1
|
Silva-Magalhães R, Silva-Araújo AL, Peres-Damásio P, Teixeira Pereira EH, de Oliveira Souza R, Varela LSDRN, Tomé LMR, de Melo Iani FC, Silveira AL, Borges MH, Medina-Santos R, Chavez-Olórtegui C, Vasconcelos Diniz MR, Paiva ALB, Guerra-Duarte C. Loxosceles amazonica Brown Spider venom: Insights into enzymatic activities, immunorecognition, and novel phospholipase D isoforms. Biochimie 2024; 227:86-98. [PMID: 38944106 DOI: 10.1016/j.biochi.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
The Loxosceles genus represents one of the main arachnid genera of medical importance in Brazil. Despite the gravity of Loxosceles-related accidents, just a handful of species are deemed medically important and only a few have undergone comprehensive venom characterization. Loxosceles amazonica is a notable example of a potentially dangerous yet understudied Loxosceles species. While there have been limited reports of accidents involving L. amazonica to date, accidents related to Loxosceles are increasing in the North and Northeast regions of Brazil, where L. amazonica has been reported. In this work, we provide a complementary biochemical and immunological characterization of L. amazonica venom, considering its most relevant enzymatic activities and its immunorecognition and neutralization by current therapeutic antivenoms. Additionally, a cDNA library enriched with phospholipase D (PLD) sequences from L. amazonica venom glands was built and subsequently sequenced. The results showed that L. amazonica venom is well immunorecognised by all the tested antibodies. Its venom also displayed proteolytic, hyaluronidase, and sphingomyelinase activities. These activities were at least partially inhibited by available antivenoms. With cDNA sequencing of PLDs, seven new putative isoforms were identified in the venom of L. amazonica. These results contribute to a better knowledge of the venom content and activities of a synanthropic, yet understudied, Loxosceles species. In vivo assays are essential to confirm the medical relevance of L. amazonica, as well as to assess its true toxic potential and elucidate its related pathophysiology.
Collapse
Affiliation(s)
- Rafaela Silva-Magalhães
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil; Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ana Luiza Silva-Araújo
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil
| | - Pamella Peres-Damásio
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil
| | | | - Ramon de Oliveira Souza
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil
| | | | - Luiz Marcelo Ribeiro Tomé
- Central Laboratory of Public Health of Minas Gerais, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil
| | - Felipe Campos de Melo Iani
- Central Laboratory of Public Health of Minas Gerais, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil
| | | | - Márcia Helena Borges
- Arachnid Proteomics Lab, Research and Development Department, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil
| | - Raíssa Medina-Santos
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Carlos Chavez-Olórtegui
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | | | - Ana Luiza Bittencourt Paiva
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil
| | - Clara Guerra-Duarte
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - Funed, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Peres-Damásio P, Silva-Magalhães R, Silva-Araújo AL, Pereira EHT, Silveira AL, Varella LSDRN, Borges MH, Chavez-Olórtegui C, Paiva ALB, Guerra-Duarte C. Partial characterization of Loxosceles anomala (Mello-Leitão, 1917) venom: A brown spider of potential medical concern. Toxicon 2023; 228:107107. [PMID: 37011787 DOI: 10.1016/j.toxicon.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
The spider's genus Loxosceles (also known as "brown spiders") is one of the few ones of medical importance in Brazil, being Loxosceles anomala a species of common occurrence in the Southeast region. This species is usually smaller in size than the other members of the Loxosceles group. A single human accident involving L. anomala was reported to date and the clinical picture shared similar characteristics with accidents caused by other Loxosceles species. Despite the potential relevance of L. anomalafor loxocelism in Minas Gerais state, its venom activity has never been characterized. In this work, we provide a preliminary characterization of L. anomala venom, considering its most relevant enzymatic activities and its venom immunorecognition by current therapeutic antivenoms. The results showed that L. anomala venom is immunorecognised by therapeutic antivenoms and by anti-phospholipase D antibodies. Its venom also shows enzymatic activities (sphingomyelinase activity, fibrinogenolytic) described for other Loxosceles venoms. This work contributes to a better knowledge on the venom content and activities of synanthropic Loxosceles species that have the potential of causing relevant human accidents.
