1
|
de Melo Cordeiro Eulálio M, de Lima AM, Brant RSC, Francisco AF, Santana HM, Paloschi MV, da Silva Setúbal S, da Silva CP, Silva MDS, Boeno CN, Kayano AM, Rita PHS, de Azevedo Calderon L, Soares AM, Salvador DPM, Zuliani JP. Characterization of a novel acidic phospholipase A 2 isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling. Int J Biol Macromol 2025; 292:139217. [PMID: 39732268 DOI: 10.1016/j.ijbiomac.2024.139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Phospholipases A2 (PLA2s) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLA2s from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA2 from BmV, designated BmPLA2-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment. BmPLA2-A was isolated through a multi-step chromatographic procedure, involving cation exchange (CM-Sepharose), hydrophobic interaction (n-butyl-Sepharose-HP), and reversed-phase (C-18) chromatography. SDS-PAGE analysis revealed a single protein band of approximately 15 kDa. The primary structure of BmPLA2-A was determined by LC-MS/MS, while its tertiary structure was modeled using AlphaFold. Enzymatic activity was verified with the synthetic substrate 4N3OBA. Molecular dynamics simulations were conducted to further investigate the catalytic mechanism of BmPLA2-A at the molecular level. In vitro assays on HUVECs revealed that BmPLA2-A neither induce cytokine release (IL-6, IL-8, IL-1β, TNF) nor affected cell viability, adhesion, or detachment. The characteristics of BmPLA2-A are consistent with those of acidic Asp-49 PLA2 enzymes, highlighting its potential involvement in the cytotoxic and inflammatory effects of the venom.
Collapse
Affiliation(s)
- Micaela de Melo Cordeiro Eulálio
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Carolina Pereira da Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Center for Research in Tropical Medicine (CEPEM/SESAU-RO), Porto Velho, RO, Brazil
| | | | - Leonardo de Azevedo Calderon
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; National Institute of Science and Technology of Epidemiology of Western Amazon, INCT-EpiAmO, Brazil
| | | | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil.
| |
Collapse
|
2
|
Diversity of Phospholipases A2 from Bothrops atrox Snake Venom: Adaptive Advantages for Snakes Compromising Treatments for Snakebite Patients. Toxins (Basel) 2022; 14:toxins14080543. [PMID: 36006204 PMCID: PMC9414272 DOI: 10.3390/toxins14080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
The evolution of snake venoms resulted in multigene toxin families that code for structurally similar isoforms eventually harboring distinct functions. PLA2s are dominant toxins in viper venoms, and little is known about the impact of their diversity on human envenomings and neutralization by antivenoms. Here, we show the isolation of three distinct PLA2s from B. atrox venom. FA1 is a Lys-49 homologue, and FA3 and FA4 are catalytic Asp-49 PLA2s. FA1 and FA3 are basic myotoxic proteins, while FA4 is an acid non-myotoxic PLA2. FA3 was the most potent toxin, inducing higher levels of edema, inflammatory nociception, indirect hemolysis, and anticoagulant activity on human, rat, and chicken plasmas. FA4 presented lower anticoagulant activity, and FA1 had only a slight effect on human and rat plasmas. PLA2s presented differential reactivities with antivenoms, with an emphasis on FA3, which was not recognized or neutralized by the antivenoms used in this study. Our findings reveal the functional and antigenic diversity among PLA2s from B. atrox venom, highlighting the importance of assessing venom variability for understanding human envenomations and treatment with antivenoms, particularly evident here as the antivenom fails to recognize FA3, the most active multifunctional toxin described.
Collapse
|
3
|
Frihling BEF, Boleti APDA, de Oliveira CFR, Sanches SC, Cardoso PHDO, Verbisck N, Macedo MLR, Rita PHS, Carvalho CME, Migliolo L. Purification, Characterization and Evaluation of the Antitumoral Activity of a Phospholipase A2 from the Snake Bothrops moojeni. Pharmaceuticals (Basel) 2022; 15:ph15060724. [PMID: 35745643 PMCID: PMC9230114 DOI: 10.3390/ph15060724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nature presents a wide range of biomolecules with pharmacological potential, including venomous animal proteins. Among the protein components from snake venoms, phospholipases (PLA2) are of great importance for the development of new anticancer compounds. Thus, we aimed to evaluate the PLA2 anticancer properties from Bothrops moojeni venom. The crude venom was purified through three chromatographic steps, monitored by enzymatic activity and SDS-PAGE (12%). The purified PLA2 denominated BmPLA2 had its molecular mass and N-terminal sequence identified by mass spectrometry and Edman degradation, respectively. BmPLA2 was assayed against human epithelial colorectal adenocarcinoma cells (Caco-2), human rhabdomyosarcoma cells (RD) and mucoepidermoid carcinoma of the lung (NCI-H292), using human fibroblast cells (MRC-5) and microglia cells (BV-2) as a cytotoxicity control. BmPLA2 presented 13,836 Da and a 24 amino acid-residue homologue with snake PLA2, which showed a 90% similarity with other Bothrops moojeni PLA2. BmPLA2 displayed an IC50 of 0.6 µM against Caco-2, and demonstrated a selectivity index of 1.85 (compared to MRC-5) and 6.33 (compared to BV-2), supporting its selectivity for cancer cells. In conclusion, we describe a new acidic phospholipase, which showed antitumor activity and is a potential candidate in the development of new biotechnological tools.
