1
|
Wang CR, Harlington AC, Snel MF, Pukala TL. Characterisation of the forest cobra (Naja melanoleuca) venom using a multifaceted mass spectrometric-based approach. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140992. [PMID: 38158032 DOI: 10.1016/j.bbapap.2023.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Snake venoms consist of highly biologically active proteins and peptides that are responsible for the lethal physiological effects of snakebite envenomation. In order to guide the development of targeted antivenom strategies, comprehensive understanding of venom compositions and in-depth characterisation of various proteoforms, often not captured by traditional bottom-up proteomic workflows, is necessary. Here, we employ an integrated 'omics' and intact mass spectrometry (MS)-based approach to profile the heterogeneity within the venom of the forest cobra (Naja melanoleuca), adopting different analytical strategies to accommodate for the dynamic molecular mass range of venom proteins present. The venom proteome of N. melanoleuca was catalogued using a venom gland transcriptome-guided bottom-up proteomics approach, revealing a venom consisting of six toxin superfamilies. The subtle diversity present in the venom components was further explored using reversed phase-ultra performance liquid chromatography (RP-UPLC) coupled to intact MS. This approach showed a significant increase in the number of venom proteoforms within various toxin families that were not captured in previous studies. Furthermore, we probed at the higher-order structures of the larger venom proteins using a combination of native MS and mass photometry and revealed significant structural heterogeneity along with extensive post-translational modifications in the form of glycosylation in these larger toxins. Here, we show the diverse structural heterogeneity of snake venom proteins in the venom of N. melanoleuca using an integrated workflow that incorporates analytical strategies that profile snake venom at the proteoform level, complementing traditional venom characterisation approaches.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Alix C Harlington
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Marten F Snel
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia; Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
2
|
Brás-Costa C, Chaves AFA, Cajado-Carvalho D, da Silva Pires D, Andrade-Silva D, Serrano SMT. Profilings of subproteomes of lectin-binding proteins of nine Bothrops venoms reveal variability driven by different glycan types. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140795. [PMID: 35662639 DOI: 10.1016/j.bbapap.2022.140795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.
Collapse
Affiliation(s)
- Carolina Brás-Costa
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alison Felipe Alencar Chaves
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - David da Silva Pires
- Laboratory of Cell Cycle, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Chen T, Zhang H, Niu G, Zhang S, Hong Z. Multiple N-glycans cooperate in balancing misfolded BRI1 secretion and ER retention. PLANT MOLECULAR BIOLOGY 2020; 103:581-596. [PMID: 32409993 DOI: 10.1007/s11103-020-01012-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
N-glycans play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects. Asparagine-linked (Asn/N-) glycosylation is one of the most prevalent and complex protein modifications and the associated N-glycans play crucial roles on protein folding and secretion. The studies have shown that many glycoproteins hold multiple N-glycans, yet little is known about the redundancy of N-glycans on a protein. In this study, we used BRI1 to decipher the roles of N-glycans on protein secretion and function. We found that all 14 potential N-glycosylation sites on BRI1 were occupied with oligosaccharides. The elimination of single N-glycan had no obvious effect on BRI1 secretion or function except N154-glycan, which resulted in the retention of BRI1 in the endoplasmic reticulum (ER), similar to the loss of multiple highly conserved N-glycans. To misfolded bri1, the absence of N-glycans next to local structural defects enhanced the ER retention and the artificial addition of N-glycan could help the misfolded bri1-GFPs exiting from the ER, indicating that the N-glycans might serve as steric hindrance to protect the structure defects from ER recognition. We also found that the retention of misfolded bri1-9 by lectins and chaperones in the ER relied on the presence of multiple N-glycans distal to the local defects. Our findings revealed that the N-glycans might play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.
Collapse
Affiliation(s)
- Tianshu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, Jiangsu, China
| | - Huchen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, Jiangsu, China
| | - Guanting Niu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, Jiangsu, China
| | - Shuo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, Jiangsu, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, Jiangsu, China.
