1
|
Nascimento de Oliveira CG, Alvares-Saraiva AM, Perez EC, Sampaio SC, Lallo MA. Crotoxin modulates Encephalitozoon cuniculi-infected macrophages toward the M1 microbicidal profile. Toxicon 2025; 259:108348. [PMID: 40216367 DOI: 10.1016/j.toxicon.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Crotoxin (CTX), a bioactive extract from the snake Crotalus durissus terrificus, has antibacterial, antitumor, and anti-inflammatory properties. Microsporidia are opportunistic, obligate intracellular fungi that infect vertebrates and invertebrates and are highly resistant to conventional drugs. They can also subvert the microbicidal activity of M1 macrophages to an M2 profile, which is more favorable for the pathogen. Thus, in this study, we evaluated the effects of CTX on the viability of spores of the microsporidium Encephalitozoon cuniculi, as well as on the microbicidal activity of macrophages in vitro. E. cuniculi spores were treated with two concentrations of CTX (2.4 and 4.8 μg/mL) and cultivated in RK-13 cells for viability analysis. Additionally, peritoneal adherent cells (APerC), obtained from peritoneal washes of BALB/c mice, were infected with spores of E. cuniculi for 1 h and treated with CTX for 3 h. The profile of macrophages, cytokine production, viability of macrophages, and proliferative capacity of spores were subsequently evaluated. Treatment of E. cuniculi spores with CTX had no fungicidal or fungistatic effects. Compared to the macrophages in the control group, macrophages infected with E. cuniculi and treated with 2.4 μg/mL CTX presented an increase in the M1 profile, more necrosis, and greater production of the cytokines TNF-α and IL-6, and the spores obtained from these macrophages presented a reduction in proliferative capacity. These results indicated that CTX modulated the M1 profile of macrophages infected with E. cuniculi, resulting in greater production of proinflammatory cytokines and stronger microbicidal activity.
Collapse
Affiliation(s)
| | | | | | | | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental da Universidade Paulista-Unip, São Paulo, Brazil.
| |
Collapse
|
2
|
Zambelli VO, Hösch NG, Farom S, Zychar BC, Spadacci-Morena DD, Carvalho LV, Curi R, Lepsch LB, Scavone C, Sant'Anna OA, Gonçalves LRC, Cury Y, Sampaio SC. Formyl peptide receptors are involved in CTX-induced impairment of lymphocyte functions. Toxicon 2023; 222:106986. [PMID: 36442690 DOI: 10.1016/j.toxicon.2022.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Crotoxin (CTX) is a neurotoxin that is isolated from the venom of Crotalus durissus terrificus, which displays immunomodulatory, anti-inflammatory, and anti-tumoral effects. Previous research has demonstrated that CTX promotes the adherence of leukocytes to the endothelial cells in blood microcirculation and the high endothelial venules of lymph nodes, which reduces the number of blood cells and lymphocytes. Studies have also shown that these effects are mediated by lipoxygenase-derived mediators. However, the exact lipoxygenase-derived eicosanoid involved in the CTX effect on lymphocytes is yet to be characterized. As CTX stimulates lipoxin-derived mediators from macrophages and lymphocyte effector functions could be modulated by activating formyl peptide receptors, we aimed to investigate whether these receptors were involved in CTX-induced redistribution and functions of lymphocytes in rats. We used male Wistar rats treated with CTX to demonstrate that Boc2 (butoxycarbonyl-Phe-Leu-Phe-Leu-Phe), an antagonist of formyl peptide receptors, prevented CTX-induced decrease in the number of circulating lymphocytes and increased the expression of the lymphocyte adhesion molecule LFA1. CTX reduced the T and B lymphocyte functions, such as lymphocyte proliferation in response to the mitogen Concanavalin A and antibody production in response to BSA immunization, respectively, which was prevented by the administration of Boc2. Importantly, mesenteric lymph node lymphocytes from CTX-treated rats showed an increased release of 15-epi-LXA4. These results indicate that formyl peptide receptors mediate CTX-induced redistribution of lymphocytes and that 15-epi-LXA4 is a key mediator of the immunosuppressive effects of CTX.
Collapse
Affiliation(s)
- Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| | - Natália Gabriele Hösch
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Sarah Farom
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Bianca C Zychar
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Diva D Spadacci-Morena
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Luciana Vieira Carvalho
- Laboratory of Immunochemistry, Butantan Institute, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Rui Curi
- Immunobiological Production Section, Bioindustrial Center, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, São Paulo, SP, Brazil
| | - Lucilia B Lepsch
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Osvaldo Augusto Sant'Anna
- Laboratory of Immunochemistry, Butantan Institute, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Luís Roberto C Gonçalves
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Sandra C Sampaio
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
4
|
Correlating biological activity to thermo-structural analysis of the interaction of CTX with synthetic models of macrophage membranes. Sci Rep 2021; 11:23712. [PMID: 34887428 PMCID: PMC8660830 DOI: 10.1038/s41598-021-02552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.
