molecular Characterization of Three Novel Phospholipase A₂ Proteins from the Venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxins (Basel) 2016; 8:toxins8060168. [PMID: 27258312 PMCID: PMC4926135 DOI: 10.3390/toxins8060168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 01/17/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) is known as a major component of snake venoms and displays higher-order catalytic hydrolysis functions as well as a wide range of pathological effects. Atheris is not a notoriously dangerous genus of snakes although there are some reports of fatal cases after envenomation due to the effects of coagulation disturbances and hemorrhaging. Molecular characterization of Atheris venom enzymes is incomplete and there are only a few reports in the literature. Here, we report, for the first time, the cloning and characterization of three novel cDNAs encoding phospholipase A2 precursors (one each) from the venoms of the Western bush viper (Atheris chlorechis), the Great Lakes bush viper (Atheris nitschei) and the Variable bush viper (Atheris squamigera), using a “shotgun cloning” strategy. Open-reading frames of respective cloned cDNAs contained putative 16 residue signal peptides and mature proteins composed of 121 to 123 amino acid residues. Alignment of mature protein sequences revealed high degrees of structural conservation and identity with Group II venom PLA2 proteins from other taxa within the Viperidae. Reverse-phase High Performance Liquid Chromatography (HPLC) profiles of these three snake venoms were obtained separately and chromatographic fractions were assessed for phospholipase activity using an egg yolk suspension assay. The molecular masses of mature proteins were all identified as approximately 14 kDa. Mass spectrometric analyses of the fractionated oligopeptides arising from tryptic digestion of intact venom proteins, was performed for further structural characterization.
Collapse
|
11
|
Khunsap S, Khow O, Buranapraditkun S, Suntrarachun S, Puthong S, Boonchang S. Anticancer properties of phospholipase A2 from Daboia siamensis venom on human skin melanoma cells. J Venom Anim Toxins Incl Trop Dis 2016; 22:7. [PMID: 26884744 PMCID: PMC4754985 DOI: 10.1186/s40409-016-0061-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/10/2016] [Indexed: 01/07/2023] Open
Abstract
Background Phospholipase A2 (PLA2) is a major component of the Daboia siamensis venom, which is able to hydrolyse the membrane of various cells. For this reason, the activity of PLA2 was investigated regarding its pharmaceutical properties. This study was conducted to explore the pharmacological properties of a PLA2 from Daboia siamensis (dssPLA2) venom on human skin melanoma cell line (SK-MEL-28). Methods dssPLA2 was isolated by ion exchange and gel filtration columns. Various concentrations of dssPLA2 were investigated for cytotoxic activity and inhibition of migration on SK-MEL-28 cells. Cell death analysis, mRNA expression levels of Notch I-III and BRAF V600E genes were also determined. Results dssPLA2 exhibited cytotoxicity on SK-MEL-28 for 24 and 72 h as compared with untreated cells. However, it had no toxic effects on CCD-1064sk cells under the same conditions. dssPLA2 (0.25 and 0.5 μg/mL) induced 17.16 and 30.60 % of apoptosis, while activated 6.53 and 7.05 % of necrotic cells. dssPLA2 at 0.25, 0.5, 1 and 2 μg/mL could inhibit migration on SK-MEL-28 cells for 24 h by 31.06, 41.66, 50 and 68.75 %, respectively. The action of dssPLA2 significantly reduced the levels of Notch I and BRAF V600E genes expression on SK-MEL-28 cells compared with untreated cells at 72 h. Conclusions This study indicates that dssPLA2 had potential effects of apoptosis, necrosis, cytotoxicity and inhibition of migration on SK-MEL-28 cells. dssPLA2 could possibly be a selective agent that targets cancer cells without affecting normal cells. Electronic supplementary material The online version of this article (doi:10.1186/s40409-016-0061-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suchitra Khunsap
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Orawan Khow
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Supranee Buranapraditkun
- Department of Medicine, Faculty of Medicine, Cellular Immunology Laboratory Allergy and Clinical Immunology Unit, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sunutcha Suntrarachun
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University Institute, Building 3, Phayathai Road, Patumwan, Bangkok, 10330 Thailand
| | - Supatsorn Boonchang
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| |
Collapse
|
12
|
Unveiling the complexities of Daboia russelii venom, a medically important snake of India, by tandem mass spectrometry. Toxicon 2015; 107:266-81. [DOI: 10.1016/j.toxicon.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
|
13
|
Martín C, Nogué S. Novedades en el envenenamiento por mordedura de víbora. Med Clin (Barc) 2015; 144:132-6. [DOI: 10.1016/j.medcli.2014.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 10/24/2022]
