1
|
Li A, Yu H, Li R, Yue Y, Yu C, Liu S, Xing R, Li P. Effects of toxin metalloproteinases from jellyfish Nemopilema nomurai nematocyst on the dermal toxicity and potential treatment of jellyfish dermatitis. Int Immunopharmacol 2024; 128:111492. [PMID: 38218009 DOI: 10.1016/j.intimp.2024.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Jellyfish dermatitis is a common medical problem in many countries due to the jellyfish envenomation. However, there are no specific and targeted medications for their treatment. Here we investigated the possible therapeutic effects of metalloproteinase inhibitors on the dermal toxicity of Nemopilema nomurai nematocyst venom (NnNV), a giant venomous jellyfish from China, using the jellyfish dermatitis model, focusing on inflammatory effector molecules during jellyfish envenomation. Metalloproteinase may further stimulate inflammation by promoting oxidative stress in the organism and play key roles by activating MAPK and NF-κB, in the pathogenesis of jellyfish dermatitis. And the metalloproteinase inhibitors batimastat and EDTA disodium salt may treat the Jellyfish dermatitis by inhibiting the metalloproteinase activity in NnNV. These observations suggest that the metalloproteinase components of NnNV make a considerable contribution to dermal toxicity as the inflammation effect molecular, and metalloproteinase inhibitors can be regarded as novel therapeutic medicines in jellyfish envenomation. This study contributes to understanding the mechanism of jellyfish dermatitis and suggests new targets and ideas for the treatment of jellyfish envenomation.
Collapse
Affiliation(s)
- Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
2
|
Wang Q, Zhang H, Wang B, Wang C, Xiao L, Zhang L. β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca 2+ release by tentacle extract from the jellyfish Cyanea capillata. BMC Pharmacol Toxicol 2017; 18:60. [PMID: 28743285 PMCID: PMC5526252 DOI: 10.1186/s40360-017-0167-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023] Open
Abstract
Background Intracellular Ca2+ overload induced by extracellular Ca2+ entry has previously been confirmed to be an important mechanism for the cardiotoxicity as well as the acute heart dysfunction induced by jellyfish venom, while the underlying mechanism remains to be elucidated. Methods Under extracellular Ca2+-free or Ca2+-containing conditions, the Ca2+ fluorescence in isolated adult mouse cardiomyocytes pre-incubated with tentacle extract (TE) from the jellyfish Cyanea capillata and β blockers was scanned by laser scanning confocal microscope. Then, the cyclic adenosine monophosphate (cAMP) concentration and protein kinase A (PKA) activity in primary neonatal rat ventricular cardiomyocytes were determined by ELISA assay. Furthermore, the effect of propranolol against the cardiotoxicity of TE was evaluated in Langendorff-perfused rat hearts and intact rats. Results The increase of intracellular Ca2+ fluorescence signal by TE was significantly attenuated and delayed when the extracellular Ca2+ was removed. The β adrenergic blockers, including propranolol, atenolol and esmolol, partially inhibited the increase of intracellular Ca2+ in the presence of 1.8 mM extracellular Ca2+ and completely abolished the Ca2+ increase under an extracellular Ca2+-free condition. Both cAMP concentration and PKA activity were stimulated by TE, and were inhibited by the β adrenergic blockers. Cardiomyocyte toxicity of TE was antagonized by β adrenergic blockers and the PKA inhibitor H89. Finally, the acute heart dysfuction by TE was antagonized by propranolol in Langendorff-perfused rat hearts and intact rats. Conclusions Our findings indicate that β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca2+ overload through intracellular Ca2+ release by TE from the jellyfish C. capillata.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hui Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Bo Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Chao Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zhang H, Wang Q, Xiao L, Zhang L. Intervention effects of five cations and their correction on hemolytic activity of tentacle extract from the jellyfish Cyanea capillata. PeerJ 2017; 5:e3338. [PMID: 28503385 PMCID: PMC5426461 DOI: 10.7717/peerj.3338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Cations have generally been reported to prevent jellyfish venom-induced hemolysis through multiple mechanisms by spectrophotometry. Little attention has been paid to the potential interaction between cations and hemoglobin, potentially influencing the antagonistic effect of cations. Here, we explored the effects of five reported cations, La3+, Mn2+, Zn2+, Cu2+ and Fe2+, on a hemolytic test system and the absorbance of hemoglobin, which was further used to measure their effects on the hemolysis of tentacle extract (TE) from the jellyfish Cyanea capillata. All the cations displayed significant dose-dependent inhibitory effects on TE-induced hemolysis with various dissociation equilibrium constant (Kd) values as follows: La3+ 1.5 mM, Mn2+ 93.2 mM, Zn2+ 38.6 mM, Cu2+ 71.9 μM and Fe2+ 32.8 mM. The transparent non-selective pore blocker La3+ did not affect the absorbance of hemoglobin, while Mn2+ reduced it slightly. Other cations, including Zn2+, Cu2+ and Fe2+, greatly