1
|
Lopez L, De Waard S, Meudal H, Caumes C, Khakh K, Peigneur S, Oliveira-Mendes B, Lin S, De Waele J, Montnach J, Cestèle S, Tessier A, Johnson JP, Mantegazza M, Tytgat J, Cohen C, Béroud R, Bosmans F, Landon C, De Waard M. Structure-function relationship of new peptides activating human Na v1.1. Biomed Pharmacother 2023; 165:115173. [PMID: 37453200 DOI: 10.1016/j.biopha.2023.115173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Nav1.1 is an important pharmacological target as this voltage-gated sodium channel is involved in neurological and cardiac syndromes. Channel activators are actively sought to try to compensate for haploinsufficiency in several of these pathologies. Herein we used a natural source of new peptide compounds active on ion channels and screened for drugs capable to inhibit channel inactivation as a way to compensate for decreased channel function. We discovered that JzTx-34 is highly active on Nav1.1 and subsequently performed a full structure-activity relationship investigation to identify its pharmacophore. These experiments will help interpret the mechanism of action of this and formerly identified peptides as well as the future identification of new peptides. We also reveal structural determinants that make natural ICK peptides active against Nav1.1 challenging to synthesize. Altogether, the knowledge gained by this study will help facilitate the discovery and development of new compounds active on this critical ion channel target.
Collapse
Affiliation(s)
- Ludivine Lopez
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Smartox Biotechnology, Saint-Egrève, France
| | - Stephan De Waard
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; LabEx "Ion Channels, Science and Therapeutics", Valbonne, France
| | - Hervé Meudal
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | | | - Kuldip Khakh
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | | | | | - Sophia Lin
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | - Jolien De Waele
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Sandrine Cestèle
- Université Cote d'Azur, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
| | - Agnès Tessier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - J P Johnson
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | - Massimo Mantegazza
- Université Cote d'Azur, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
| | - Jan Tytgat
- University of Leuven, 3000 Leuven, Belgium
| | - Charles Cohen
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | | | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | - Michel De Waard
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Smartox Biotechnology, Saint-Egrève, France; LabEx "Ion Channels, Science and Therapeutics", Valbonne, France.
| |
Collapse
|
2
|
Tran P, Crawford T, Ragnarsson L, Deuis JR, Mobli M, Sharpe SJ, Schroeder CI, Vetter I. Structural Conformation and Activity of Spider-Derived Inhibitory Cystine Knot Peptide Pn3a Are Modulated by pH. ACS OMEGA 2023; 8:26276-26286. [PMID: 37521635 PMCID: PMC10373202 DOI: 10.1021/acsomega.3c02664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Numerous spider venom-derived gating modifier toxins exhibit conformational heterogeneity during purification by reversed-phase high-performance liquid chromatography (RP-HPLC). This conformational exchange is especially peculiar for peptides containing an inhibitor cystine knot motif, which confers excellent structural stability under conditions that are not conducive to disulfide shuffling. This phenomenon is often attributed to proline cis/trans isomerization but has also been observed in peptides that do not contain a proline residue. Pn3a is one such peptide forming two chromatographically distinguishable peaks that readily interconvert following the purification of either conformer. The nature of this exchange was previously uncharacterized due to the fast rate of conversion in solution, making isolation of the conformers impossible. In the present study, an N-terminal modification of Pn3a enabled the isolation of the individual conformers, allowing activity assays to be conducted on the individual conformers using electrophysiology. The conformers were analyzed separately by nuclear magnetic resonance spectroscopy (NMR) to study their structural differences. RP-HPLC and NMR were used to study the mechanism of exchange. The later-eluting conformer was the active conformer with a rigid structure that corresponds to the published structure of Pn3a, while NMR analysis revealed the earlier-eluting conformer to be inactive and disordered. The exchange was found to be pH-dependent, arising in acidic solutions, possibly due to reversible disruption and formation of intramolecular salt bridges. This study reveals the nature of non-proline conformational exchange observed in Pn3a and possibly other disulfide-rich peptides, highlighting that the structure and activity of some disulfide-stabilized peptides can be dramatically susceptible to disruption.
Collapse
Affiliation(s)
- Poanna Tran
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Theo Crawford
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Lotten Ragnarsson
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R. Deuis
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Mehdi Mobli
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Sharpe
- Molecular
Medicine Program, Research Institute, The
Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christina I. Schroeder
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, United States
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Irina Vetter
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
3
|
Matsumura K, Yokogawa M, Osawa M. Peptide Toxins Targeting KV Channels. Handb Exp Pharmacol 2021; 267:481-505. [PMID: 34117930 DOI: 10.1007/164_2021_500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A number of peptide toxins isolated from animals target potassium ion (K+) channels. Many of them are particularly known to inhibit voltage-gated K+ (KV) channels and are mainly classified into pore-blocking toxins or gating-modifier toxins. Pore-blocking toxins directly bind to the ion permeation pores of KV channels, thereby physically occluding them. In contrast, gating-modifier toxins bind to the voltage-sensor domains of KV channels, modulating their voltage-dependent conformational changes. These peptide toxins are useful molecular tools in revealing the structure-function relationship of KV channels and have potential for novel treatments for diseases related to KV channels. This review focuses on the inhibition mechanism of pore-blocking and gating-modifier toxins that target KV channels.
Collapse
Affiliation(s)
- Kazuki Matsumura
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
4
|
Wang Y, Luo Z, Lei S, Li S, Li X, Yuan C. Effects and mechanism of gating modifier spider toxins on the hERG channel. Toxicon 2020; 189:56-64. [PMID: 33212100 DOI: 10.1016/j.toxicon.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
Jingzhaotoxin-I, -III, -IV, -XIII, and -35 (JZTX-I, -III, -IV, -XIII, and -35), gating modifier toxins isolated from the venom of the Chinese tarantula Chilobrachys Jingzhao, were reported to act on cardiac sodium channels and Kv channels. JZTX-I and JZTX-XIII inhibited the hERG channel with the IC50 value of 626.9 nM and 612.6 nM, respectively. JZTX-III, -IV, and -35 share high sequence similarity with JZTX-I and JZTX-XIII, but they showed much lower affinity on the hERG channel compared with JZTX-I and JZTX-XIII. The inhibitory potency of the above five toxins on the hERG channel was not in accordance with their affinity on the Nav1.5 and Kv2.1 channels, indicating that the bioactive surfaces of the five toxins interacting with hERG, Nav1.5 and Kv2.1 are at least in part different. Structure-function analysis of the gating modifier toxins suggested that the functional bioactive surface binding to the hERG channel consists of a conserved hydrophobic patch, surrounding acidic residues (Glu10 in JZTX-XIII, Glu11 in JZTX-I), and basic residues which may be different from residues binding to the Kv2.1 channel.
Collapse
Affiliation(s)
- Yingyi Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhengyi Luo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Lei
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuji Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaowen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chunhua Yuan
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins (Basel) 2019; 11:toxins11110626. [PMID: 31671792 PMCID: PMC6891507 DOI: 10.3390/toxins11110626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.
Collapse
|
6
|
Abstract
Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.
Collapse
Affiliation(s)
- Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China.
| |
Collapse
|