Collapse
|
5
|
Minutti-Zanella C, Gil-Leyva EJ, Vergara I. Immunomodulatory properties of molecules from animal venoms. Toxicon 2021; 191:54-68. [PMID: 33417946 DOI: 10.1016/j.toxicon.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The immune system can amplify or decrease the strength of its response when it is stimulated by chemical or biological substances that act as immunostimulators, immunosuppressants, or immunoadjuvants. Immunomodulation is a progressive approach to treat a diversity of pathologies with promising results, including autoimmune disorders and cancer. Animal venoms are a mixture of chemical compounds that include proteins, peptides, amines, salts, polypeptides, enzymes, among others, which produce the toxic effect. Since the discovery of captopril in the early 1980s, other components from snakes, spiders, scorpions, and marine animal venoms have been demonstrated to be useful for treating several human diseases. The valuable progress in fields such as venomics, molecular biology, biotechnology, immunology, and others has been crucial to understanding the interaction of toxins with the immune system and its application on immune pathologies. More in-depth knowledge of venoms' components and multi-disciplinary studies could facilitate their transformation into effective novel immunotherapies. This review addresses advances and research of molecules from venoms that have immunomodulatory properties.
Collapse
Affiliation(s)
- C Minutti-Zanella
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - E J Gil-Leyva
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - I Vergara
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
6
|
Nemecz D, Ostrowski M, Ravatin M, Saul F, Faure G. Crystal Structure of Isoform CBd of the Basic Phospholipase A 2 Subunit of Crotoxin: Description of the Structural Framework of CB for Interaction with Protein Targets. Molecules 2020; 25:molecules25225290. [PMID: 33202772 PMCID: PMC7696373 DOI: 10.3390/molecules25225290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Crotoxin, from the venom of the South American rattlesnake Crotalus durissus terrificus, is a potent heterodimeric presynaptic β-neurotoxin that exists in individual snake venom as a mixture of isoforms of a basic phospholipase A2 (PLA2) subunit (CBa2, CBb, CBc, and CBd) and acidic subunit (CA1-4). Specific natural mutations in CB isoforms are implicated in functional differences between crotoxin isoforms. The three-dimensional structure of two individual CB isoforms (CBa2, CBc), and one isoform in a crotoxin (CA2CBb) complex, have been previously reported. This study concerns CBd, which by interaction with various protein targets exhibits many physiological or pharmacological functions. It binds with high affinity to presynaptic receptors showing neurotoxicity, but also interacts with human coagulation factor Xa (hFXa), exhibiting anticoagulant effect, and acts as a positive allosteric modulator and corrector of mutated chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR), implicated in cystic fibrosis. Thus, CBd represents a novel family of agents that have potential in identifying new drug leads related to anticoagulant and anti-cystic fibrosis function. We determined here the X-ray structure of CBd and compare it with the three other natural isoforms of CB. The structural role of specific amino acid variations between CB isoforms are analyzed and the structural framework of CB for interaction with protein targets is described.
Collapse
Affiliation(s)
- Dorota Nemecz
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Biochemistry Department, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Maciej Ostrowski
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Biochemistry Department, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Marc Ravatin
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Sanofi R&D, Integrated Drug Discovery-High Content Biology, 94400 Vitry-sur-Seine, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie-C2RT, CNRS UMR 3528, 75015 Paris, France;
| | - Grazyna Faure
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Correspondence: ; Tel.: +33-14-568-86-86; Fax: +33-14-568-88-36
| |
Collapse
|
7
|
Pulido-Méndez MM, Azuaje E, Rodríguez-Acosta A. Immunotoxicological effects triggered by the rattlesnake Crotalus durissus cumanensis, mapanare ( Bothrops colombiensis) venoms and its purified fractions on spleen and lymph nodes cells. Immunopharmacol Immunotoxicol 2020; 42:484-492. [PMID: 32806962 DOI: 10.1080/08923973.2020.1810272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose: The snakes in Venezuela vary in their different venom composition amid the species. In this sense, studies have been carried out elucidating mechanisms related to their immunostimulatory and/or immunosuppressive effects in vitro, measuring inhibition or stimulation on the mice spleen and lymph nodes lymphocytes under the rattlesnake (Crotalus durissus cumanensis) (Cdc) and mapanare (Bothrops colombiensis) crude venoms actions, and also its purified fraction crotoxin (CTX) (Cdc) and a semi-purified fraction (SPF) (Bc) activities. Material and methods: The stimulation of lymphocyte proliferation was carried out in the presence or absence of Concanavalin A (ConA) and lipopolysaccharides (LPS). Results: The lymphocyte response was measured by the Alamar Blue® (Resazurin) assay, observing that the Crotalus crude venom increased basal proliferation in the spleen and lymph nodes, being also increased with ConA and LPS. CTX slightly decreased the proliferative response in the presence of mitogens. Both Bc venom and its SPF fraction had no significant effect on basal proliferation in the spleen and lymph nodes, but a decrease in the response with ConA was observed. These results suggest that CTX has an inhibitory action on lymphocyte proliferation, while Cdc crude venom has a stimulatory action on T and B cell populations. Bothrops colombiensis venom had no effect on these two types of cell populations. As it is known, lymphocytes are cells of enormous flexibility and can operate in diverse aspects, warranting that the correct immune response persists controlled. Conclusions: These results suggested that these different toxins can modulate lymphocyte functional activation toward an inhibitory or stimulatory state.