Collapse
Affiliation(s)
- Pamella Peres-Damásio
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Rafaela Silva-Magalhães
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Ana Luiza Silva-Araújo
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | | | | | | | - Márcia Helena Borges
- Arachnid Proteomics Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Carlos Chavez-Olórtegui
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ana Luiza Bittencourt Paiva
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Clara Guerra-Duarte
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Medina-Santos R, Fernandes Costa TG, Silva de Assis TC, Kalapothakis Y, de Almeida Lima S, do Carmo AO, Gonzalez-Kozlova EE, Kalapothakis E, Chávez-Olórtegui C, Guerra-Duarte C. Analysis of NGS data from Peruvian Loxosceles laeta spider venom gland reveals toxin diversity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101017. [PMID: 35932519 DOI: 10.1016/j.cbd.2022.101017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Accidents involving spiders from the genus Loxosceles cause medical emergencies in several countries of South America. The species Loxosceles laeta is ubiquitously present in Peru and is responsible for severe accidents in this country. To further characterize L. laeta venom components and to unveil possible variations in the Peruvian population, we provide an overview of the toxins-related transcripts present in the venom gland of Peruvian L. laeta. A dataset from a cDNA library previously sequenced by MiSeq sequencer (Illumina) was re-analyzed and the obtained data was compared with available sequences from Loxosceles toxins. Phospholipase-D represent the majority (69,28 %) of the transcripts related to venom toxins, followed by metalloproteases (20,72 %), sicaritoxins (6,03 %), serine-proteases (2,28 %), hyaluronidases (1,80 %) and Translationally Controlled Tumor Protein (TCTP) (0,56 %). New sequences of phospholipases D,sicaritoxins, hyaluronidase, TCTP and serine proteinases were described. Differences between the here-described toxin sequences and others, previously identified in venom glands from other spiders, were visualized upon sequence alignments. In addition, an in vitro hyaluronidase activity assay was also performed to complement comparisons between Peruvian and Brazilian L. laeta venom enzymatic activities, revealing a superior activity in the venom from Brazilian specimens. These new data provide a molecular basis that can help to explain the difference in toxicity among L. laeta venoms from different countries in South America.
Collapse
Affiliation(s)
- Raíssa Medina-Santos
- Biochemistry and Immunology Department, Federal University of Minas Gerais, Brazil; Genetic, Ecology and Evolution Department, Federal University of Minas Gerais, Brazil
| | | | | | - Yan Kalapothakis
- Genetic, Ecology and Evolution Department, Federal University of Minas Gerais, Brazil
| | | | | | - Edgar E Gonzalez-Kozlova
- Department of Genetics and Genomic Sciences, Icahn School for Data Science and Genomic Technology, New York, United States of America
| | | | | | | |
Collapse
|
4
|
Quispe RL, Jaramillo ML, Torres-Huaco F, Bonilla C, Isasi J, Guerra-Duarte C, Chávez-Olórtegui C. Partial in vivo protection against Peruvian spider Loxosceles laeta venom by immunization with a multiepitopic protein (rMEPLox). Toxicon 2022; 215:1-5. [PMID: 35660625 DOI: 10.1016/j.toxicon.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Loxoscelism is a serious public health problem in Peru, with approximately 2500 accidents reported per year. To envision alternatives to cope with this health problem, the neutralizing humoral immune response against the lethal effects of Peruvian spider Loxosceles laeta venom was evaluated in a mouse model by immunization with a non-toxic multiepitopic protein (rMEPLox). This immunogen contains epitopes from an astacin-like metalloprotease, a hyaluronidase and a sphingomyelinase-D from Loxosceles intermedia and from SMase-I from L. laeta venoms. In vivo protection assays showed that five out of six mice immunized with rMEPLox (after six injections) resisted to 1.4 LD50 of L. laeta venom, whereas only two animals from a control group survived. The present results indicates that this multiepitopic protein can be a promising candidate for anti-loxoscelic antivenom production and experimental vaccination approaches.
