1
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
2
|
Somegowda M, Raghavendra S, Sridhara S, Rajeshwara AN, N. Pramod S, Shivashankar S, Lin F, El-Abedin TKZ, Wani SH, Elansary HO. Defensive Mechanisms in Cucurbits against Melon Fly ( Bactrocera cucurbitae) Infestation through Excessive Production of Defensive Enzymes and Antioxidants. Molecules 2021; 26:molecules26216345. [PMID: 34770754 PMCID: PMC8588020 DOI: 10.3390/molecules26216345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Melon fly (Bactrocera cucurbitae) is the most common pest of cucurbits, and it directly causes damage to cucurbit fruits in the early developmental stage. The infection of fruit tissues induces oxidative damage through increased generation of cellular reactive oxygen species. The effects of melon fly infestation on the production of defensive enzymes and antioxidant capabilities in five cucurbit species, namely, bottle gourd, chayote, cucumber, snake gourd, and bitter gourd, were investigated in this study. The total phenolic and flavonoid content was considerably higher in melon fly infestation tissues compared to healthy and apparently healthy tissues. The chayote and bottle gourd tissues expressed almost 1.5- to 2-fold higher phenolic and flavonoid contents compared to the tissues of bitter gourd, snake gourd, and cucumber upon infestation. Defensive enzymes, such as peroxidase (POD), superoxide dismutase (SOD), polyphenol oxidase (PPO), and catalase (CAT), were high in healthy and infected tissues of chayote and bottle gourd compared to bitter gourd, snake gourd, and cucumber. The activity of POD (60–80%), SOD (30–35%), PPO (70–75%), and CAT (40–50%) were high in infected chayote and bottle gourd tissue, representing resistance against infestation, while bitter gourd, snake gourd, and cucumber exhibited comparatively lower activity suggesting susceptibility to melon fly infection. The antioxidant properties were also high in the resistant cucurbits compared to the susceptible cucurbits. The current research has enlightened the importance of redox-regulatory pathways involving ROS neutralization through infection-induced antioxidative enzymes in host cucurbit resistance. The melon fly infestation depicts the possible induction of pathways that upregulate the production of defensive enzymes and antioxidants as a defensive strategy against melon fly infestation in resistant cucurbits.
Collapse
Affiliation(s)
- Madhusudana Somegowda
- Department of Biochemistry, University of Agricultural and Horticultural Science, Shivamogga 577204, Karnataka, India; (M.S.); (S.R.)
- Department of Studies and Research in Biochemistry, Jnana Shayadri, Kuvempu University, Shimoga 577203, Karnataka, India;
| | - S. Raghavendra
- Department of Biochemistry, University of Agricultural and Horticultural Science, Shivamogga 577204, Karnataka, India; (M.S.); (S.R.)
| | - Shankarappa Sridhara
- Center for Climate Resilient Agriculture, University of Agricultural and Horticultural Science, Shivamogga 577204, Karnataka, India;
| | - Achur. N. Rajeshwara
- Department of Studies and Research in Biochemistry, Jnana Shayadri, Kuvempu University, Shimoga 577203, Karnataka, India;
| | - Siddanakoppalu. N. Pramod
- Department of Studies in Biochemistry and Food Technology, Davanagere University, Shivagangotri, Davanagere 577007, Karnataka, India
- Correspondence: (S.N.P.); (H.O.E.)
| | - S. Shivashankar
- Department of Plant Physiology and Biochemistry, IIHR, Hesaraghatta, Bangalore 560089, Karnataka, India;
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Tarek K Zin El-Abedin
- Department of Agriculture & Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 181101, Srinagar, India;
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.N.P.); (H.O.E.)