| |
Collapse
|
5
|
Pegg CL, Cooper LT, Zhao J, Gerometta M, Smith FM, Yeh M, Bartlett PF, Gorman JJ, Boyd AW. Glycoengineering of EphA4 Fc leads to a unique, long-acting and broad spectrum, Eph receptor therapeutic antagonist. Sci Rep 2017; 7:6519. [PMID: 28747680 PMCID: PMC5529513 DOI: 10.1038/s41598-017-06685-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/15/2017] [Indexed: 11/09/2022] Open
Abstract
Eph receptors have emerged as targets for therapy in both neoplastic and non-neoplastic disease, however, particularly in non-neoplastic diseases, redundancy of function limits the effectiveness of targeting individual Eph proteins. We have shown previously that a soluble fusion protein, where the EphA4 ectodomain was fused to IgG Fc (EphA4 Fc), was an effective therapy in acute injuries and demonstrated that EphA4 Fc was a broad spectrum Eph/ephrin antagonist. However, a very short in vivo half-life effectively limited its therapeutic development. We report a unique glycoengineering approach to enhance the half-life of EphA4 Fc. Progressive deletion of three demonstrated N-linked sites in EphA4 progressively increased in vivo half-life such that the triple mutant protein showed dramatically improved pharmacokinetic characteristics. Importantly, protein stability, affinity for ephrin ligands and antagonism of cell expressed EphA4 was fully preserved, enabling it to be developed as a broad spectrum Eph/ephrin antagonist for use in both acute and chronic diseases.
Collapse
Affiliation(s)
- Cassandra L Pegg
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia.
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, 4072, Australia.
| | - Leanne T Cooper
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
| | - Jing Zhao
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Michael Gerometta
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Fiona M Smith
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
| | - Michael Yeh
- The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland, 4006, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, 4072, Australia
| | - Andrew W Boyd
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Queensland, 4006, Australia
| |
Collapse
|
6
|
Yang ZM, Yu H, Liu ZZ, Pei JZ, Yang YE, Yan SX, Zhang C, Zhao WL, Wang ZZ, Wang YM, Tsai IH. Serine protease isoforms in Gloydius intermedius venom: Full sequences, molecular phylogeny and evolutionary implications. J Proteomics 2017; 164:19-32. [DOI: 10.1016/j.jprot.2017.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
|
7
|
Liu Y, Ren S, Xie L, Cui C, Xing Y, Liu C, Cao B, Yang F, Li Y, Chen X, Wei Y, Lu H, Jiang J. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget 2016; 6:20650-60. [PMID: 26029999 PMCID: PMC4653032 DOI: 10.18632/oncotarget.4115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023] Open
Abstract
The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear. Here we analyzed the exact site(s) of N-glycosylation in CD133 by mass spectrometry and found that all eight potential N-glycosylation sites of CD133 could be indeed occupied by N-glycans. Loss of individual N-glycosylation sites had no effect on the level of expression or membrane localization of CD133. However, mutation at glycosylation site Asn548 significantly decreased the ability of CD133 to promote hepatoma cell growth. Furthermore, mutation of Asn548 reduced the interaction between CD133 and β-catenin and inhibited the activation of β-catenin signaling by CD133 overexpression. Our results identified the characteristics and function of CD133 glycosylation sites. These data could potentially shed light on molecular regulation of CD133 by glycosylation and enhance our understanding of the utility of glycosylated CD133 as a target for cancer therapies.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Shifang Ren
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Liqi Xie
- Institutes of Biomedical Sciences of Fudan University, Shanghai, People's Republic of China
| | - Chunhong Cui
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yang Xing
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Chanjuan Liu
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Benjin Cao
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Fan Yang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yinan Li
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Xiaoning Chen
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yuanyan Wei
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Institutes of Biomedical Sciences of Fudan University, Shanghai, People's Republic of China
| | - Jianhai Jiang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Jiang K, Li W, Zhang Q, Yan G, Guo K, Zhang S, Liu Y. GP73 N-glycosylation at Asn144 reduces hepatocellular carcinoma cell motility and invasiveness. Oncotarget 2016; 7:23530-23541. [PMID: 26993603 PMCID: PMC5029645 DOI: 10.18632/oncotarget.8120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/28/2016] [Indexed: 12/12/2022] Open
Abstract
Golgi Protein 73 (GP73) is a potential liver disease glycobiomarker warranting comprehensive analyses of its glycan structure and glycosylation function. In this study, we used mass spectrometry to identify glycosylation sites and the glycan structure, high-throughput lectin microarray to provide rapid and sensitive profiling of glycoconjugates, and site-directed mutagenesis to clarify the impact of glycans on target glycoproteins in vivo. We identified three GP73 N-glycosylation sites: Asn109, Asn144 and Asn398. We found five glycoforms on Asn144, including biantennary, triantennary and fucosylated glycans. Removal of N-glycans at Asn144 enhanced the motility and invasiveness of hepatocellular carcinoma cells, possibly due to inhibition of cell adhesion related to the changes of cell membrane glycosylation. This study increases our understanding of the functional relevance of GP73 glycosylation and suggests that Asn144-deleted GP73 can influence the progression and metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kai Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qinle Zhang
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guoquan Yan
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Transcriptome and proteome of the highly neurotoxic venom of Gloydius intermedius. Toxicon 2015; 107:175-86. [DOI: 10.1016/j.toxicon.2015.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
|