1
|
Nastasa V, Minea B, Pasca AS, Bostanaru-Iliescu AC, Stefan AE, Gologan D, Capota R, Foia LG, Mares M. Long-Term Oral Administration of Hyperimmune Egg-Based IgY-Rich Formulations Induces Mucosal Immune Response and Systemic Increases of Cytokines Involved in Th2- and Th17-Type Immune Responses in C57BL/6 Mice. Int J Mol Sci 2024; 25:8701. [PMID: 39201385 PMCID: PMC11354499 DOI: 10.3390/ijms25168701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Three hyperimmune egg-based formulations rich in immunoglobulin Y (IgY) were orally administered (daily, for up to 90 days) to C57BL/6 mice that were not microbially challenged. The serum levels of 32 cytokines were quantified every 30 days. Histopathology, hematology, and serum biochemistry investigations were also performed. As a sign of increased immune activity, lymphohistiocytic infiltrates were detected in the digestive tract and the liver after 30, 60, and 90 days of treatment. These infiltrates were also present in the lungs after 30 and 60 days, but not at 90 days. Blood analysis indicated systemic inflammation after 30 days of treatment: increases in pro-inflammatory cytokines, glycemia, total serum proteins, ALT, and ALP. After 60 and 90 days of treatment, the analyzed blood parameters showed mixed signs of both increased and decreased inflammation. The increased cytokines, which varied with formulation and time of exposure, indicated a combination of mostly Th17- and Th2-type immune responses. As the mice were healthy and housed in standardized sanitary conditions, and were not microbially challenged, the data were consistent with an interaction of IgY with the gut-associated lymphoid tissue as the main mechanism of action. This interaction generated a local immune response, which subsequently induced a systemic response.
Collapse
Affiliation(s)
- Valentin Nastasa
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Bogdan Minea
- Department of Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Aurelian-Sorin Pasca
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Andra-Cristina Bostanaru-Iliescu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Alina-Elena Stefan
- Doctoral School, Department of Pathology, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 59 Mărăşti Boulevard, 011464 Bucharest, Romania;
- Department of Research and Development, Themis Pathology SRL, 56F 1 Decembrie 1918 Boulevard, 032468 Bucharest, Romania;
| | - Daniela Gologan
- Department of Research and Development, Themis Pathology SRL, 56F 1 Decembrie 1918 Boulevard, 032468 Bucharest, Romania;
- Doctoral School, Department of Organic Chemistry, Faculty of Chemical Engineering and Biotechnologies, Politehnica University, 313 Splaiul Independenţei, 060042 Bucharest, Romania
| | - Robert Capota
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Liliana-Georgeta Foia
- Department of Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| |
Collapse
|
2
|
Choraria A, Somasundaram R, Janani S, Rajendran S, Oukkache N, Michael A. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1942063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - S. Janani
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Selvakumar Rajendran
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Naoual Oukkache
- Venoms and Toxins Laboratory, Institute Pasteur of Morocco, Casablanca, Morocco
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
3
|
Yao L, Zhao H, Tang H, Song J, Dong H, Zou F, Cai S. Chicken IgY facilitates allergic airway inflammation in a chemical-induced murine asthma model by potentiating IL-4 release. Toxicol Lett 2015; 239:22-31. [PMID: 26341180 DOI: 10.1016/j.toxlet.2015.08.1108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
High mobility group box 1 (HMGB1) is a DNA-binding protein that is abundantly expressed in most tissues. Recently, HMGB1 has gained much attention for its regulation of immunity and inflammation. Yet its role in toluene diisocyanate (TDI)-induced asthma still remains poorly characterized. In this study, mice were sensitized and challenged with TDI to establish a TDI-induced asthma model. An IgY anti-HMGB1 antibody or isotype IgY was given intraperitoneally after each challenge. Airway reactivity to methacholine, airway inflammation, bronchial epithelial hyperplasia and shedding were unexpectedly aggravated after administration of the anti-HMGB1 antibody and was accompanied by increased pulmonary expression of HMGB1, especially in those mice treated with IgY. Levels of IL-4, IL-5, IL-13 and TNF-α were also elevated with TDI-induction. Primary lymphocytes from TDI sensitized and challenged mice demonstrated increased secretion of IL-4 after IgY stimulation. To confirm the effect of IgY, a cohort of mice exposed to TDI or vehicle was injected with IgY and the same results were observed after IgY treatment as in TDI asthmatic mice. Taken together, these results show that the IgY anti-HMGB1 antibody can facilitate TDI-induced allergic airway inflammation. Specifically, IgY, rather than anti-HMGB1, plays an important role in the process of exacerbated asthma, shedding light on an underappreciated role of avian IgY.