Collapse
Affiliation(s)
- Ruth L Quispe
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru
| | - Michael L Jaramillo
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru
| | - Frank Torres-Huaco
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru; Coordinación de Investigación, Universidad Continental, Avenida Los Incas S/n, Arequipa, Peru
| | - Cesar Bonilla
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru; Facultad de Odontologia, Universidad Nacional Mayor de San Marcos, Peru
| | - Jacqueline Isasi
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru; Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
A protective vaccine against the toxic activities following Brown spider accidents based on recombinant mutated phospholipases D as antigens. Int J Biol Macromol 2021; 192:757-770. [PMID: 34634338 DOI: 10.1016/j.ijbiomac.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.
Collapse
|
6
|
Miranda ALSD, Guerra-Duarte C, Lima SDA, Chávez-Olórtegui C, Soto-Blanco B. History, challenges and perspectives on Loxosceles (brown spiders) antivenom production in Brazil. Toxicon 2021; 192:40-45. [PMID: 33465358 DOI: 10.1016/j.toxicon.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Antivenom is the only effective therapy for treating any envenomation. Despite its obvious public health importance, the laborious process of procuring, distributing and controlling the quality of such immunobiologicals is being neglected. Brazil is fully self-sufficient in the production of antivenoms. Since the 1950s, Loxoscelism, a syndrome with an onset after a spider bite from specimens of the Loxosceles genus occurs, is considered a public health issue. The Brazilian history in developing antivenom therapy, its production hindrances, and other challenges are discussed in this paper, as well as some promising novelties that can improve production and processing of Loxosceles antivenom.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Sabrina de Almeida Lima
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Medina-Santos R, Guerra-Duarte C, de Almeida Lima S, Costal-Oliveira F, Alves de Aquino P, Oliveira do Carmo A, Ferreyra CB, Gonzalez-Kozlova EE, Kalapothakis E, Chávez-Olórtegui C. Diversity of astacin-like metalloproteases identified by transcriptomic analysis in Peruvian Loxosceles laeta spider venom and in vitro activity characterization. Biochimie 2019; 167:81-92. [PMID: 31476328 DOI: 10.1016/j.biochi.2019.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/28/2019] [Indexed: 11/25/2022]
Abstract
Loxosceles spiders are found in almost all countries of South America. In Peru, Loxosceles laeta species is the main responsible for the accidents caused by poisonous animals, being known as "killer spiders", due to the large number of fatal accidents observed. Astacin-like metalloproteases, named LALPs (Loxosceles astacin-like metalloproteases) are highly expressed in Loxosceles spiders venom gland. These proteases may be involved in hemorrhage and venom spreading, being relevant to the envenoming proccess. Thus, the aim of this work was to analyze Peruvian L. laeta venom gland transcripts using bioinformatics tools, focusing on LALPs. A cDNA library from Peruvian L. laeta venom glands was constructed and sequenced by MiSeq (Illumina) sequencer. After assembly, the resulting sequences were annotated, seeking out for similarity with previously described LALPs. Nine possible LALPs isoforms from Peruvian L. laeta venom were identified and the results were validated by in silico and in vitro experiments. This study contributes to a better understanding of the molecular diversity of Loxosceles venom and provide insights about the action of LALPs.
Collapse
Affiliation(s)
- Raíssa Medina-Santos
- Biochemistry and Immunology Department, Federal University of Minas Gerais, Brazil; Genetic, Ecology and Evolution Department, Federal University of Minas Gerais, Brazil
| | | | | | | | | | | | - César Bonilla Ferreyra
- Univesidad Nacional Mayor de San Marcos, Facultad de Odontología, Lima, Peru; Instituto Nacional de Salud, Lima, Peru
| | | | | | | |
Collapse
|
8
|
Design and Production of a Recombinant Hybrid Toxin to Raise Protective Antibodies Against Loxosceles Spider Venom. Toxins (Basel) 2019; 11:toxins11020108. [PMID: 30759862 PMCID: PMC6409891 DOI: 10.3390/toxins11020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022] Open
Abstract
Human accidents with spiders of the genus Loxosceles are an important health problem affecting thousands of people worldwide. Patients evolve to severe local injuries and, in many cases, to systemic disturbances as acute renal failure, in which cases antivenoms are considered to be the most effective treatment. However, for antivenom production, the extraction of the venom used in the immunization process is laborious and the yield is very low. Thus, many groups have been exploring the use of recombinant Loxosceles toxins, particularly phospholipases D (PLDs), to produce the antivenom. Nonetheless, some important venom activities are not neutralized by anti-PLD antibodies. Astacin-like metalloproteases (ALMPs) are the second most expressed toxin acting on the extracellular matrix, indicating the importance of its inclusion in the antigen’s formulation to provide a better antivenom. Here we show the construction of a hybrid recombinant immunogen, called LgRec1ALP1, composed of hydrophilic regions of the PLD and the ALMP toxins from Loxosceles gaucho. Although the LgRec1ALP1 was expressed as inclusion bodies, it resulted in good yields and it was effective to produce neutralizing antibodies in mice. The antiserum neutralized fibrinogenolytic, platelet aggregation and dermonecrotic activities elicited by L. gaucho, L. laeta, and L. intermedia venoms, indicating that the hybrid recombinant antigen may be a valuable source for the production of protective antibodies against Loxosceles ssp. venoms. In addition, the hybrid recombinant toxin approach may enrich and expand the alternative antigens for antisera production for other venoms.