| |
Collapse
|
3
|
Moradi A, Austerlitz T, Dahlin P, Robert CA, Maurer C, Steinauer K, van Doan C, Himmighofen PA, Wieczorek K, Künzler M, Mauch F. Marasmius oreades agglutinin enhances resistance of Arabidopsis against plant-parasitic nematodes and a herbivorous insect. BMC PLANT BIOLOGY 2021; 21:402. [PMID: 34470613 PMCID: PMC8408931 DOI: 10.1186/s12870-021-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant-parasitic nematodes and herbivorous insects have a significant negative impact on global crop production. A successful approach to protect crops from these pests is the in planta expression of nematotoxic or entomotoxic proteins such as crystal proteins from Bacillus thuringiensis (Bt) or plant lectins. However, the efficacy of this approach is threatened by emergence of resistance in nematode and insect populations to these proteins. To solve this problem, novel nematotoxic and entomotoxic proteins are needed. During the last two decades, several cytoplasmic lectins from mushrooms with nematicidal and insecticidal activity have been characterized. In this study, we tested the potential of Marasmius oreades agglutinin (MOA) to furnish Arabidopsis plants with resistance towards three economically important crop pests: the two plant-parasitic nematodes Heterodera schachtii and Meloidogyne incognita and the herbivorous diamondback moth Plutella xylostella. RESULTS The expression of MOA does not affect plant growth under axenic conditions which is an essential parameter in the engineering of genetically modified crops. The transgenic Arabidopsis lines showed nearly complete resistance to H. schachtii, in that the number of female and male nematodes per cm root was reduced by 86-91 % and 43-93 % compared to WT, respectively. M. incognita proved to be less susceptible to the MOA protein in that 18-25 % and 26-35 % less galls and nematode egg masses, respectively, were observed in the transgenic lines. Larvae of the herbivorous P. xylostella foraging on MOA-expression lines showed a lower relative mass gain (22-38 %) and survival rate (15-24 %) than those feeding on WT plants. CONCLUSIONS The results of our in planta experiments reveal a robust nematicidal and insecticidal activity of the fungal lectin MOA against important agricultural pests which may be exploited for crop protection.
Collapse
Affiliation(s)
- Aboubakr Moradi
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Dahlin
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Christelle Am Robert
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, Bern, Switzerland
| | - Corina Maurer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Katja Steinauer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Cong van Doan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Krzysztof Wieczorek
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Felix Mauch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Ganatra MB, Potapov V, Vainauskas S, Francis AZ, McClung CM, Ruse CI, Ong JL, Taron CH. A bi-specific lectin from the mushroom Boletopsis grisea and its application in glycoanalytical workflows. Sci Rep 2021; 11:160. [PMID: 33420304 PMCID: PMC7794217 DOI: 10.1038/s41598-020-80488-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/21/2020] [Indexed: 11/09/2022] Open
Abstract
The BLL lectin from the edible Japanese "Kurokawa" mushroom (Boletopsis leucomelaena) was previously reported to bind to N-glycans harboring terminal N-acetylglucosamine (GlcNAc) and to induce apoptosis in a leukemia cell line. However, its gene has not been reported. In this study, we used a transcriptomics-based workflow to identify a full-length transcript of a BLL functional ortholog (termed BGL) from Boletopsis grisea, a close North American relative of B. leucomelaena. The deduced amino acid sequence of BGL was an obvious member of fungal fruit body lectin family (Pfam PF07367), a highly conserved group of mushroom lectins with a preference for binding O-glycans harboring the Thomsen-Friedenreich antigen (TF-antigen; Galβ1,3GalNAc-α-) and having two ligand binding sites. Functional characterization of recombinant BGL using glycan microarray analysis and surface plasmon resonance confirmed its ability to bind both the TF-antigen and β-GlcNAc-terminated N-glycans. Structure-guided mutagenesis of BGL's two ligand binding clefts showed that one site is responsible for binding TF-antigen structures associated with O-glycans, whereas the second site specifically recognizes N-glycans with terminal β-GlcNAc. Additionally, the two sites show no evidence of allosteric communication. Finally, mutant BGL proteins having single functional bindings site were used to enrich GlcNAc-capped N-glycans or mucin type O-glycopeptides from complex samples in glycomics and glycoproteomics analytical workflows.
Collapse
Affiliation(s)
- Mehul B Ganatra
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | - Vladimir Potapov
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | - Cristian I Ruse
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | - Jennifer L Ong
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | | |
Collapse
|
5
|
Singh RS, Thakur SR, Kennedy JF. Purification and characterisation of a xylose-specific mitogenic lectin from Fusarium sambucinum. Int J Biol Macromol 2020; 152:393-402. [PMID: 32084487 DOI: 10.1016/j.ijbiomac.2020.02.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
A xylose-specific intracellular lectin, showing hemagglutination only with rabbit erythrocytes was purified from mycelium of Fusarium sambucinum which was designated as FSL. An array of anion exchange chromatography on Q-Sepharose and gel-exclusion chromatography on Sephadex G-100 resulted in 84.21% yield and 53.99-fold purification of lectin with specific activity of 169.53 titre/mg. Molecular weight of FSL determined by SDS-PAGE was 70.7 kDa, which was further confirmed by gel-exclusion chromatography. Native-PAGE analysis of FSL showed its monomeric nature. FSL was observed to be a glycoprotein containing 2.9% carbohydrate. Hapten inhibition profile of FSL displayed its strong affinity towards D-xylose (MIC 1.562 mM), L-fucose (MIC 6.25 mM), D-mannose (MIC 3.125 mM), fetuin (MIC 15.62 μg/mL), asialofetuin (MIC 125 μg/mL) and BSM (MIC 3.125 μg/mL). Affinity of FSL towards xylose is rare. FSL was found stable over a pH range 6.0-7.5 and upto 40 °C temperature. Hemagglutination activity of FSL remained unaffected by divalent ions. Lectin concentration of 5 μg/mL was found sufficient to stimulate proliferation of murine spleen cells and its concentration 75 μg/mL exhibited highest mitogenic potential. FSL exhibited maximum mitogenic stimulatory index of 14.35. The purification, characterisation and mitogenicity of F. sambucinum lectin has been reported first time.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, 147 002 Patiala, India.