decreased the absorbance with Kd values of 35.9, 77.5 and 17.6 mM, respectively. After correction, the inhibitory Kd values were 1.4 mM, 45.8 mM, 128.5 μM and 53.1 mM for La3+, Zn2+, Cu2+ and Fe2+, respectively. Mn2+ did not inhibit TE-induced hemolysis. Moreover, the inhibitory extent at the maximal given dose of all cations except La3+ was also diminished. These corrected results from spectrophotometry were further confirmed by direct erythrocyte counting under microscopy. Our results indicate that the cations, except for La3+, can interfere with the absorbance of hemoglobin, which should be corrected when their inhibitory effects on hemolysis by jellyfish venoms are examined. The variation in the inhibitory effects of cations suggests that the hemolysis by jellyfish venom is mainly attributed to the formation of non-selective cation pore complexes over other potential mechanisms, such as phospholipases A2 (PLA2), polypeptides, protease and oxidation. Blocking the pore-forming complexes may be a primary strategy to improve the in vivo damage and mortality from jellyfish stings due to hemolytic toxicity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qianqian Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Li R, Yu H, Yue Y, Liu S, Xing R, Chen X, Li P. Combined proteomics and transcriptomics identifies sting-related toxins of jellyfish Cyanea nozakii. J Proteomics 2016; 148:57-64. [PMID: 27461980 DOI: 10.1016/j.jprot.2016.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/16/2016] [Accepted: 07/22/2016] [Indexed: 01/22/2023]
Abstract
UNLABELLED Jellyfish sting has become a worldwide issue of critical concern to human health and safety in coastal areas in recent decades. Cyanea nozakii is one of the dominant blooming species and dangerous stingers in China. However, it remains unclear how many and what types of toxins are present in the venom. So, we used a combined transcriptomics and proteomics approach to investigate the venom composition of jellyfish C. nozakii. In total 4,608,524 Illumina valid reads were obtained to de novo assemble to 40,434 unigenes in the transcriptomics analysis. And, a total of 311,635 MS/MS spectra with 12,247 unique MS/MS spectra were generated to 1556 homologous proteins in the proteomics analysis. 174 potential toxin proteins were identified, with 27 proteins homology to the toxins from venomous animals, including phospholipase A2, zinc metalloproteinase-disintegrin agkistin, serine protease inhibitor, plancitoxin-1, alpha-latrocrustotoxin-Lt1a, etc. This study described the transcriptomics and venom proteomics of jellyfish C. nozakii for the first time. Our findings provide a comprehensive understanding of the venom composition of C. nozakii. Furthermore, the results may also be very helpful for the discovery of novel bioactive proteins, as well as the development of effective treatments for jellyfish sting in the future. BIOLOGICAL SIGNIFICANCE Jellyfish Cyanea nozakii is one of the most dangerous stingers in the coast of china. Hundreds of thousands of people would be stung every year and victims suffered a severe pain, itch, swelling, inflammation, wheal and even more serious consequence. However, it remains unclear how many and what types of toxins are present as well as the relationship between the clinical symptoms and toxins. Our combined transcriptomics and proteomics findings can provide a comprehensive understanding of the venom composition of C. nozakii and will also be helpful for the development of effective treatments for jellyfish sting in the future.
Collapse
Affiliation(s)
- Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
5
|
Zhang M, Wang Y, Wang X, Liu J, Zhang J, Gu Q. Roles of oxidative stress, apoptosis, and heme oxygenase-1 in ethylbenzene-induced renal toxicity in NRK-52E cells. Toxicol Ind Health 2016; 32:1952-1960. [DOI: 10.1177/0748233715602834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ethylbenzene is an important industrial chemical, but its potential toxicity is a recent concern. Our previous study investigated the renal toxicity of ethylbenzene in vivo. Rat renal epithelial cells (NRK-52E cells) were incubated with 0, 30, 60, and 90 µmol/L of ethylbenzene for 24 h in vitro to investigate ethylbenzene-induced oxidative stress, apoptosis, and the expression of heme oxygenase 1 (HO-1) and nuclear factor (erythroid 2)-related factor 2 (Nrf2). The cell survival rate in the ethylbenzene-treated groups was significantly lower than the control group. Ethylbenzene significantly increased intracellular reactive oxygen species and apoptosis. Malondialdehyde levels were significantly elevated compared with the control group, while glutathione levels and glutathione peroxidase activities were decreased in ethylbenzene-treated groups. The activities of catalase and superoxide dismutase were also markedly reduced. A significant dose-dependent increase in HO-1 and Nrf2 messenger RNA expression levels was observed in ethylbenzene-treated groups compared with the control group. Similarly, ethylbenzene treatment enhanced protein expression of HO-1 and Nrf2 in a dose-dependent manner. Our results indicated that ethylbenzene induced oxidative stress, apoptosis, and upregulation of HO-1 and Nrf2 in NRK-52E cells, which contributes to ethylbenzene-induced renal toxicity.