Collapse
|
9
|
Lima SDA, Guerra-Duarte C, Costal-Oliveira F, Mendes TM, Figueiredo LFM, Oliveira D, Machado de Avila RA, Ferrer VP, Trevisan-Silva D, Veiga SS, Minozzo JC, Kalapothakis E, Chávez-Olórtegui C. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits. Front Immunol 2018; 9:653. [PMID: 29666624 PMCID: PMC5891610 DOI: 10.3389/fimmu.2018.00653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 01/20/2023] Open
Abstract
Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.
Collapse
Affiliation(s)
- Sabrina de Almeida Lima
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Clara Guerra-Duarte
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Costal-Oliveira
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Melo Mendes
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís F M Figueiredo
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daysiane Oliveira
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Ricardo A Machado de Avila
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | | | | | | | - João C Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos - CPPI, Piraquara, Brazil
| | - Evanguedes Kalapothakis
- Departamentos de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Chávez-Olórtegui
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Dantas AE, Carmo AO, Horta CCR, Leal HG, Oliveira-Mendes BBR, Martins APV, Chávez-Olórtegui C, Kalapothakis E. Description of Loxtox protein family and identification of a new group of Phospholipases D from Loxosceles similis venom gland. Toxicon 2016; 120:97-106. [PMID: 27496061 DOI: 10.1016/j.toxicon.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Envenoming resulting from Loxosceles spider bites (loxoscelism) is a recognized public health problem in Brazil. However, the pathophysiology of loxoscelism caused by L. similis bites, which is widespread in Brazil, remains poorly understood. In the present work, the RNA sequencing (RNA-Seq - Next Generation sequencing - NGS) of the L. similis venom gland was performed to identify and analyze the sequences of the key component phospholipase D. The sequences were aligned based on their classical domains, and a phylogenetic tree was constructed. In the bioinformatics analysis, 23 complete sequences of phospholipase D proteins were found and classified as Loxtox proteins, as they contained the characteristic domains of phospholipase D: the active site, the Mg(2+)-binding domain, and the catalytic loop. Three phospholipase D sequences with non-canonical domains were also found in this work. They were analyzed separately and named PLDs from L. similis (PLD-Ls). This study is the first to characterize phospholipase D sequences from Loxosceles spiders by RNA-Seq. These results contribute new knowledge about the composition of L. similis venom, revealing novel tools that could be used for pharmacological, immunological, and biotechnological applications.
Collapse
Affiliation(s)
- Arthur Estanislau Dantas
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - A O Carmo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Mestrado Profissional em Biotecnologia e Gestão da Inovação, Centro Universitário de Sete Lagoas, Sete Lagoas, 35701-242, Minas Gerais, Brazil.