Collapse
Affiliation(s)
- Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Caio Fernando Ramalho de Oliveira
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Simone Camargo Sanches
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | | | - Maria Lígia Rodrigues Macedo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Paula Helena Santa Rita
- Biotério e Serpentário, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Correspondence:
| |
Collapse
|
4
|
Kalita B, Saviola AJ, Samuel SP, Mukherjee AK. State-of-the-art review - A review on snake venom-derived antithrombotics: Potential therapeutics for COVID-19-associated thrombosis? Int J Biol Macromol 2021; 192:1040-1057. [PMID: 34656540 PMCID: PMC8514616 DOI: 10.1016/j.ijbiomac.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent responsible for the Coronavirus Disease-2019 (COVID-19) pandemic, has infected over 185 million individuals across 200 countries since December 2019 resulting in 4.0 million deaths. While COVID-19 is primarily associated with respiratory illnesses, an increasing number of clinical reports indicate that severely ill patients often develop thrombotic complications that are associated with increased mortality. As a consequence, treatment strategies that target COVID-associated thrombosis are of utmost clinical importance. An array of pharmacologically active compounds from natural products exhibit effects on blood coagulation pathways, and have generated interest for their potential therapeutic applications towards thrombotic diseases. In particular, a number of snake venom compounds exhibit high specificity on different blood coagulation factors and represent excellent tools that could be utilized to treat thrombosis. The aim of this review is to provide a brief summary of the current understanding of COVID-19 associated thrombosis, and highlight several snake venom compounds that could be utilized as antithrombotic agents to target this disease.
Collapse
Affiliation(s)
- Bhargab Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephen P Samuel
- Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, Norfolk PE30 4ET, UK
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India.
| |
Collapse
|
5
|
Deshwal A, Phan P, Datta J, Kannan R, Thallapuranam SK. A Meta-Analysis of the Protein Components in Rattlesnake Venom. Toxins (Basel) 2021; 13:toxins13060372. [PMID: 34071038 DOI: 10.3390/toxins13060372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The specificity and potency of venom components give them a unique advantage in developing various pharmaceutical drugs. Though venom is a cocktail of proteins, rarely are the synergy and association between various venom components studied. Understanding the relationship between various components of venom is critical in medical research. Using meta-analysis, we observed underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I and LAAO; SVMP P-III and LAAO. In Sistrurus venom, CTL and NGF have the most associations. These associations can predict the presence of proteins in novel venom and understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit the classification of proteins as major components or minor components is highlighted. The revised classification of venom components is based on ubiquity, bioactivity, the number of associations, and synergies. The revised classification can be expected to trigger increased research on venom components, such as NGF, which have high biomedical significance. Using hierarchical clustering, we observed that the genera's venom compositions were similar, based on functional characteristics rather than phylogenetic relationships.
Collapse
Affiliation(s)
- Anant Deshwal
- Division of Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jyotishka Datta
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ragupathy Kannan
- Department of Biology, University of Arkansas-Fort Smith, Fort Smith, AR 72913, USA
| | | |
Collapse
|
6
|
Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom. Toxins (Basel) 2020; 12:toxins12090606. [PMID: 32962193 PMCID: PMC7551604 DOI: 10.3390/toxins12090606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: Bacterial resistance is a worldwide public health problem, requiring new therapeutic options. An alternative approach to this problem is the use of animal toxins isolated from snake venom, such as phospholipases A2 (PLA2), which have important antimicrobial activities. Bothropserythromelas is one of the snake species in the northeast of Brazil that attracts great medical-scientific interest. Here, we aimed to purify and characterize a PLA2 from B. erythromelas, searching for heterologous activities against bacterial biofilms. Methods: Venom extraction and quantification were followed by reverse-phase high-performance liquid chromatography (RP-HPLC) in C18 column, matrix-assisted ionization time-of-flight (MALDI-ToF) mass spectrometry, and sequencing by Edman degradation. All experiments were monitored by specific activity using a 4-nitro-3-(octanoyloxy) benzoic acid (4N3OBA) substrate. In addition, hemolytic tests and antibacterial tests including action against Escherichiacoli, Staphylococcusaureus, and Acinetobacterbaumannii were carried out. Moreover, tests of antibiofilm action against A. baumannii were also performed. Results: PLA2, after one purification step, presented 31 N-terminal amino acid residues and a molecular weight of 13.6564 Da, with enzymatic activity confirmed in 0.06 µM concentration. Antibacterial activity against S. aureus (IC50 = 30.2 µM) and antibiofilm activity against A. baumannii (IC50 = 1.1 µM) were observed. Conclusions: This is the first time that PLA2 purified from B. erythromelas venom has appeared as an alternative candidate in studies of new antibacterial medicines.