| | - Shivani Rani Thakur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, 147 002 Patiala, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
6
|
Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Sci Rep 2019; 9:6667. [PMID: 31040309 PMCID: PMC6491604 DOI: 10.1038/s41598-019-43074-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Bioinsecticides and transgenic plants, based on Bacillus thuringiensis (Bt) toxins are important when managing Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), a soybean defoliator pest. The interaction of these toxins with the caterpillar’s midgut cells determines their efficacy as an insecticide. The objective was to evaluate the toxicity of B. thuringiensis, subsp. kurstaki strain HD-1 and cytopathological changes mediated by these bacterial toxins in the midgut of A. gemmatalis caterpillars. Insecticidal efficacy was determined by calculating lethal concentration values (LC25, LC50, LC75, LC90 and LC99) in the laboratory. Midgut fragments from A. gemmatalis were extracted after bacterial ingestion and evaluated by light, transmission electron and confocal microscopy. The Bt median lethal concentrations showed toxicity [LC50 = 0.46 (0.43–0.49) mg mL−1] to fourth instar A. gemmatalis caterpillars after 108 hours. Bt induces severe cytotoxicity to A. gemmatalis midgut epithelial cells with increasing exposure over time, causing cellular disorganization, microvillus degeneration, cell fragmentation and protrusion, peritrophic membrane rupture, and cell vacuolization. The cell nuclei presented condensed chromatin and an increase in lysosome numbers. Apoptosis occurred in the midgut cells of caterpillars exposed to Bt. A regenerative response in A. gemmatalis caterpillars was observed 8 hours after exposure to Bt, however this response was not continuous. Toxins produced by Bt are harmful to A. gemmatalis at median concentration with structural damage and death of the midgut epithelial cells of this insect.
Collapse
|
7
|
Vanti GL, Katageri IS, Inamdar SR, Hiremathada V, Swamy BM. Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton. J Biotechnol 2018; 278:20-27. [DOI: 10.1016/j.jbiotec.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
8
|
Lima TA, Fernandes KM, Oliveira APS, Dornelles LP, Martins GF, Napoleão TH, Paiva PM. Termiticidal lectins from Myracrodruon urundeuva (Anacardiaceae) cause midgut damage when ingested by Nasutitermes corniger (Isoptera: Termitidae) workers. PEST MANAGEMENT SCIENCE 2017; 73:991-998. [PMID: 27530272 DOI: 10.1002/ps.4415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Myracrodruon urundeuva is a hardwood tree, and its bark, heartwood and leaf contain lectins (MuBL, MuHL and MuLL respectively) with termiticidal activity against Nasutitermes corniger. In this work, the effects of these lectins on the midgut of N. corniger workers were evaluated. RESULTS The insects were supplied with an artificial diet containing the lectins at their respective LC50 (previously determined). At 48 h after treatment, the midguts were dissected and fixed for histopathology analyses. Toluidine-blue-stained midguts from lectin-treated workers showed disorganisation, with the presence of debris in the lumen and the absence of brush border. Fluorescence microscopy revealed that the numbers of digestive and proliferating cells were lower in lectin-treated individuals than in the control, and caspase-3 staining confirmed the occurrence of cell apoptosis. Enteroendocrine cells were not seen in the treated individuals. The midguts from treated insects showed greater staining for peroxidase than the control, suggesting that the lectins caused oxidative stress. Staining with wheat germ agglutinin conjugated to FITC revealed that the lectins interfered with the integrity of the peritrophic matrix. CONCLUSION This study showed that termiticidal lectins from M. urundeuva cause severe injuries, oxidative stress and cell death in the midgut of N. corniger workers. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thâmarah A Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Kenner M Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ana Patrícia S Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Leonardo P Dornelles
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Gustavo F Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Patrícia Mg Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
9
|
|
10
|
Gutiérrez Y, Santos HP, Serrão JE, Oliveira EE. Deltamethrin-Mediated Toxicity and Cytomorphological Changes in the Midgut and Nervous System of the Mayfly Callibaetis radiatus. PLoS One 2016; 11:e0152383. [PMID: 27031238 PMCID: PMC4816402 DOI: 10.1371/journal.pone.0152383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