|
14
|
Malina T, Babocsay G, Krecsák L, Erdész C. Further Clinical Evidence for the Existence of Neurotoxicity in a Population of the European Adder (Vipera berus berus) in Eastern Hungary: Second Authenticated Case. Wilderness Environ Med 2013; 24:378-83. [DOI: 10.1016/j.wem.2013.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
|
15
|
Križaj I. Ammodytoxin: a window into understanding presynaptic toxicity of secreted phospholipases A(2) and more. Toxicon 2011; 58:219-29. [PMID: 21726572 DOI: 10.1016/j.toxicon.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 11/15/2022]
Affiliation(s)
- Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Archundia IG, de Roodt AR, Ramos-Cerrillo B, Chippaux JP, Olguín-Pérez L, Alagón A, Stock RP. Neutralization of Vipera and Macrovipera venoms by two experimental polyvalent antisera: a study of paraspecificity. Toxicon 2011; 57:1049-56. [PMID: 21530569 DOI: 10.1016/j.toxicon.2011.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
Abstract
We conducted an extensive study of neutralization of lethality of 11 species and one subspecies of snakes of the genus Vipera, and of five species of Macrovipera, by two experimental equine antisera. One antiserum was a trivalent preparation raised against the venoms of Vipera aspis aspis, Vipera berus berus and Vipera ammodytes ammodytes; the other was a pentavalent preparation that also included venoms of Vipera (now Montivipera) xanthina and Macrovipera lebetina obtusa. We measured specific neutralization of lethality against all venoms included in the immunization schemes, and paraspecific neutralization against the venoms of Vipera ammodytes montandoni, Vipera (Montivipera) bornmuelleri, Vipera latastei, Vipera (Mo.) latifii, Vipera (Mo.) lotievi, Vipera (Daboia) palaestinae, Vipera (Mo.) raddei and Vipera seoanei, as well as against Macrovipera (D.) deserti, Macrovipera lebetina cernovi, Macrovipera lebetina turanica and Macrovipera schweitzeri. We found an important degree of paraspecific protection within each genera (omitting recent reclassification) that was quite independent of both the lethal potency of the venoms and their geographic origin. This information may be of use to clinicians charged with the treatment of Vipera or Macrovipera envenomations with non-specific antivenoms.
Collapse
Affiliation(s)
- Irving G Archundia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | | | | | | | | | | |
Collapse
|
17
|
Krecsák L, Zacher G, Malina T. Clinical picture of envenoming with the Meadow Viper (Vipera(Acridophaga)ursinii). Clin Toxicol (Phila) 2011; 49:13-20. [DOI: 10.3109/15563650.2010.550049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Tsai IH, Wang YM, Cheng AC, Starkov V, Osipov A, Nikitin I, Makarova Y, Ziganshin R, Utkin Y. cDNA cloning, structural, and functional analyses of venom phospholipases A₂ and a Kunitz-type protease inhibitor from steppe viper Vipera ursinii renardi. Toxicon 2010; 57:332-41. [PMID: 21185324 DOI: 10.1016/j.toxicon.2010.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/25/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
Abstract
Snake venom phospholipases A₂ (PLA₂s) display a wide array of biological activities and are each characteristic to the venom. Here, we report on the cDNA cloning and characterization of PLA₂s from the steppe viper Vipera ursinii renardi venom glands. Among the five distinct PLA₂ cDNAs cloned and sequenced, the most common were the clones encoding a basic Ser-49 containing PLA₂ (Vur-S49). Other clones encoded either ammodytin analogs I1, I2d and I2a (designated as Vur-PL1, Vur-PL2 and Vur-PL3, respectively) or an ammodytoxin-like PLA₂ (Vurtoxin). Additionally, a novel Kunitz-type trypsin inhibitor for this venom species was cloned and sequenced. Comparison of these PLA₂ and Kunitz inhibitor sequences with those in the sequence data banks suggests that the viper V. u. renardi is closely related to Vipera ammodytes and Vipera aspis. Separation of V. u. renardi venom components by gel-filtration and ion-exchange chromatography showed the presence of many PLA₂ isoforms. Remarkably, the most abundant PLA₂ isolated was Vur-PL2 while Vur-S49 analog was in very low yield. There are great differences between the proportion of cDNA clones and that of the proteins isolated. Two Vur-PL2 isoforms (designated as Vur-PL2A and Vur-PL2B) indistinguishable by masses, peptide mass fingerprinting, N-terminal sequences and CD spectroscopy were purified from the pooled venom. However, when rechromatographed on cation-exchanger, Vur-PL2A showed only one peak corresponding to Vur-PL2B, suggesting the existence of conformers for Vur-PL2. Vur-PL2B was weakly cytotoxic to rat pheochromocytoma PC12 cells and showed both strong anticoagulant and anti-platelet activities. This is the first case of a strong anticoagulating ammodytin I analog in Vipera venom.