Collapse
|
7
|
Garcia Denegri ME, Bustillo S, Gay CC, Van De Velde A, Gomez G, Echeverría S, Gauna Pereira MDC, Maruñak S, Nuñez S, Bogado F, Sanchez M, Teibler GP, Fusco L, Leiva LCA. Venoms and Isolated Toxins from Snakes of Medical Impact in the Northeast Argentina: State of the Art. Potential Pharmacological Applications. Curr Top Med Chem 2019; 19:1962-1980. [PMID: 31345151 DOI: 10.2174/1568026619666190725094851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Andrea Van De Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Gabriela Gomez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvina Echeverría
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - María Del Carmen Gauna Pereira
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvana Maruñak
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Sandra Nuñez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Fabián Bogado
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Matías Sanchez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Gladys Pamela Teibler
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Laura Cristina Ana Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| |
Collapse
|
8
|
Bustillo S, Fernández J, Chaves-Araya S, Angulo Y, Leiva LC, Lomonte B. Isolation of two basic phospholipases A2 from Bothrops diporus snake venom: Comparative characterization and synergism between Asp49 and Lys49 variants. Toxicon 2019; 168:113-121. [DOI: 10.1016/j.toxicon.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022]
|
9
|
Cesar PHS, Cardoso Trento MV, Sales TA, Marques TR, Braga MA, Ramalho TC, Marcussi S. Molecular interactions between p-coumaric acid and snake venom toxins. J Cell Biochem 2019; 120:14594-14603. [PMID: 31016790 DOI: 10.1002/jcb.28721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 11/06/2022]
Abstract
A large number of natural compounds, such as phenolic compounds, have been scientifically evaluated in the search for enzyme inhibitors. The interactions between the phenolic compound p-coumaric acid and the enzymes present in snake venoms (used as research tools) were evaluated in vitro and in silico. The p-coumaric acid was able to inhibit 31% of the phospholipase activity induced by Bothrops alternatus venom, 27% of the hemolytic activity induced by B. moojeni, 62.5% of the thrombolytic activity induced by B. jararacussu, and approximately 27% of the activity thrombosis induced by Crotalus durissus terrificus. Previous incubation of p-coumaric acid with the venoms of B. atrox and B. jararacussu increased the coagulation time by 2.18 and 2.16-fold, respectively. The activity of serine proteases in B. atrox and B. jararacussu venoms was reduced by 60% and 66.34%, respectively. Computational chemistry analyses suggests the specific binding of p-coumaric acid to the active site of proteases through hydrogen and hydrophobic interactions. The phenolic compound evaluated in this work has great potential in therapeutic use to both prevent and treat hemostatic alterations, because the venom proteins inhibited by the p-coumaric acid have high homology with human proteins that have a fundamental role in several pathologies.
Collapse
Affiliation(s)
- Pedro H S Cesar
- Biochemistry Laboratory, Departament of Chemistry, Federal University of Lavras, Lavras, Brazil
| | | | - Thais A Sales
- Computational Chemistry Laboratory, Departament of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Tamara R Marques
- Biochemistry Laboratory, Departament of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Mariana A Braga
- Biochemistry Laboratory, Departament of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Teodorico C Ramalho
- Computational Chemistry Laboratory, Departament of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Departament of Chemistry, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
10
|
Aparecida Braga M, Silva de Abreu T, Cardoso Trento MV, Henrique Andrade Machado G, Lopes Silva Pereira L, Assaid Simão A, Marcussi S. Prospection of Enzyme Modulators in Aqueous and Ethanolic Extracts of Lippia sidoides Leaves: Genotoxicity, Digestion, Inflammation, and Hemostasis. Chem Biodivers 2019; 16:e1800558. [PMID: 30600918 DOI: 10.1002/cbdv.201800558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/27/2018] [Indexed: 11/06/2022]
Abstract
The aqueous and ethanolic extracts of Lippia sidoides Cham. were chemically characterized and tested for their action on enzymes involved in processes such as inflammation, blood coagulation, and digestion. Both extracts potentiated the activity of phospholipases A2 present in the venom of Bothrops atrox in 12 % and completely inhibited the hemolysis induced by B. jararacussu and B. moojeni venoms in the proportions between 1 : 0.5 and 1 : 5 (venom/extracts (w/w)). They inhibited the thrombolysis induced by B. moojeni (10 to 25 %), potentiated the thrombolysis induced by the Lachesis muta muta venom (30 to 80 %), prolonged the coagulation time induced by B. moojeni and L. muta muta venoms, and presented antigenotoxic action. Both extracts reduced the activity of α-glycosidases, the aqueous extract inhibited lipases, and the ethanolic extract inhibited α-amylases. The results demonstrate the modulatory action of the extracts on proteases, phospholipases, and digestive enzymes. In addition, the rich phenolic composition of these extracts highlights their potential for nutraceutical use.
Collapse
Affiliation(s)
- Mariana Aparecida Braga
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Tatiane Silva de Abreu
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Marcus Vinicius Cardoso Trento
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Gustavo Henrique Andrade Machado
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Luciana Lopes Silva Pereira
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Anderson Assaid Simão
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| |
Collapse
|
11
|
MARQUES TAMARAR, BRAGA MARIANAA, CESAR PEDROH, MARCUSSI SILVANA, CORRÊA ANGELITAD. Jabuticaba (Plinia jaboticaba) skin extracts as inhibitors of phospholipases A2 and proteases. ACTA ACUST UNITED AC 2019; 91:e20180248. [DOI: 10.1590/0001-3765201920180248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
|
12
|
Marques TR, Cesar PHS, Braga MA, Marcussi S, Corrêa AD. Fruit Bagasse Phytochemicals from Malpighia Emarginata Rich in Enzymatic Inhibitor with Modulatory Action on Hemostatic Processes. J Food Sci 2018; 83:2840-2849. [PMID: 30334251 DOI: 10.1111/1750-3841.14330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/19/2018] [Accepted: 07/21/2018] [Indexed: 11/29/2022]
Abstract
Agro-industrial wastes are promising sources of phytochemicals for the development of products to be used in health promotion and maintenance. In this study, extracts from acerola bagasse (AB) were characterized by HPLC, and evaluated according to its modulatory action on phospholipases A2 and proteases involved in processes such as inflammation and blood clotting. Snake venoms were used as biological tools once they have high functional and structural homology between their enzymes and human enzymes. Two types of extracts were prepared from AB: aqueous and methanolic. These extracts, evaluated at different proportions (venom:extract, w:w), significantly inhibited the phospholipase activity induced by the venoms of Bothrops moojeni, Bothrops atrox (11% to 31%), and Crotalus durissus terrificus (C. d. t.) (11% to 19%). The hemolytic activity induced by the venoms of B. moojeni and C. d. t. was better inhibited by the methanolic extract (inhibition between 23% and 48%). Thrombolysis induced by the venoms of B. moojeni and C. d. t. was inhibited by both extracts, with inhibition ranging from 13% to 63% for the aqueous extract, and from 12% to 92% for the methanolic one. Both extracts increased the time of coagulation induced by the venoms of B. moojeni and Lachesis muta muta in 26 and up to 68 s. These inhibitory actions were related to the following phenolic compounds present in the extract of AB: gallic acid, catechin, epigallocatechin gallate, epicatechin, syringic acid, p-coumaric acid, and quercetin. Additional studies are needed to confirm their potential use for nutraceutical purposes. PRACTICAL APPLICATION: Agro-industrial wastes are promising sources of phytochemicals for the development of products that can be used by pharmaceutical, cosmetics, and food industries. Studies report the use of the acerola bagasse extract in health improvement. However, its toxic-pharmacological characterization is still scarce. In this study, the extracts of acerola bagasse presented phenolic compounds that can modulate the activity of enzymes such as phospholipases A2 and proteases that act on the coagulant/anticoagulant and thrombotic/thrombolytic activities and the break of phospholipids, decreasing the inflammation and platelet aggregation. Although the in vivo effects of the extracts are not fully understood, this study shed light upon the possibilities of their usage.