Immature instars of mayflies are important constituents of the food web in aquatic ecosystems (especially in Neotropical regions) and they are among the most susceptible arthropods to pyrethroid insecticides. These insecticides have been recognized as important stressors of freshwater ecosystems, but their cellular effects in aquatic insects have been neglected. Here, we assessed the susceptibility to deltamethrin (a typical type II pyrethroid) as well as the deltamethrin-mediated cytomorphological changes in the central nervous system and midgut of the mayfly Callibaetis radiatus. While the deltamethrin LC50 for 24 h of exposure was of 0.60 (0.46-0.78) μg of a.i/L, the survival of C. radiatus was significantly reduced in deltamethrin concentrations ≥ 0.25 μg a.i/L at 96 h of exposure. Sub-lethal deltamethrin exposure severely affected the cytomorphology of C. radiatus midgut (e.g., muscle layer retraction, cytoplasm vacuolation, nucleus and striated border disorganization) and also induced slight cytomorphological changes in the brain (e.g., presence of pyknotic nuclei) and in the thoracic ganglia (e.g., vacuolation of neurons and presence of pyknotic nuclei) of these insects. However, DNA damage was absent in all of these organs, suggesting that the sublethal cellular stress induced by deltamethrin might disrupt physiological processes (e.g., metabolism or electrical signal transmission) rather than cause cell death (e.g., apoptosis) in C. radiatus. Thus, our findings indicated that deltamethrin actions at cellular levels represent a clear indication of sublethal effects on the C. radiatus survival abilities.
Collapse
Affiliation(s)
- Yeisson Gutiérrez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570–000, Brasil
| | - Helen P. Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570–000, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570–000, Brasil
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570–000, Brasil
| |
Collapse
|
11
|
Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 2015; 100:91-111. [DOI: 10.1007/s00253-015-7075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/04/2015] [Accepted: 10/11/2015] [Indexed: 01/26/2023]
|
12
|
Peppa VI, Venkat H, Kantsadi AL, Inamdar SR, Bhat GG, Eligar S, Shivanand A, Chachadi VB, Satisha GJ, Swamy BM, Skamnaki VT, Zographos SE, Leonidas DD. Molecular Cloning, Carbohydrate Specificity and the Crystal Structure of Two Sclerotium rolfsii Lectin Variants. Molecules 2015; 20:10848-65. [PMID: 26076107 PMCID: PMC6272482 DOI: 10.3390/molecules200610848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 11/16/2022] Open
Abstract
SRL is a cell wall associated developmental-stage specific lectin secreted by Sclerotium rolfsii, a soil-born pathogenic fungus. SRL displays specificity for TF antigen (Galβ1→3GalNAc-α-Ser//Thr) expressed in all cancer types and has tumour suppressing effects in vivo. Considering the immense potential of SRL in cancer research, we have generated two variant gene constructs of SRL and expressed in E. coli to refine the sugar specificity and solubility by altering the surface charge. SSR1 and SSR2 are two different recombinant variants of SRL, both of which recognize TF antigen but only SSR1 binds to Tn antigen (GalNAcα-Ser/Thr). The glycan array analysis of the variants demonstrated that SSR1 recognizes TF antigen and their derivative with high affinity similar to SRL but showed highest affinity towards the sialylated Tn antigen, unlike SRL. The carbohydrate binding property of SSR2 remains unaltered compared to SRL. The crystal structures of the two variants were determined in free form and in complex with N-acetylglucosamine at 1.7 Å and 1.6 Å resolution, respectively. Structural analysis highlighted the structural basis of the fine carbohydrate specificity of the two SRL variants and results are in agreement with glycan array analysis.
Collapse
Affiliation(s)
- Vassiliki I Peppa
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| | - Hemalatha Venkat
- Department of Biochemistry, Kuvempu University, Shimoga, Karnataka 577451, India.
| | - Anastassia L Kantsadi
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| | - Shashikala R Inamdar
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Ganapati G Bhat
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Sachin Eligar
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Anupama Shivanand
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Vishwanath B Chachadi
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Gonchigar J Satisha
- Department of Biochemistry, Kuvempu University, Shimoga, Karnataka 577451, India.
| | - Bale M Swamy
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| | - Spyridon E Zographos
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave, Athens 11635, Greece.
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| |
Collapse
|