Collapse
Affiliation(s)
- María M Pulido-Méndez
- Laboratory of Immunology, Experimental Medicine Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| | - Elvia Azuaje
- Laboratory of Immunology, Experimental Medicine Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| | - Alexis Rodríguez-Acosta
- Immunochemistry and Ultrastructural Laboratory, Anatomical Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| |
Collapse
|
8
|
Azevedo E, Figueiredo RG, Pinto RV, Ramos TDCF, Sampaio GP, Bulhosa Santos RP, Guerreiro MLDS, Biondi I, Trindade SC. Evaluation of systemic inflammatory response and lung injury induced by Crotalus durissus cascavella venom. PLoS One 2020; 15:e0224584. [PMID: 32084665 PMCID: PMC7035002 DOI: 10.1371/journal.pone.0224584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigated the systemic inflammatory response and mechanism of pulmonary lesions induced by Crotalus durissus cascavella venom in murine in the state of Bahia. In order to investigate T helper Th1, Th2 and Th17 lymphocyte profiles, we measured interleukin (IL) -2, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor (TNF) and interferon gamma (IFN-γ) levels in the peritoneal fluid and macerated lungs of mice and histopathological alterations at the specific time windows of 1h, 3h, 6h, 12h, 24h and 48h after inoculation with Crotalus durissus cascavella venom. The data demonstrated an increase of acute-phase cytokines (IL-6 and TNF) in the first hours after inoculation, with a subsequent increase in IL-10 and IL-4, suggesting immune response modulation for the Th2 profile. The histopathological analysis showed significant morphological alterations, compatible with acute pulmonary lesions, with polymorphonuclear leukocyte (PMN) infiltration, intra-alveolar edema, congestion, hemorrhage and atelectasis. These findings advance our understanding of the dynamics of envenomation and contribute to improve clinical management and antiophidic therapy for individuals exposed to venom.
Collapse
Affiliation(s)
- Elen Azevedo
- Laboratory of Venomous Animals and Herpetology, Biology Department, State University of Feira de Santana, Feira de Santana, Brazil
- Postgraduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
| | - Ricardo Gassmann Figueiredo
- Pulmonology Division, Department of Health, State University of Feira de Santana–UEFS, Feira de Santana, Brazil
| | - Roberto Vieira Pinto
- Pathological Anatomy Laboratory–LABSEAP, Cardiopulmonary Clinic, Novo Mundo, Brazil
| | | | | | | | - Marcos Lázaro da Silva Guerreiro
- Laboratory of Venomous Animals and Herpetology, Biology Department, State University of Feira de Santana, Feira de Santana, Brazil
| | - Ilka Biondi
- Laboratory of Venomous Animals and Herpetology, Biology Department, State University of Feira de Santana, Feira de Santana, Brazil
- * E-mail: (SCT); (IB)
| | - Soraya Castro Trindade
- Postgraduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
- Department of Health, Feira de Santana State University, Feira de Santana, Bahia, Brazil
- * E-mail: (SCT); (IB)
| |
Collapse
|
9
|
Teixeira NB, Sant'Anna MB, Giardini AC, Araujo LP, Fonseca LA, Basso AS, Cury Y, Picolo G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG 35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav Immun 2020; 84:253-268. [PMID: 31843645 DOI: 10.1016/j.bbi.2019.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st-12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th-9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 μg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-γ-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.
Collapse
Affiliation(s)
- N B Teixeira
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - M B Sant'Anna
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - L P Araujo
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - L A Fonseca
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A S Basso
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - Y Cury
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - G Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.