Collapse
Affiliation(s)
- Tamara R Marques
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Pedro Henrique S Cesar
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Mariana A Braga
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Silvana Marcussi
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Angelita D Corrêa
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| |
Collapse
|
13
|
Xiong S, Huang C. Synergistic strategies of predominant toxins in snake venoms. Toxicol Lett 2018; 287:142-154. [PMID: 29428543 DOI: 10.1016/j.toxlet.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/17/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022]
Abstract
Synergism is a significant phenomenon present in snake venoms that may be an evolving strategy to potentiate toxicities. Synergism exists between different toxins or toxin complexes in various snake venoms, with phospholipaseA2s (PLA2s) (toxins or subunits) the main enablers. The predominant toxins, snake venom PLA2s, metalloproteases (SVMPs), serine proteases (SVSPs) and three-finger toxins (3FTxs), play essential roles in synergistic processes. The hypothetical mechanisms of synergistic effect can be generalized under the effects of amplification and chaperoning. The Toxicity Score is among the few quantitative methods to assess synergism. Selection of toxins involved in synergistically enhanced toxicity as the targets are important for development of novel antivenoms or inhibitors.
Collapse
Affiliation(s)
- Shengwei Xiong
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
14
|
Crystal structure of a phospholipase A 2 from Bothrops asper venom: Insights into a new putative "myotoxic cluster". Biochimie 2016; 133:95-102. [PMID: 28034717 DOI: 10.1016/j.biochi.2016.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
Abstract
Snake venoms from the Viperidae and Elapidae families often have several phospholipases A2 (PLA2s), which may display different functions despite having a similar structural scaffold. These proteins are considered an important target for the development of drugs against local myotoxic damage because they are not efficiently neutralized by conventional serum therapy. PLA2s from these venoms are generally divided into two classes: (i) catalytic PLA2s (or Asp49-PLA2s) and (ii) non-catalytic PLA2-like toxins (or Lys49-PLA2s). In many Viperidae venoms, a subset of the basic Asp49-PLA2s displays some functional and structural characteristics of PLA2-like proteins and group within the same phylogenetic clade, but their myotoxic mechanism is still largely unknown. In the present study, we have crystallized and solved the structure of myotoxin I (MT-I), a basic myotoxic Asp49-PLA2 isolated from Bothrops asper venom. The structure presents a dimeric conformation that is compatible with that of previous dimers found for basic myotoxic Asp49-PLA2s and Lys49-PLA2s and has been confirmed by other biophysical and bioinformatics techniques. This arrangement suggests a possible cooperative action between both monomers to exert myotoxicity via two different sites forming a putative membrane-docking site (MDoS) and a putative membrane disruption site (MDiS). This mechanism would resemble that proposed for Lys49-PLA2s, but the sites involved appear to be situated in a different region. Thus, as both sites are close to one another, they form a "myotoxic cluster", which is also found in two other basic myotoxic Asp49-PLA2s from Viperidae venoms. Such arrangement may represent a novel structural strategy for the mechanism of muscle damage exerted by the group of basic, Asp49-PLA2s found in viperid snake venoms.
Collapse
|
15
|
Garcia Denegri ME, Teibler GP, Maruñak SL, Hernández DR, Acosta OC, Leiva LC. Efficient muscle regeneration after highly haemorrhagic Bothrops alternatus venom injection. Toxicon 2016; 122:167-175. [PMID: 27720976 DOI: 10.1016/j.toxicon.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 11/28/2022]
Abstract
Bothrops alternatus snake venom is particularly characterized for inducing a prominent haemorrhage and affecting hemostasis as a consequence of 43.1% of metallo-proteinases and less than 10% of PLA2 (almost all non-myotoxic phospholipases) in its venomics. In addition, myonecrosis is the major local effect in viper envenoming which might lead to permanent sequela. Then, the rebuilding of the microvasculature at the local injured site acquires significance since represents one of the pivotal stages for subsequent skeletal muscle regeneration either at morphological or functional aspects. Due to the significance played by vasculature in this process, it is important to study by histology and immunohistochemical techniques, the muscular damage and the sequence of skeletal muscle reconstruction (degree of damage, reconstitution of muscle fibres and capillaries). In this work, we injected intramuscularly 50 or 100 μg per mouse of B. alternatus venom in gastrocnemius muscles. We provided a complete description and characterization of the different stages of myogenesis after mild (50 µg) and severe (100 µg) local injury induced by B. alternatus venom toxins. The regeneration was evaluated 24 h, 3, 7, 14 and 28 days after receiving venom injection. Finally, both doses induced an extended necrosis at the site of injection where, when critical steps in the regenerative process are taking place, an efficient tissue rebuilding is achieved. B. alternatus venom is characterized by the high percentage of exclusively class P-III metalloproteinases, and by the lack of class P-I metalloproteinases in its venom composition. This could explain the effectiveness of muscle regeneration after venom injection despite the severity of the initial phase of envenoming.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, UNNE, CONICET, FaCENA, Campus "Deodoro Roca" Av. Libertad N° 5460, Corrientes, Argentina; Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina.