Collapse
Affiliation(s)
- Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, P. O. Box 23-106, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dawson K, Thorpe RS, Malhotra A. Estimating genetic variability in non-model taxa: a general procedure for discriminating sequence errors from actual variation. PLoS One 2010; 5:e15204. [PMID: 21151906 PMCID: PMC2997787 DOI: 10.1371/journal.pone.0015204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
Genetic variation is the driving force of evolution and as such is of central interest for biologists. However, inadequate discrimination of errors from true genetic variation could lead to incorrect estimates of gene copy number, population genetic parameters, phylogenetic relationships and the deposition of gene and protein sequences in databases that are not actually present in any organism. Misincorporation errors in multi-template PCR cloning methods, still commonly used for obtaining novel gene sequences in non-model species, are difficult to detect, as no previous information may be available about the number of expected copies of genes belonging to multi-gene families. However, studies employing these techniques rarely describe in any great detail how errors arising in the amplification process were detected and accounted for. Here, we estimated the rate of base misincorporation of a widely-used PCR-cloning method, using a single copy mitochondrial gene from a single individual to minimise variation in the template DNA, as 1.62×10(-3) errors per site, or 9.26×10(-5) per site per duplication. The distribution of errors among sequences closely matched that predicted by a binomial distribution function. The empirically estimated error rate was applied to data, obtained using the same methods, from the Phospholipase A(2) toxin family from the pitviper Ovophis monticola. The distribution of differences detected closely matched the expected distribution of errors and we conclude that, when undertaking gene discovery or assessment of genetic diversity using this error-prone method, it will be informative to empirically determine the rate of base misincorporation.
Collapse
Affiliation(s)
- Karen Dawson
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Roger S. Thorpe
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Anita Malhotra
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Westerström A, Petrov B, Tzankov N. Envenoming following bites by the Balkan adder Vipera berus bosniensis - first documented case series from Bulgaria. Toxicon 2010; 56:1510-5. [PMID: 20826174 DOI: 10.1016/j.toxicon.2010.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/20/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
We report the first detailed accounts of bites by the Balkan adder, Vipera berus bosniensis from Bulgaria. Documentation of bites by this subspecies is very rare in the literature and most available accounts are from the northern limit of its distribution. V. berus bosniensis is considered to possess neurotoxic venom but little evidence has hitherto been available to support this supposition. In this case series symptoms typical of adder bites developed including oedema, nausea, dizziness, lymphangitis, vomiting, and diarrhoea together with aberrant symptoms such as diplopia and ptosis that confirm the presence of neurotoxic venom in Balkan adders. In addition, unusual and atypical symptoms of adder bites such as painless bites and muscle cramps appeared. The inadequate treatment in hospital and the remote habitats in which this species is encountered are potential sources of complication.
Collapse
Affiliation(s)
- Alexander Westerström
- Stockholm University, Department of Physics, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
21
|
Unique structural characteristics and evolution of a cluster of venom phospholipase A2 isozyme genes of Protobothrops flavoviridis snake. Gene 2010; 461:15-25. [PMID: 20406671 DOI: 10.1016/j.gene.2010.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/25/2010] [Accepted: 04/08/2010] [Indexed: 11/21/2022]
Abstract
Protobothrops flavoviridis (Crotalinae) venom gland phospholipase A(2) (PLA(2)) isozyme genes have evolved in an accelerated manner to acquire diverse physiological activities in their products. For elucidation of the multiplication mechanism of PLA(2) genes, a 25,026 bp genome segment harboring five PLA(2) isozyme genes was obtained from Amami-Oshima P. flavoviridis liver and sequenced. The gene PfPLA 2 encoded [Lys(49)]PLA(2) called BPII, the gene PfPLA 4 neurotoxic [Asp(49)]PLA(2) called PLA-N, the gene PfPLA 5 basic [Asp(49)]PLA(2) called PLA-B, and PfPLA 1(psi) and PfPLA 3(psi) were the inactivated genes. The 5' truncated reverse transcriptase (RT) elements, whose intact forms constitute long interspersed nuclear elements (LINEs), were found in close proximity to the 3' end of PLA(2) genes and named PLA(2) gene-coupled RT fragments (PcRTFs). The facts that PcRTFs have the stem-loop and repetitive sequence in the 3' untranslated region (UTR) which is characteristic of CR1 LINEs suggest that PcRTFs are the debris of P. flavoviridis ancestral CR1 LINEs, denoted as PfCR1s. Since the associated pairs of PLA(2) genes and PcRTFs are arranged in tandem in the 25,026 bp segment, it is thought that an ancestral PLA(2) gene-PfCR1 unit (PfPLA-PfCR1) which was produced by retrotransposition of PfCR1 by itself to the 3' end of PLA(2) gene duplicated several times to form a multimer of PfPLA-PfCR1, a cluster of PLA(2) genes, in the period after Crotalinae and Viperinae snakes branched off. Recombinational hot spot of a 37bp segment, named Scomb, was found in the region 548 bp upstream from the TATA box of PLA(2) genes. Thus, it could be assumed that multiplication of PfPLA-PfCR1 occurred by unequal crossing over of the segment, -Scomb-PfPLA-PfCR1-Scomb-. The PfCR1 moieties were afterward disrupted in the 5' portion to PcRTFs. The detection of two types of PcRTFs different in length which were produced by elimination of two definitive sequences in PfCR1 moiety possibly by gene conversion clearly supports such process but not multiplication of the PLA(2) gene-PcRTF unit.