| |
Collapse
|
10
|
Sant’Anna MB, Lopes FSR, Kimura LF, Giardini AC, Sant’Anna OA, Picolo G. Crotoxin Conjugated to SBA-15 Nanostructured Mesoporous Silica Induces Long-Last Analgesic Effect in the Neuropathic Pain Model in Mice. Toxins (Basel) 2019; 11:E679. [PMID: 31757011 PMCID: PMC6949982 DOI: 10.3390/toxins11120679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities. In spite of its potential benefits, the toxicity of CTX remains a limiting factor for its use. SBA-15 is an inert nanostructured mesoporous silica that, when used as a vehicle, may reduce toxicity and potentiate the activity of different compounds. Based on this, we propose to conjugate crotoxin with SBA-15 (CTX:SBA-15) in order to investigate if when adsorbed to silica, CTX would have its toxicity reduced and its analgesic effect enhanced in neuropathic pain induced by the partial sciatic nerve ligation (PSNL) model. SBA-15 enabled an increase of 35% of CTX dosage. Treatment with CTX:SBA-15 induced a long-lasting reduction of mechanical hypernociception, without modifying the previously known pathways involved in antinociception. Moreover, CTX:SBA-15 reduced IL-6 and increased IL-10 levels in the spinal cord. Surprisingly, the antinociceptive effect of CTX:SBA-15 was also observed after oral administration. These data indicate the potential use of the CTX:SBA-15 complex for neuropathic pain control and corroborates the protective potential of SBA-15.
Collapse
Affiliation(s)
- Morena Brazil Sant’Anna
- Special Laboratory of Pain and Signalling, Butantan Institute, São Paulo 05503-900, Brazil; (M.B.S.); (F.S.R.L.); (L.F.K.); (A.C.G.)
| | - Flavia Souza Ribeiro Lopes
- Special Laboratory of Pain and Signalling, Butantan Institute, São Paulo 05503-900, Brazil; (M.B.S.); (F.S.R.L.); (L.F.K.); (A.C.G.)
| | - Louise Faggionato Kimura
- Special Laboratory of Pain and Signalling, Butantan Institute, São Paulo 05503-900, Brazil; (M.B.S.); (F.S.R.L.); (L.F.K.); (A.C.G.)
| | - Aline Carolina Giardini
- Special Laboratory of Pain and Signalling, Butantan Institute, São Paulo 05503-900, Brazil; (M.B.S.); (F.S.R.L.); (L.F.K.); (A.C.G.)
| | | | - Gisele Picolo
- Special Laboratory of Pain and Signalling, Butantan Institute, São Paulo 05503-900, Brazil; (M.B.S.); (F.S.R.L.); (L.F.K.); (A.C.G.)
| |
Collapse
|
11
|
Crotalus durissus ruruima Snake Venom and a Phospholipase A 2 Isolated from This Venom Elicit Macrophages to Form Lipid Droplets and Synthesize Inflammatory Lipid Mediators. J Immunol Res 2019; 2019:2745286. [PMID: 31781674 PMCID: PMC6875421 DOI: 10.1155/2019/2745286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/13/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Viper snake Crotalus durissus ruruima (Cdr) is a subspecies found in northern area of Brazil. Among the snakes of Crotalus genus subspecies, the venom of Cdr presents highest level of crotoxin, which is the major component of Crotalus snake venoms, formed by two subunits (crotapotin and a phospholipase A2 named CBr) and presents potent neurotoxic activity. Curiously, the venom of C. d. ruruima (CdrV) is better neutralized by antibothropic than by anticrotalic serum, strongly suggesting that this venom has similarities with venom of Bothrops genus snakes with regard to the ability to induce inflammation. Macrophages are cells with a central role in inflammatory and immunological responses. Upon inflammatory stimuli, these cells exhibit increased numbers of lipid droplets, which are key organelles in the synthesis and release of inflammatory mediators. However, the effects of CdrV and CBr in macrophage functions are unknown. We herein investigated the ability of CdrV and CBr to activate macrophages with focus on the formation of lipid droplets (LDs), synthesis of lipid mediators, and mechanisms involved in these effects. The involvement of LDs in PGE2 biosynthesis was also assessed. Stimulation of murine macrophages with CdrV and CBr induced an increased number of LDs and release of prostanoids (PGE2, PGD2, and TXB2). Neither CdrV nor CBr induced the expression of COX-1 and COX-2 by macrophages. LDs induced by both CdrV and CBr are associated to PLIN2 recruitment and expression and were shown to be dependent on COX-1, but not COX-2 activity. Moreover, PGE2 colocalized to CdrV- and CBr-induced LDs, revealing the role of these organelles as sites for the synthesis of prostanoids. These results evidence, for the first time, the ability of a whole snake venom to induce formation of LDs and the potential role of these organelles for the production of inflammatory mediators during envenomation by Crotalus snakes.