| | - Gladys P Teibler
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Silvana L Maruñak
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - David R Hernández
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Ofelia C Acosta
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Laura C Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, UNNE, CONICET, FaCENA, Campus "Deodoro Roca" Av. Libertad N° 5460, Corrientes, Argentina
| |
Collapse
|
16
|
Divergent functional profiles of acidic and basic phospholipases A2 in the venom of the snake Porthidium lansbergii lansbergii. Toxicon 2016; 119:289-98. [DOI: 10.1016/j.toxicon.2016.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 01/09/2023]
|
17
|
Gomez G, Leiva L, Nerli BB. Aqueous two-phase systems: A simple methodology to obtain mixtures enriched in main toxins of Bothrops alternatus venom. Protein Expr Purif 2016; 124:68-74. [DOI: 10.1016/j.pep.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/08/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022]
|
18
|
Le Z, Li X, Yuan P, Liu P, Huang C. Orthogonal optimization of prokaryotic expression of a natural snake venom phospholipase A2 inhibitor from Sinonatrix annularis. Toxicon 2015; 108:264-71. [PMID: 26546697 DOI: 10.1016/j.toxicon.2015.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022]
Abstract
Phospholipase A2 (PLA2) is a calcium-dependent enzyme that is involved in inflammatory processes such as the liberation of free arachidonic acid from the membrane pool for the biosynthesis of eicosanoids. Snake venom are known containing PLA2s (svPLA2s) which exhibit a wide variety of pharmacological effects including neurotoxicity, cardiotoxicity, myotoxicity and hemorrhage. Therefore, inhibition of svPLA2 would be advantageous to successful envenomation treatment. A gamma type PLI (PLA2 inhibitor) has been extracted from the serum of Sinonatrix annularis, a non-venomous snake indigenous to China. This showed strong inhibition of Deinagkistrrodon acutus PLA2, however, the PLIγ level in the serum and snake resource are not sufficiently sustainable for further research. To overcome these limitations, we constructed a His6-PLIγ pET28 fusion expression vector and transformed Escherichia coli BL21. To improve the expression of PLIγ, an orthogonal experiment [L16(4)(5)] was performed to optimize induction parameters. The optimized condition was determined to be: induction by 0.4 mM isopropyl-β-D-thiogalactoside (IPTG) for 6 h to the recombinant BL21 after its OD600 was 0.8, with continuous shaking cultivation at 190 rpm and 35 °C. Under these conditions, the amount of expressed protein could reach 57 mg/L. The His6-PLIγ was purified by nickel affinity chromatography and renatured by On-column refolding. The resulting PLIγ showed a good inhibitory effect of enzymatic activities to venom PLA2 isolated from D. acutus. Moreover, the PLIγ had a wide anti-hemorrhage activities to D. acutus, Naja atra and Agkistrodon halys venom.
Collapse
Affiliation(s)
- Zhen Le
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - XingZhang Li
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Peng Yuan
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Pi Liu
- First-Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Chunhong Huang
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
19
|
Bustillo S, García-Denegri ME, Gay C, Van de Velde AC, Acosta O, Angulo Y, Lomonte B, Gutiérrez JM, Leiva L. Phospholipase A(2) enhances the endothelial cell detachment effect of a snake venom metalloproteinase in the absence of catalysis. Chem Biol Interact 2015; 240:30-6. [PMID: 26279213 DOI: 10.1016/j.cbi.2015.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/01/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022]
Abstract
Microvessel disruption leading to hemorrhage stands among the most dangerous consequences of envenomings by snakes of the family Viperidae. A PIII metalloproteinase (SVMP), balteragin, purified from the venom of the snake Bothrops alternatus, displays a potent hemorrhagic effect, and a moderate myotoxicity in vivo. Previous studies described the ability of this SVMP to induce the detachment of C2C12 myoblasts in culture, without causing cytolysis. Surprisingly, a purified acidic phospholipase A2 (PLA2) from the same venom was found to increase this detaching activity of the SVMP on myoblasts. Since endothelial cells are a natural target of SVMPs in vivo, the possibility that this synergistic effect is also observed on this cell type was explored in the present work. In addition, a first approach of the mechanism of action of this effect was studied. Results clearly confirm that the acidic PLA2, despite lacking toxicity towards endothelial cells, significantly enhances the detaching effect of the SVMP even at a concentration as low as 1 μg/mL. Inhibition of enzymatic activity of the PLA2 by chemical modification with p-bromophenacyl bromide did not affect the synergistic activity, suggesting that this effect is not dependent on phospholipase enzymatic activity and may instead be the consequence of an interaction of the PLA2 with endothelial cell plasma membrane. To our knowledge, this is the first report of a synergistic action of a non toxic PLA2 in enhancing the detachment of endothelial cells induced by a metalloproteinase.
Collapse
Affiliation(s)
- Soledad Bustillo
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina.
| | | | - Carolina Gay
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | | | - Ofelia Acosta
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Yamileth Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Leiva
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|
20
|
Menaldo DL, Jacob-Ferreira AL, Bernardes CP, Cintra ACO, Sampaio SV. Purification procedure for the isolation of a P-I metalloprotease and an acidic phospholipase A2 from Bothrops atrox snake venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:28. [PMID: 26273288 PMCID: PMC4535780 DOI: 10.1186/s40409-015-0027-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA2) from Bothrops atrox venom, and biochemically characterize these molecules to enable future functional studies. Methods To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing. Results The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA2. Conclusions The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.