Collapse
Affiliation(s)
- Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Yanrang Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Xiaojun Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jing Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jingshu Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Qing Gu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Qu X, Xia X, Lai Z, Zhong T, Li G, Fan L, Shu W. Apoptosis-like cell death induced by nematocyst venom from Chrysaora helvola Brandt jellyfish and an in vitro evaluation of commonly used antidotes. Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:31-9. [PMID: 26538054 DOI: 10.1016/j.cbpc.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/15/2022]
Abstract
The present work investigated the in vitro cytotoxicity of nematocyst venom (NV) from Chrysaora helvola Brandt (C. helvola) jellyfish against human MCF-7 and CNE-2 tumor cell lines. Potent cytotoxicity was quantified using the MTT assay (LC50=12.07±3.13 and 1.6±0.22μg/mL (n=4), respectively). Apoptosis-like cell death was further confirmed using the LDH release assay and Annexin V/PI double staining-based flow cytometry analysis. However, only activation of caspase-4 was observed. It is possible that some caspase-independent pathways were activated by the NV treatment. Since no reference or antivenom is available, the effects of several commonly used antidotes on the cytotoxicity of NV were examined on more sensitive CNE-2 cells to determine the appropriate emergency measures for envenomation by C. helvola. The phospholipase A2 (PLA2) inhibitor para-bromophenacyl bromide (pBPB) showed no protective effect, while Mg(2+) potentiated cytotoxicity. Voltage-gated L-type Ca(2+) channel blockers (verapamil, nifedipine and felodipine) and Na-Ca(2+) exchanger inhibitor KB-R7943 also showed no effect. Assays using Ca(2+)-free culture media or the intracellular Ca(2+) chelator BAPTA also could not inhibit the cytotoxicity. Taken together, these results suggest that PLA2 and Ca(2+) are not directly involved in the cytotoxicity of NV from C. helvola. Our work also suggests caution regarding the choice for first aid for envenomation by C. helvola jellyfish.
Collapse
Affiliation(s)
- Xiaosheng Qu
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China.
| | - Xianghua Xia
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Zefeng Lai
- Department of Pharmacology, Guangxi Medicinal University, Nanning 530021, China
| | - Taozheng Zhong
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Gang Li
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Lanlan Fan
- Guangxi University of Traditional Chinese Medicine, Nanning, 530200, China
| | - Wei Shu
- Department of Cell Biology and Genetics, Guangxi Medicinal University, Nanning 530021, China.
| |
Collapse
|
7
|
Badré S. Bioactive toxins from stinging jellyfish. Toxicon 2014; 91:114-25. [PMID: 25286397 DOI: 10.1016/j.toxicon.2014.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 01/22/2023]
Abstract
Jellyfish blooms occur throughout the world. Human contact with a jellyfish induces a local reaction of the skin, which can be painful and leave scaring. Systemic symptoms are also observed and contact with some species is lethal. A number of studies have evaluated the in vitro biological activity of whole jellyfish venom or of purified fractions. Hemolytic, cytotoxic, neurotoxic or enzymatic activities are commonly observed. Some toxins have been purified and characterized. A family of pore forming toxins specific to Medusozoans has been identified. There remains a need for detailed characterization of jellyfish toxins to fully understand the symptoms observed in vivo.
Collapse
Affiliation(s)
- Sophie Badré
- Prevor, Moulin de Verville, 95760 Valmondois, France.
| |
Collapse
|
8
|
Mello CP, Morais IC, Menezes RR, Pereira GJ, Torres AF, Lima DB, Pereira TP, Toyama MH, Monteiro HS, Smaili SS, Martins AM. Bothropoides insularis venom cytotoxicity in renal tubular epithelia cells. Toxicon 2014; 88:107-14. [DOI: 10.1016/j.toxicon.2014.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/02/2014] [Accepted: 05/06/2014] [Indexed: 02/02/2023]
|