Collapse
|
12
|
de Andrade CM, Rey FM, Cintra ACO, Sampaio SV, Torqueti MR. Effects of crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, on human endothelial cells. Int J Biol Macromol 2019; 134:613-621. [PMID: 31071401 DOI: 10.1016/j.ijbiomac.2019.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 01/03/2023]
Abstract
Vascular endothelium plays an important modulatory role due to the production of molecules that mediate vasomotricity, inflammation, and leukocyte adhesion and rolling. Here we addressed whether crotoxin (25-200 μg/mL) - the main component of Crotalus durissus terrificus snake venom - interferes with cell viability, apotosis/necrosis, and cell response to oxidative stress in human umbilical vein endothelial cells (HUVEC) in vitro. We also examined whether crotoxin alters the levels of interleukins, adhesion molecules, and endothelial vasoactive factors in HUVEC cells treated or not with lipopolysaccharide (LPS; 1 μg/mL; 24 h). Crotoxin was not cytotoxic towards HUVEC cells, and downregulated the LPS-induced production of adhesion molecules (VCAM-1, ICAM-1, and E-selectin), vasoactive factors (endothelin-1 and prostaglandin I2), and interleukins (IL-6, IL-8, and IL1β), as well as protected cells against H2O2-induced oxidative stress. Hence, crotoxin played anti-inflammatory, antioxidant, immunomodulating, and vasoactive actions on HUVEC cells, in vitro. Considering that the initial stages of atherosclerosis is characterized by vasoconstriction, increased levels of adhesion molecules, inflammatory cytokines, and oxidative stress in the vascular endothelium; and crotoxin downmodulated all these events, our findings indicate that the actions of crotoxin here demonstrated suggest that it may have an anti-atherogenic action in vivo, which deserves to be tested in future studies.
Collapse
Affiliation(s)
- Camila M de Andrade
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Fernanda M Rey
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adélia Cristina O Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Regina Torqueti
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Sartim MA, Menaldo DL, Sampaio SV. Immunotherapeutic potential of Crotoxin: anti-inflammatory and immunosuppressive properties. J Venom Anim Toxins Incl Trop Dis 2018; 24:39. [PMID: 30564276 PMCID: PMC6296157 DOI: 10.1186/s40409-018-0178-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
For the past 80 years, Crotoxin has become one of the most investigated isolated toxins from snake venoms, partially due to its major role as the main toxic component in the venom of the South American rattlesnake Crotalus durissus terrificus. However, in the past decades, progressive studies have led researchers to shift their focus on Crotoxin, opening novel perspectives and applications as a therapeutic approach. Although this toxin acts on a wide variety of biological events, the modulation of immune responses is considered as one of its most relevant behaviors. Therefore, the present review describes the scientific investigations on the capacity of Crotoxin to modulate anti-inflammatory and immunosuppressive responses, and its application as a medicinal immunopharmacological approach. In addition, this review will also discuss its mechanisms, involving cellular and molecular pathways, capable of improving pathological alterations related to immune-associated disorders.
Collapse
Affiliation(s)
- Marco Aurélio Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, 14040-903 Brazil
| | - Danilo Luccas Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, 14040-903 Brazil
| | - Suely Vilela Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, 14040-903 Brazil
| |
Collapse
|
14
|
Crotoxin Isolated from Crotalus durissus terrificus Venom Modulates the Functional Activity of Dendritic Cells via Formyl Peptide Receptors. J Immunol Res 2018; 2018:7873257. [PMID: 29967803 PMCID: PMC6008858 DOI: 10.1155/2018/7873257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
The Crotalus durissus terrificus rattlesnake venom, its main toxin, crotoxin (CTX), and its crotapotin (CA) and phospholipase A2 (CB) subunits modulate the immune system. Formyl peptide receptors (FPRs) and lipoxin A4 (LXA4) are involved in CTX's effect on macrophages and neutrophils. Dendritic cells (DCs) are plasticity cells involved in the induction of adaptive immunity and tolerance maintenance. Therefore, we evaluated the effect of CTX, CA or CB on the maturation of DCs derived from murine bone marrow (BM). According to data, CTX and CB-but not CA-induced an increase of MHC-II, but not costimulatory molecules on DCs. Furthermore, CTX and CB inhibited the expression of costimulatory and MHC-II molecules, secretion of proinflammatory cytokines and NF-κBp65 and p38/ERK1/2-MAPK signaling pathways by LPS-incubated DCs. Differently, CTX and CB induced IL-10, PGE2 and LXA4 secretion in LPS-incubated DCs. Lower proliferation and IL-2 secretion were verified in coculture of CD3+ cells and DCs incubated with LPS plus CTX or CB compared with LPS-incubated DCs. The effect of CTX and CB on DCs was abolished in cultures incubated with a FPRs antagonist. Hence, CTX and CB exert a modulation on functional activity of DCs; we also checked the involvement the FPR family on cell activities.