Collapse
Affiliation(s)
- Danilo L Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Anna L Jacob-Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| |
Collapse
|
21
|
Accary C, Mantash A, Mallem Y, Fajloun Z, Elkak A. Separation and Biological Activities of Phospholipase A2 (Mb-PLA2) from the Venom of Montivipera bornmuelleri, a Lebanese Viper. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.968660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Claudine Accary
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Sciences and Technology, Lebanese University, Tripoli, Lebanon
| | - Aziza Mantash
- Laboratory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS),” Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath, Lebanon
| | - Yassine Mallem
- LUNAM, Oniris, Unit of Animal Pathophysiology and Functional Pharmacology, Nantes, France
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Sciences and Technology, Lebanese University, Tripoli, Lebanon
| | - Assem Elkak
- Laboratory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS),” Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath, Lebanon
| |
Collapse
|
22
|
Rapid purification of a new P-I class metalloproteinase from Bothrops moojeni venom with antiplatelet activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:352420. [PMID: 24982866 PMCID: PMC4058653 DOI: 10.1155/2014/352420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
The present study aimed to evaluate the proteolytic and biological activities of a new metalloproteinase from B. moojeni venom. The purification of BmooMPα-II was carried out through two chromatographic steps (ion-exchange and affinity). BmooMPα-II is a monomeric protein with an apparent molecular mass of 22.5 kDa on SDS-PAGE 14% under nonreducing conditions. The N-terminal sequence (FSPRYIELVVVADHGMFTKYKSNLN) revealed homology with other snake venom metalloproteinases, mainly among P-I class. BmooMPα-II cleaves Aα-chain of fibrinogen followed by Bβ-chain, and does not show any effect on the γ-chain. Its optimum temperature and pH for the fibrinogenolytic activity were 30–50°C and pH 8, respectively. The inhibitory effects of EDTA and 1,10-phenantroline on the fibrinogenolytic activity suggest that BmooMPα-II is a metalloproteinase. This proteinase was devoid of haemorrhagic, coagulant, or anticoagulant activities. BmooMPα-II caused morphological alterations in liver, lung, kidney, and muscle of Swiss mice. The enzymatically active protein yet inhibited collagen, ADP, and ristocetin-induced platelet aggregation in a concentration-dependent manner. Our results suggest that BmooMPα-II contributes to the toxic effect of the envenomation and that more investigations to elucidate the mechanisms of inhibition of platelet aggregation may contribute to the studies of snake venom on thrombotic disorders.
Collapse
|
23
|
Garcia Denegri ME, Maruñak S, Todaro JS, Ponce-Soto LA, Acosta O, Leiva L. Neutralisation of the pharmacological activities of Bothrops alternatus venom by anti-PLA2 IgGs. Toxicon 2014; 86:89-95. [PMID: 24878372 DOI: 10.1016/j.toxicon.2014.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 11/16/2022]
Abstract
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Collapse
Affiliation(s)
- María E Garcia Denegri
- Laboratorio de Química de Proteinas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Argentina; Laboratorio de Farmacología y Toxicología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, CP 3400, Corrientes, Argentina.
| | - Silvana Maruñak
- Laboratorio de Farmacología y Toxicología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, CP 3400, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Bioquímica, Facultad de Medicina, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Luis A Ponce-Soto
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Biología, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ofelia Acosta
- Laboratorio de Farmacología y Toxicología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, CP 3400, Corrientes, Argentina
| | - Laura Leiva
- Laboratorio de Química de Proteinas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Argentina
| |
Collapse
|
24
|
Purification and biochemical characterization of three myotoxins from Bothrops mattogrossensis snake venom with toxicity against Leishmania and tumor cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:195356. [PMID: 24724078 PMCID: PMC3958778 DOI: 10.1155/2014/195356] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022]
Abstract
Bothrops mattogrossensis snake is widely distributed throughout eastern South America and is responsible for snakebites in this region. This paper reports the purification and biochemical characterization of three new phospholipases A2 (PLA2s), one of which is presumably an enzymatically active Asp49 and two are very likely enzymatically inactive Lys49 PLA2 homologues. The purification was obtained after two chromatographic steps on ion exchange and reverse phase column. The 2D SDS-PAGE analysis revealed that the proteins have pI values around 10, are each made of a single chain, and have molecular masses near 13 kDa, which was confirmed by MALDI-TOF mass spectrometry. The N-terminal similarity analysis of the sequences showed that the proteins are highly homologous with other Lys49 and Asp49 PLA2s from Bothrops species. The PLA2s isolated were named BmatTX-I (Lys49 PLA2-like), BmatTX-II (Lys49 PLA2-like), and BmatTX-III (Asp49 PLA2). The PLA2s induced cytokine release from mouse neutrophils and showed cytotoxicity towards JURKAT (leukemia T) and SK-BR-3 (breast adenocarcinoma) cell lines and promastigote forms of Leishmania amazonensis. The structural and functional elucidation of snake venoms components may contribute to a better understanding of the mechanism of action of these proteins during envenomation and their potential pharmacological and therapeutic applications.