Collapse
Affiliation(s)
- Lihong Yao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixiong Tang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiafu Song
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Díaz P, Malavé C, Zerpa N, Vázquez H, D'Suze G, Montero Y, Castillo C, Alagón A, Sevcik C. IgY pharmacokinetics in rabbits: implications for IgY use as antivenoms. Toxicon 2014; 90:124-33. [PMID: 25111201 DOI: 10.1016/j.toxicon.2014.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 12/18/2022]
Abstract
This paper presents the first study of chicken IgY pharmacokinetics (PK) in rabbits. We measured IgY blood serum concentrations using a specific high sensitivity ELISA method. The fast initial component observed when studying horse Fab, F(ab')2 or IgG was absent from IgY PK. During the first 80 min of observation there was only a single slow exponential decay, which sped up afterward to the point that IgY became undetectable after 216 h of observation; due to this time course, PK parameters were determined with trapezoidal integration. The most significant IgY pharmacokinetic parameters determined were (all presented as medians and their 95% confidence interval): Area Under the Curve = 183.8 (135.2, 221.5) mg·h·L(-1); Distribution volume of the central compartment·[Body Weight (BW)](-1) = 46.0 (21.7, 70.3) mL·kg(-1); Distribution volume in steady state·BW(-1) = 56.8 (44.4, 68.5) mLkg(-1); Mean Residence Time = 40.1 (33.6, 48.5) h; Total plasma clearance·BW(-1) = 1.44 (1.15, 1.66) mL·h(-1)·kg(-1). Anti IgY IgG titers determined by ELISA increased steadily after 72 h, and reached 2560 (1920, 5760) dilution(-1) at 264 h; anti-chicken IgG concentrations rose up to 3.19 (2.31, 6.17) μg/mL in 264 h. Our results show that IgY PK lacks the fast initial decay observed in other PK studies using horse IgG, F(ab')2 or Fab, remains in the body 39.0 (28.7, 47.2) % much as IgG and is ≈3 times more immunogenic that horse IgG in rabbits.
Collapse
Affiliation(s)
- Patricia Díaz
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Caridad Malavé
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Noraida Zerpa
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Hilda Vázquez
- Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gina D'Suze
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Yuyibeth Montero
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Alejandro Alagón
- Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Sevcik
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
5
|
Ramírez-Bello V, Sevcik C, Peigneur S, Tytgat J, D'Suze G. Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. The role of Na+/Ca2+ exchangers. Toxicon 2014; 82:61-75. [DOI: 10.1016/j.toxicon.2014.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
|
6
|
Vázquez H, Olvera F, Alagón A, Sevcik C. Production of anti-horse antibodies induced by IgG, F(ab')2 and Fab applied repeatedly to rabbits. Effect on antivenom pharmacokinetics. Toxicon 2013; 76:362-9. [DOI: 10.1016/j.toxicon.2013.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
7
|
High resolution fluorescence microscopy evidence on the transport of immunoglobulins. Differences between mammalian IgG, F(abʹ)2 and avian IgY. Toxicon 2013; 63:7-18. [DOI: 10.1016/j.toxicon.2012.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/18/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
|