Collapse
|
15
|
A snake venom group IIA PLA 2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ 2 in macrophages. Sci Rep 2017. [PMID: 28642580 PMCID: PMC5481388 DOI: 10.1038/s41598-017-04498-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Crotoxin B (CB) is a catalytically active group IIA sPLA2 from Crotalus durissus terrificus snake venom. In contrast to most GIIA sPLA2s, CB exhibits anti-inflammatory effects, including the ability to inhibit leukocyte functions. Lipid droplets (LDs) are lipid-rich organelles associated with inflammation and recognized as a site for the synthesis of inflammatory lipid mediators. Here, the ability of CB to induce formation of LDs and the mechanisms involved in this effect were investigated in isolated macrophages. The profile of CB-induced 15-d-PGJ2 (15-Deoxy-Delta-12,14-prostaglandin J2) production and involvement of LDs in 15-d-PGJ2 biosynthesis were also investigated. Stimulation of murine macrophages with CB induced increased number of LDs and release of 15-d-PGJ2. LDs induced by CB were associated to PLIN2 recruitment and expression and required activation of PKC, PI3K, MEK1/2, JNK, iPLA2 and PLD. Both 15-d-PGJ2 and COX-1 were found in CB-induced LDs indicating that LDs contribute to the inhibitory effects of CB by acting as platform for synthesis of 15-d-PGJ2, a pro-resolving lipid mediator. Together, our data indicate that an immunomodulatory GIIA sPLA2 can directly induce LD formation and production of a pro-resolving mediator in an inflammatory cell and afford new insights into the roles of LDs in resolution of inflammatory processes.
Collapse
|
16
|
Dias RG, Sampaio SC, Sant'Anna MB, Cunha FQ, Gutiérrez JM, Lomonte B, Cury Y, Picolo G. Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A 2: activation of endogenous phospholipases contributes to the pronociceptive effect. J Venom Anim Toxins Incl Trop Dis 2017; 23:18. [PMID: 28344594 PMCID: PMC5364601 DOI: 10.1186/s40409-017-0104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. METHODS The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. RESULTS Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). CONCLUSION These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.
Collapse
Affiliation(s)
- Renata Gonçalves Dias
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil.,Healthy Sciences Institute, Paulista University (UNIP), São Paulo, SP Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP Brazil.,Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Morena Brazil Sant'Anna
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José María Gutiérrez
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yara Cury
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Gisele Picolo
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
17
|
Faure G, Porowinska D, Saul F. Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. TOXINS AND DRUG DISCOVERY 2017. [DOI: 10.1007/978-94-007-6452-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Almeida CDS, Andrade-Oliveira V, Câmara NOS, Jacysyn JF, Faquim-Mauro EL. Crotoxin from Crotalus durissus terrificus is able to down-modulate the acute intestinal inflammation in mice. PLoS One 2015; 10:e0121427. [PMID: 25853847 PMCID: PMC4390225 DOI: 10.1371/journal.pone.0121427] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/15/2015] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel diseases (IBD) is the result of dysregulation of mucosal innate and adaptive immune responses. Factors such as genetic, microbial and environmental are involved in the development of these disorders. Accordingly, animal models that mimic human diseases are tools for the understanding the immunological processes of the IBD as well as to evaluate new therapeutic strategies. Crotoxin (CTX) is the main component of Crotalus durissus terrificus snake venom and has an immunomodulatory effect. Thus, we aimed to evaluate the modulatory effect of CTX in a murine model of colitis induced by 2,4,6- trinitrobenzene sulfonic acid (TNBS). The CTX was administered intraperitoneally 18 hours after the TNBS intrarectal instillation in BALB/c mice. The CTX administration resulted in decreased weight loss, disease activity index (DAI), macroscopic tissue damage, histopathological score and myeloperoxidase (MPO) activity analyzed after 4 days of acute TNBS colitis. Furthermore, the levels of TNF-α, IL-1β and IL-6 were lower in colon tissue homogenates of TNBS-mice that received the CTX when compared with untreated TNBS mice. The analysis of distinct cell populations obtained from the intestinal lamina propria showed that CTX reduced the number of group 3 innate lymphoid cells (ILC3) and Th17 population; CTX decreased IL-17 secretion but did not alter the frequency of CD4+Tbet+ T cells induced by TNBS instillation in mice. In contrast, increased CD4+FoxP3+ cell population as well as secretion of TGF-β, prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) was observed in TNBS-colitis mice treated with CTX compared with untreated TNBS-colitis mice. In conclusion, the CTX is able to modulate the intestinal acute inflammatory response induced by TNBS, resulting in the improvement of clinical status of the mice. This effect of CTX is complex and involves the suppression of the pro-inflammatory environment elicited by intrarectal instillation of TNBS due to the induction of a local anti-inflammatory profile in mice.
Collapse
Affiliation(s)
| | | | | | | | - Eliana L. Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Fusco LS, Rodríguez JP, Teibler P, Maruñak S, Acosta O, Leiva L. New immunization protocol to produce crotalic antivenom combining Crotalus durissus terrificus venom and its PLA2. Biologicals 2014; 43:62-70. [PMID: 25453603 DOI: 10.1016/j.biologicals.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022] Open
Abstract
Antivenoms are usually obtained by animal immunization with successive inoculations of increasing sublethal amounts of venom, which may impair the animal health. The high lethality of venom requires prolonged immunization plans with small amounts of venom. Thus, we propose an alternative plan that includes a pre-immunization of the animal with phospholipase A2, the main crotoxin component, which is responsible for the whole venom lethality. For comparison, three different immunization schemes were designed: high dose protocol (HDP; 0.5-27 mg of venom), low dose protocol (LDP; 0.1-7 mg of venom) and Mix protocol (MP; preimmunization 0.1-1.2 mg of crotalic PLA2, and then 4.5-8 mg of venom). Antibody titers were determined by ELISA, in blood plasma obtained from the marginal vein of the ear. The neutralizing ability of the different sera obtained by all protocols (HDS, LDS and MS) was tested against the most important pharmacological activities of whole venom: PLA2 activity, myotoxicity, thrombin like activity and lethality. MS showed the best neutralizing efficacy and at the same time, it was obtained by an immunization protocol that takes account of animal health care, since it requires low quantities of venoms in comparison to traditional protocols.