Collapse
|
25
|
Ferreira FB, Gomes MSR, Naves de Souza DL, Gimenes SNC, Castanheira LE, Borges MH, Rodrigues RS, Yoneyama KAG, Homsi Brandeburgo MI, Rodrigues VM. Molecular cloning and pharmacological properties of an acidic PLA2 from Bothrops pauloensis snake venom. Toxins (Basel) 2013; 5:2403-19. [PMID: 24304676 PMCID: PMC3873693 DOI: 10.3390/toxins5122403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/13/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
In this work, we describe the molecular cloning and pharmacological properties of an acidic phospholipase A(2) (PLA(2)) isolated from Bothrops pauloensis snake venom. This enzyme, denominated BpPLA(2)-TXI, was purified by four chromatographic steps and represents 2.4% of the total snake venom protein content. BpPLA(2)-TXI is a monomeric protein with a molecular mass of 13.6 kDa, as demonstrated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis and its theoretical isoelectric point was 4.98. BpPLA(2)-TXI was catalytically active and showed some pharmacological effects such as inhibition of platelet aggregation induced by collagen or ADP and also induced edema and myotoxicity. BpPLA(2)-TXI displayed low cytotoxicity on TG-180 (CCRF S 180 II) and Ovarian Carcinoma (OVCAR-3), whereas no cytotoxicity was found in regard to MEF (Mouse Embryonic Fibroblast) and Sarcoma 180 (TIB-66). The N-terminal sequence of forty-eight amino acid residues was determined by Edman degradation. In addition, the complete primary structure of 122 amino acids was deduced by cDNA from the total RNA of the venom gland using specific primers, and it was significantly similar to other acidic D49 PLA(2)s. The phylogenetic analyses showed that BpPLA(2)-TXI forms a group with other acidic D49 PLA(2)s from the gender Bothrops, which are characterized by a catalytic activity associated with anti-platelet effects.
Collapse
Affiliation(s)
- Francis Barbosa Ferreira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| | - Mário Sérgio Rocha Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
- Department of Chemical and Physical, State University of Southwest Bahia (UESB), 45506-210 Jequié-BA, Brazil
| | - Dayane Lorena Naves de Souza
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| | - Sarah Natalie Cirilo Gimenes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| | - Letícia Eulalio Castanheira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| | | | - Renata Santos Rodrigues
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| | - Kelly Aparecida Geraldo Yoneyama
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| | - Maria Inês Homsi Brandeburgo
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| | - Veridiana M. Rodrigues
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, UFU, 38400902 Uberlândia-MG, Brazil; E-Mails: (F.B.F.); (M.S.R.G.); (D.L.N.S.); (S.N.C.G.); (L.E.C.); (R.S.R.); (K.A.G.Y.); (M.I.H.B.)
| |
Collapse
|
26
|
Van der Laat M, Fernández J, Durban J, Villalobos E, Camacho E, Calvete JJ, Lomonte B. Amino acid sequence and biological characterization of BlatPLA2, a non-toxic acidic phospholipase A2 from the venom of the arboreal snake Bothriechis lateralis from Costa Rica. Toxicon 2013; 73:71-80. [DOI: 10.1016/j.toxicon.2013.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
|
27
|
Gay C, Maruñak S, Teibler P, Leiva L, Acosta O. Effect of monospecific antibodies against baltergin in myotoxicity induced by Bothrops alternatus venom from northeast of Argentina. Role of metalloproteinases in muscle damage. Toxicon 2013; 63:104-11. [PMID: 23246580 DOI: 10.1016/j.toxicon.2012.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Myotoxicity, one of the most relevant local manifestations in envenomation by Bothrops genus, may result from a direct action of myotoxins or be due to an indirect vascular degeneration and ischemia. Baltergin, a snake venom metalloproteinase (SVMP), isolated from Bothrops alternatus venom has been used to obtain monospecific IgG, in order to determine the relative role of toxin in myotoxicity induced by whole venom. Bothrops diporus venom, another medical relevant genus of the northeastern region of Argentina, was also studied. Anti-baltergin IgG was able to neutralize completely the hemorrhagic activity of B. alternatus venom at an antibodies:venom ratio of 30:1 (w:w). However, mice injected with B. diporus venom showed a small spot remaining even at the highest ratio of IgG:venom assayed (50:1; w:w). Specific antibodies were efficient to neutralize the myotoxicity of B. alternatus venom at ratio 30:1 (w:w) but did not neutralize the same effects in B. diporus venom. Anti-baltergin polyclonal antibodies were useful tools for revealing the central role of SVMPs in the development of myotoxicity of B. alternatus venom, as well as, helping to suggest indirectly presence of potent myotoxic phospholipases A2 (PLA2s) in B. diporus venom.
Collapse
Affiliation(s)
- Carolina Gay
- Laboratorio de Investigación en Proteínas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes 3400, Argentina.
| | | | | | | | | |
Collapse
|
28
|
Corasolla Carregari V, Stuani Floriano R, Rodrigues-Simioni L, Winck FV, Baldasso PA, Ponce-Soto LA, Marangoni S. Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom. BIOMED RESEARCH INTERNATIONAL 2012; 2013:612649. [PMID: 23509754 PMCID: PMC3591176 DOI: 10.1155/2013/612649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/17/2012] [Accepted: 09/01/2012] [Indexed: 01/29/2023]
Abstract
Bbil-TX, a PLA2, was purified from Bothriopsis bilineata snake venom after only one chromatographic step using RP-HPLC on μ-Bondapak C-18 column. A molecular mass of 14243.8 Da was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry. The partial protein sequence obtained was then submitted to BLASTp, with the search restricted to PLA2 from snakes and shows high identity values when compared to other PLA2s. PLA2 activity was presented in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 25-37°C. Maximum PLA2 activity required Ca(2+) and in the presence of Cd(2+), Zn(2+), Mn(2+), and Mg(2+) it was reduced in the presence or absence of Ca(2+). Crotapotin from Crotalus durissus cascavella rattlesnake venom and antihemorrhagic factor DA2-II from Didelphis albiventris opossum sera under optimal conditions significantly inhibit the enzymatic activity. Bbil-TX induces myonecrosis in mice. The fraction does not show a significant cytotoxic activity in myotubes and myoblasts (C2C12). The inflammatory events induced in the serum of mice by Bbil-TX isolated from Bothriopsis bilineata snake venom were investigated. An increase in vascular permeability and in the levels of TNF-a, IL-6, and IL-1 was was induced. Since Bbil-TX exerts a stronger proinflammatory effect, the phospholipid hydrolysis may be relevant for these phenomena.