Collapse
|
22
|
Malina T, Krecsak L, Warrell DA. Neurotoxicity and hypertension following European adder (Vipera berus berus) bites in Hungary: case report and review. QJM 2008; 101:801-6. [PMID: 18647797 DOI: 10.1093/qjmed/hcn079] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T Malina
- Department of Systematic Zoology and Ecology, University of Szeged, Dugonics tér 13, H-6722 Szeged, Hungary.
| | | | | |
Collapse
|
23
|
Ferquel E, de Haro L, Jan V, Guillemin I, Jourdain S, Teynié A, d'Alayer J, Choumet V. Reappraisal of Vipera aspis venom neurotoxicity. PLoS One 2007; 2:e1194. [PMID: 18030329 PMCID: PMC2065900 DOI: 10.1371/journal.pone.0001194] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 10/17/2007] [Indexed: 11/23/2022] Open
Abstract
Background The variation of venom composition with geography is an important aspect of intraspecific variability in the Vipera genus, although causes of this variability remain unclear. The diversity of snake venom is important both for our understanding of venomous snake evolution and for the preparation of relevant antivenoms to treat envenomations. A geographic intraspecific variation in snake venom composition was recently reported for Vipera aspis aspis venom in France. Since 1992, cases of human envenomation after Vipera aspis aspis bites in south-east France involving unexpected neurological signs were regularly reported. The presence of genes encoding PLA2 neurotoxins in the Vaa snake genome led us to investigate any neurological symptom associated with snake bites in other regions of France and in neighboring countries. In parallel, we used several approaches to characterize the venom PLA2 composition of the snakes captured in the same areas. Methodology/Principal Findings We conducted an epidemiological survey of snake bites in various regions of France. In parallel, we carried out the analysis of the genes and the transcripts encoding venom PLA2s. We used SELDI technology to study the diversity of PLA2 in various venom samples. Neurological signs (mainly cranial nerve disturbances) were reported after snake bites in three regions of France: Languedoc-Roussillon, Midi-Pyrénées and Provence-Alpes-Côte d'Azur. Genomes of Vipera aspis snakes from south-east France were shown to contain ammodytoxin isoforms never described in the genome of Vipera aspis from other French regions. Surprisingly, transcripts encoding venom neurotoxic PLA2s were found in snakes of Massif Central region. Accordingly, SELDI analysis of PLA2 venom composition confirmed the existence of population of neurotoxic Vipera aspis snakes in the west part of the Massif Central mountains. Conclusions/Significance The association of epidemiological studies to genetic, biochemical and immunochemical analyses of snake venoms allowed a good evaluation of the potential neurotoxicity of snake bites. A correlation was found between the expression of neurological symptoms in humans and the intensity of the cross-reaction of venoms with anti-ammodytoxin antibodies, which is correlated with the level of neurotoxin (vaspin and/or ammodytoxin) expression in the venom. The origin of the two recently identified neurotoxic snake populations is discussed according to venom PLA2 genome and transcriptome data.
Collapse
Affiliation(s)
| | - Luc de Haro
- Centre Antipoison, Hôpital Salvator, Marseille, France
| | - Virginie Jan
- Unité des Venins, Institut Pasteur, Paris, France
| | | | | | - Alexandre Teynié
- UENC INRA, Centre de Recherche de Theix, Saint Genes Champanelle, France
| | - Jacques d'Alayer
- Plate-forme d'Analyse et de Microséquençage des Proteines, Institut Pasteur, Paris, France
| | - Valérie Choumet
- Unité des Venins, Institut Pasteur, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|