Collapse
Affiliation(s)
- Luciano Sebastián Fusco
- Laboratorio de investigación en Proteínas (LabInPro), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Av. Libertad 5470, Corrientes 3400, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, Corrientes 3400, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de investigación en Proteínas (LabInPro), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Av. Libertad 5470, Corrientes 3400, Argentina
| | - Pamela Teibler
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, Corrientes 3400, Argentina
| | - Silvana Maruñak
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, Corrientes 3400, Argentina
| | - Ofelia Acosta
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, Corrientes 3400, Argentina
| | - Laura Leiva
- Laboratorio de investigación en Proteínas (LabInPro), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Av. Libertad 5470, Corrientes 3400, Argentina.
| |
Collapse
|
20
|
Antinociceptive activity of crotoxin in the central nervous system: a functional Magnetic Resonance Imaging study. Toxicon 2013; 74:44-55. [PMID: 23916599 DOI: 10.1016/j.toxicon.2013.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022]
Abstract
Crotoxin, the main neurotoxic component of the venom of South American rattlesnake (Crotalus durissus terrificus), is reported to have potent antinociceptive activity. Several authors have shown mainly in behavioral pain models that crotoxin induces antinociceptive effects, supposed to be mediated by actions on the central nervous system. The antinociceptive effects of crotoxin (45 μg/kg ip) in rats were verified in this study by increased response latencies in a Hargreaves test and tail flick test. In addition, it was demonstrated that crotoxin does not lead to motor impairments during a rotarod test and open field test. The main objective, carried out by blood oxygen level dependent functional Magnetic Resonance Imaging (BOLD fMRI) in anesthetized rats, was to determine which specific brain structures are involved in these antinociceptive effects. Moreover, potential antihyperalgesic effects were investigated by inducing a local hyperalgesia on the left hind paw. Therefore, antinociceptive effects (right paw) and antihyperalgesic effects (left paw) of crotoxin were able to be differentiated. As a result, crotoxin exhibited dominant antihyperalgesic but also antinociceptive effects during pain stimulation. Reductions of BOLD signal already occurred in brain input structures but were most prominent in primary and secondary somatosensory cortices. In conclusion, BOLD fMRI in anesthetized rats proved to be a helpful tool in toxinology, particularly in unraveled mechanisms of modulating nociception in the central nervous system by (potential) analgesics like crotoxin.
Collapse
|
21
|
Lima TS, Cataneo SC, Iritus ACC, Sampaio SC, Della-Casa MS, Cirillo MC. Crotoxin, a rattlesnake toxin, induces a long-lasting inhibitory effect on phagocytosis by neutrophils. Exp Biol Med (Maywood) 2012; 237:1219-30. [PMID: 23045721 DOI: 10.1258/ebm.2012.012010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Crotalus durissus terrificus snake venom (CdtV) has long-lasting anti-inflammatory properties and inhibits the spreading and phagocytic activity of macrophages. Crotoxin (CTX), the main component of CdtV, is responsible for these effects. Considering the role of neutrophils in the inflammatory response and the lack of information about the effect of CdtV on neutrophils, the aim of this study was to investigate the effect of CdtV and CTX on two functions of neutrophils, namely phagocytosis and production of reactive oxygen species, and on the intracellular signaling involved in phagocytosis, particularly on tyrosine phosphorylation and rearrangements of the actin cytoskeleton. Our results showed that the incubation of neutrophils with CdtV or CTX, at different concentrations, or the subcutaneous injection of CdtV or CTX in rats two hours or one, four or 14 days before or one hour after the induction of inflammation inhibited the phagocytic activity of neutrophils. Furthermore, these in vitro and in vivo effects were associated with CdtV and CTX inhibition of tyrosine phosphorylation and consequently actin polymerization. Despite the inhibitory effect on phagocytosis, this study demonstrated that CdtV and CTX did not alter the production of the main reactive oxygen species. Therefore, this study characterized, for the first time, the actions of CdtV on neutrophils and demonstrated that CTX induces a long-lasting inhibition of tyrosine phosphorylation and consequently phagocytosis. We suggest that CTX represents a potential natural product in controlling inflammatory diseases, since a single dose exerts a long-lasting effect on intracellular signaling involved in phagocytosis by neutrophils.