Collapse
Affiliation(s)
- Victor Corasolla Carregari
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael Stuani Floriano
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lea Rodrigues-Simioni
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Flavia V. Winck
- Max Planck Institute of Molecular Plant Physiology and University of Potsdam, Potsdam, Germany
| | - Paulo Aparecido Baldasso
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
29
|
|
30
|
Bustillo S, Gay CC, García Denegri ME, Ponce-Soto LA, Bal de Kier Joffé E, Acosta O, Leiva LC. Synergism between baltergin metalloproteinase and Ba SPII RP4 PLA2 from Bothrops alternatus venom on skeletal muscle (C2C12) cells. Toxicon 2012; 59:338-43. [DOI: 10.1016/j.toxicon.2011.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
|
31
|
Vargas LJ, Londoño M, Quintana JC, Rua C, Segura C, Lomonte B, Núñez V. An acidic phospholipase A₂ with antibacterial activity from Porthidium nasutum snake venom. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:341-7. [PMID: 22251437 DOI: 10.1016/j.cbpb.2011.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
Abstract
Snake venoms are complex mixtures of proteins among which both basic and acidic phospholipases A(2) (PLA(2)s) can be found. Basic PLA(2)s are usually responsible for major toxic effects induced by snake venoms, while acidic PLA(2)s tend to have a lower toxicity. A novel PLA(2), here named PnPLA(2), was purified from the venom of Porthidium nasutum by means of RP-HPLC on a C18 column. PnPLA(2) is an acidic protein with a pI of 4.6, which migrates as a single band under both non-reducing and reducing conditions in SDS-PAGE. PnPLA(2) had a molecular mass of 15,802.6 Da, determined by ESI-MS. Three tryptic peptides of this protein were characterized by HPLC-nESI-MS/MS, and N-terminal sequencing by direct Edman degradation showing homology to other acidic PLA(2)s from viperid venoms. PnPLA(2) displayed indirect hemolytic activity in agarose erythrocyte-egg yolk gels and bactericidal activity against Staphylococcus aureus in a dose-dependent manner, with a MIC and MBC of 32 μg/mL. In addition, PnPLA(2) showed a potent inhibitory effect on platelet aggregation with doses up to 40 μg/mL. This acidic PLA(2), in contrast to basic enzymes isolated from other viperid snake venoms, was not cytotoxic to murine skeletal muscle myoblasts C(2)C(12). This is the first report on a bactericidal protein of Porthidium nasutum venom.
Collapse
Affiliation(s)
- Leidy Johana Vargas
- Programa Ofidismo/Escorpionismo, Universidad de Antioquia, Street 62 No. 52-59, A.A. 1226, Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Nunes DCO, Rodrigues RS, Lucena MN, Cologna CT, Oliveira ACS, Hamaguchi A, Homsi-Brandeburgo MI, Arantes EC, Teixeira DNS, Ueira-Vieira C, Rodrigues VM. Isolation and functional characterization of proinflammatory acidic phospholipase A2 from Bothrops leucurus snake venom. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:226-33. [PMID: 21699995 DOI: 10.1016/j.cbpc.2011.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 12/09/2022]
Abstract
In the present study, an acidic PLA(2), designated Bl-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000Da and pI was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-α, IL-1β and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA(2) induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism.
Collapse
Affiliation(s)
- Débora C O Nunes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huancahuire-Vega S, Ponce-Soto LA, Martins-de-Souza D, Marangoni S. Biochemical and pharmacological characterization of PhTX-I a new myotoxic phospholipase A2 isolated from Porthidium hyoprora snake venom. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:108-19. [PMID: 21496495 DOI: 10.1016/j.cbpc.2011.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 01/04/2023]
Abstract
This paper reports the biochemical and pharmacological characterization of a new myotoxic PLA(2) (EC 3.1.1.4) called PhTX-I, purified from Porthidium hyoprora venom by one step analytical chromatography reverse phase HPLC. The homogeneity of the PhTX-I fraction and its molecular mass were initially evaluated by SDS-PAGE and confirmed by MALDI-TOF spectrometry, indicating a molecular mass of 14.249Da and constituted of a single polipeptidic chain. Amino acid sequence was determined by "de novo sequencing," in tandem mass spectrometry, belonging to D49-PLA(2) enzyme class and exhibiting high identity (44-90%) with other myotoxics PLA(2) from snake venoms. The enzymatic investigation showed maximal activity at pH 8 and 35-45°C. This activity was dependent on Ca(2+), other cations (Mg(2+), Mn(2+), Cd(2+) and Zn(2+)) reduced notably the enzymatic activity, suggesting that the arrangement of the catalytic site presents an exclusive structure for Ca(2+). Ex vivo, whole venom and PhTX-I PLA(2) caused blockade of the neuromuscular transmission in young chick biventer cervicis preparations similar to other isolated snake venom toxins from the Bothrops genus. In vivo, both induced local myotoxicity and systemic interleukin-6 response upon intramuscular injection, additionally, induced moderate footpad edema. In vitro, both induced low cytotoxicity in skeletal muscle myoblasts, however PhTX-I PLA(2) was able to lyse myotubes.
Collapse
|