| | - Hortênsia Gomes Leal
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | | | - Ana Paula Vimieiro Martins
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Rocha-E-Silva TAA, Linardi A, Antunes E, Hyslop S. Pharmacological Characterization of the Edema Caused by Vitalius dubius (Theraphosidae, Mygalomorphae) Spider Venom in Rats. J Pharmacol Exp Ther 2016; 356:13-9. [PMID: 26607257 DOI: 10.1124/jpet.115.226787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 11/22/2022] Open
Abstract
Bites by tarantulas (Theraphosidae, Mygalomorphae) in humans can result in mild clinical manifestations such as local pain, erythema, and edema. Vitalius dubius is a medium-sized, nonaggressive theraphosid found in southeastern Brazil. In this work, we investigated the mediators involved in the plasma extravasation caused by V. dubius venom in rats. The venom caused dose-dependent (0.1-100 μg/site) edema in rat dorsal skin. This edema was significantly inhibited by ((S)1-{2-[3(3-4-dichlorophenyl)-1-(3-iso-propoxyphenylacetyl)piperidine-3-yl]ethyl}-4-phenyl-1-azoniabicyclo[2.2.2]octone, chloride) (SR140333, a neurokinin NK1 receptor antagonist), indomethacin [a nonselective cyclooxygenase (COX) inhibitor], cyproheptadine (a serotonin 5-hydroxytryptamine1/2 and histamine H1 receptor antagonist), and N(ω)-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor). In contrast, mepyramine (a histamine H1 receptor antagonist), D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)-]-BK (JE 049, a bradykinin B2 receptor antagonist), and ((S)-N-methyl-N-[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-di-chlorophenyl)butyl]benzamide) (SR48968, a neurokinin NK2 receptor antagonist) had no effect on the venom-induced increase in vascular permeability. In rat hind paws, the venom-induced edema was attenuated by ketoprofen (a nonselective COX inhibitor) administered 15 minutes postvenom. Preincubation of venom with commercial antiarachnid antivenom attenuated the venom-induced edema. These results suggest that the enhanced vascular permeability evoked by V. dubius venom involves serotonin, COX products, neurokinin NK1 receptors, and nitric oxide formation. The attenuation of hind paw edema by ketoprofen suggests that COX inhibitors could be useful in treating the local inflammatory response to bites by these spiders.
Collapse
Affiliation(s)
- Thomaz A A Rocha-E-Silva
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| | - Alessandra Linardi
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| |
Collapse
|
12
|
Duarte C, Bonilla C, Guimarães G, Machado de Avila R, Mendes T, Silva W, Tintaya B, Yarleque A, Chávez-Olórtegui C. Anti-loxoscelic horse serum produced against a recombinant dermonecrotic protein of Brazilian Loxosceles intermedia spider neutralize lethal effects of Loxosceles laeta venom from Peru. Toxicon 2015; 93:37-40. [DOI: 10.1016/j.toxicon.2014.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
13
|
Figueiredo LF, Dias-Lopes C, Alvarenga LM, Mendes TM, Machado-de-Ávila RA, McCormack J, Minozzo JC, Kalapothakis E, Chávez-Olórtegui C. Innovative immunization protocols using chimeric recombinant protein for the production of polyspecific loxoscelic antivenom in horses. Toxicon 2014; 86:59-67. [DOI: 10.1016/j.toxicon.2014.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022]
|
14
|
Dantas AE, Horta CCR, Martins TMM, do Carmo AO, Mendes BBRDO, Goes AM, Kalapothakis E, Gomes DA. Whole venom of Loxosceles similis activates caspases-3, -6, -7, and -9 in human primary skin fibroblasts. Toxicon 2014; 84:56-64. [PMID: 24726468 DOI: 10.1016/j.toxicon.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 12/31/2022]
Abstract
Spiders of the Loxosceles genus represent a risk to human health due to the systemic and necrotic effects of their bites. The main symptoms of these bites vary from dermonecrosis, observed in the majority of cases, to occasional systemic hemolysis and coagulopathy. Although the systemic effects are well characterized, the mechanisms of cell death triggered by the venom of these spiders are poorly characterized. In this study, we investigated the cell death mechanisms induced by the whole venom of the spider Loxosceles similis in human skin fibroblasts. Our results show that the venom initiates an apoptotic process and a caspase cascade involving the initiator caspase-9 and the effector caspases-3, -6, and -7.
Collapse
Affiliation(s)
- Arthur Estanislau Dantas
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; Programa de Pós-Graduação em Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Thais M M Martins
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; Programa de Pós-graduação em Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Alfredo M Goes
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson A Gomes
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| |
Collapse
|