Collapse
Affiliation(s)
- Tatiane S Lima
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil 1500, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Crystal Structure of Crotoxin Reveals Key Residues Involved in the Stability and Toxicity of This Potent Heterodimeric β-Neurotoxin. J Mol Biol 2011; 412:176-91. [DOI: 10.1016/j.jmb.2011.07.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 11/21/2022]
|
23
|
Favoretto BC, Ricardi R, Silva SR, Jacysyn JF, Fernandes I, Takehara HA, Faquim-Mauro EL. Immunomodulatory effects of crotoxin isolated from Crotalus durissus terrificus venom in mice immunised with human serum albumin. Toxicon 2011; 57:600-7. [PMID: 21223974 DOI: 10.1016/j.toxicon.2010.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 01/15/2023]
Abstract
Crotalus durissus terrificus venom and its main component, crotoxin (CTX), have the ability to down-modulate the immune system. Certain mechanisms mediated by cells and soluble factors of the immune system are responsible for the elimination of pathogenic molecules to ensure the specific protection against subsequent antigen contact. Accordingly, we evaluated the immunomodulatory effects of CTX on the immune response of mice that had been previously primed by immunisation with human serum albumin (HSA). CTX inoculation after HSA immunisation, along with complete Freund's adjuvant (CFA) or Aluminium hydroxide (Alum) immunisation, was able to suppress anti-HSA IgG1 and IgG2a antibody production. We showed that the inhibitory effects of this toxin are not mediated by necrosis or apoptosis of any lymphoid cell population. Lower proliferation of T lymphocytes from mice immunised with HSA/CFA or HSA/Alum that received the toxin was observed in comparison to the mice that were only immunised. In conclusion, CTX is able to exert potent inhibitory effects on humoral and cellular responses induced by HSA immunisation, even when injected after an innate immune response has been initiated.
Collapse
Affiliation(s)
- B C Favoretto
- Laboratório de Imunopatologia, Instituto Butantan, Av Vital Brasil, 1500, Butantã, CEP 05503-900, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wei JF, Wei XL, Chen QY, He SH. Induction of inflammatory cell accumulation by TM-N49 and promutoxin, two novel phospholipase A(2). Toxicon 2010; 56:580-8. [PMID: 20538012 DOI: 10.1016/j.toxicon.2010.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/27/2010] [Accepted: 05/28/2010] [Indexed: 11/28/2022]
Abstract
Local inflammation is a prominent characteristic of snakebite wound. Snake venom phospholipase A(2)s (PLA(2)s) are one of the main components which contribute to accumulation of inflammatory cells. We have isolated TM-N49 and promutoxin from Protobothrops mucrosquamatus venom and investigated their ability in induction of cell accumulation by using an in vivo mouse model. The results showed that both TM-N49 and promutoxin are potent stimuli for induction of neutrophil, lymphocyte, macrophage and eosinophil accumulation in the mouse peritoneum. The TM-N49- and promutoxin-induced inflammatory cell accumulation was inhibited by pretreatment of animals with cyproheptadine, terfenadine and Ginkgolide B, indicating that histamine and PAF is likely to contribute to the cells accumulation. Pre-injection of antibodies against adhesion molecules ICAM-1, CD18, CD11a and L-selectin showed that ICAM-1 is a key adhesion molecule of TM-N49- and promutoxin-induced lymphocyte, macrophage and eosinophil accumulation; CD18 and CD11a plays an important role in the migration of neutrophils, eosinophils and macrophages; and L-selectin is involved in the neutrophil and eosinophil accumulation. In conclusion, induction of inflammatory cell accumulation by TM-N49 and promutoxin confirms that group II PLA(2)s is pivotal stimulus for cell infiltration, through which they participate in the formation of snakebite inflammation.
Collapse
Affiliation(s)
- Ji-Fu Wei
- Clinical Experiment Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | | | | | | |
Collapse
|
25
|
Sampaio SC, Hyslop S, Fontes MR, Prado-Franceschi J, Zambelli VO, Magro AJ, Brigatte P, Gutierrez VP, Cury Y. Crotoxin: Novel activities for a classic β-neurotoxin. Toxicon 2010; 55:1045-60. [DOI: 10.1016/j.toxicon.2010.01.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 12/17/2009] [Accepted: 01/09/2010] [Indexed: 10/19/2022]
|
26
|
Nogueira-Neto FDS, Amorim RL, Brigatte P, Picolo G, Ferreira WA, Gutierrez VP, Conceição IM, Della-Casa MS, Takahira RK, Nicoletti JLM, Cury Y. The analgesic effect of crotoxin on neuropathic pain is mediated by central muscarinic receptors and 5-lipoxygenase-derived mediators. Pharmacol Biochem Behav 2008; 91:252-60. [DOI: 10.1016/j.pbb.2008.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/24/2008] [Accepted: 08/12/2008] [Indexed: 01/05/2023]
|