1
|
Yang J, Lu J, Cao L, Dong W, Zheng X, Fu X. Citreoviridin induces apoptosis through oxidative damage and inflammatory response in PC-12 cells. Toxicol Ind Health 2025; 41:32-39. [PMID: 39437026 DOI: 10.1177/07482337241295474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Citreoviridin (CIT) is a mycotoxin produced by various fungi. Although CIT has been reported to cause neurotoxicity, the molecular mechanism is poorly understood. Therefore, the aim of this study was to investigate the effects and molecular mechanisms of CIT in neurotoxicity. Different concentrations of CIT were treated to rat pheochromocytoma (PC-12 cells), and oxidative stress parameters, cytokine levels, and cell apoptosis were evaluated. CIT treatment (5 and 10 μM) significantly induced PC-12 cell apoptosis and increased lactate dehydrogenase activity. Additionally, CIT treatment induced oxidative stress, as evidenced by a significant increase in intracellular levels of reactive oxygen species, malondialdehyde, and superoxide dismutase and a decrease in glutathione activity. Moreover, CIT treatment induced an inflammatory response, as evidenced by a significant increase in the intracellular levels of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1-beta in PC-12 cells. Furthermore, quantitative PCR and western blotting showed that CIT treatment increased both the protein and mRNA expression of GADD45α and p21 in PC-12 cells, suggesting that CIT may induce apoptosis by inhibiting cell cycle, blocking cell growth, and damaging DNA. Conclusively, this study contributes the understanding the toxicity mechanisms of CIT to nerve cells.
Collapse
Affiliation(s)
- Jing Yang
- Department of Central Laboratory, Ningde Municipal Hospital of Ningde Normal University, Ningde, PR China
| | - Jiaojiao Lu
- Department of Central Laboratory, Ningde Municipal Hospital of Ningde Normal University, Ningde, PR China
| | - Luoyuan Cao
- Department of Central Laboratory, Ningde Municipal Hospital of Ningde Normal University, Ningde, PR China
| | - Wenxu Dong
- Department of Central Laboratory, Ningde Municipal Hospital of Ningde Normal University, Ningde, PR China
| | - Xian Zheng
- Department of Central Laboratory, Ningde Municipal Hospital of Ningde Normal University, Ningde, PR China
| | - Xianguo Fu
- Ningde Clinical Medical College of Fujian Medical University, Ningde, PR China
| |
Collapse
|
2
|
Zhao S, Zhang J, Sun X, Yangzom C, Shang P. Mitochondrial calcium uniporter involved in foodborne mycotoxin-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113535. [PMID: 35461028 DOI: 10.1016/j.ecoenv.2022.113535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Foodborne mycotoxins are toxic metabolites that are produced by fungi. The widespread contamination of food and its by-products by mycotoxins is a global food safety problem that potentially threatens public health and other exposed animals. Most foodborne mycotoxins induce hepatotoxicity. However, only few studies have investigated the regulatory mechanisms of mitochondrial calcium transport monomers in mycotoxin-induced hepatotoxicity. Therefore, according to relevant studies and reports, this review suggests that intracellular Ca(2 +) homeostasis and mitochondrial Ca(2 +) uniporter are involved in the regulation of mycotoxin-induced hepatotoxicity. This review provides some ideas for future research involving mitochondrial Ca(2 +) uniporter in the molecular targets of mycotoxin-induced hepatotoxicity, as well as a reference for the research and development of related drugs and the treatment of related diseases.
Collapse
Affiliation(s)
- Shunwang Zhao
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Xueqian Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China.
| |
Collapse
|
3
|
Ariafar S, Oftadeh Harsin A, Fadaiie A, Mahboobian MM, Mohammadi M. Toxicity effects of mycotoxins and autophagy: a mechanistic view. TOXIN REV 2021. [DOI: 10.1080/15569543.2019.1711416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Saba Ariafar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Oftadeh Harsin
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Fadaiie
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Huang Y, Liao Y, Zhang H, Li S. Lead exposure induces cell autophagy via blocking the Akt/mTOR signaling in rat astrocytes. J Toxicol Sci 2020; 45:559-567. [PMID: 32879255 DOI: 10.2131/jts.45.559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lead is a main threat to human health due to its neurotoxicity and the astrocyte is known to be a common deposit site of lead in vivo. However, the detailed mechanisms related to lead exposure in the astrocytes were unclear. In order to deeply investigate this issue, we used Sprague-Dawley (SD) rats and astrocytes isolated from the hippocampus of SD rats to establish the lead-exposed animal and cell models through treating with lead acetate. The expression levels of GFAP, LC3, and p62 in the rat hippocampus were detected by immunofluorescence and Western blot after lead exposure. The effects of autophagy on lead-exposed astrocytes were studied by further autophagy inhibitor 3-methyladenine (3-MA) induction. Transmission electron microscopy was used to observe autophagosomes in astrocytes after lead acetate treatment, followed by assessing related autophagy protein markers. In addition, some inflammatory cytokines and oxidative stress markers were also evaluated after lead exposure and 3-MA administration. We found that lead exposure induced activation of astrocytes, as evidenced by increased GFAP levels and GFAP-positive staining cells in the rat hippocampus. Moreover, lead exposure induced autophagy in astrocytes, as evidenced by increased LC3II and Beclin 1 protein levels and decreased p62 expression in both the rat hippocampus and astrocytes, and it was confirmed that this autophagy was activated through blocking the downstream Akt/target of the rapamycin (mTOR) pathway in astrocytes. Furthermore, it was shown that treatment of lead acetate increased the release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) in astrocytes, which could be alleviated by further 3-MA induction. Therefore, we conclude that lead exposure can induce the autophagy of astrocytes via blocking the Akt/mTOR pathway, leading to accelerated release of inflammatory factors and oxidative stress indicators in astrocytes.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Physiology, School of Life Sciences, China Medical University, China.,School of Nursing, Jinzhou Medical University, China
| | - Yingjun Liao
- Department of Physiology, School of Life Sciences, China Medical University, China
| | - Huijun Zhang
- School of Nursing, Jinzhou Medical University, China
| | - Shuyun Li
- School of Nursing, Jinzhou Medical University, China
| |
Collapse
|
5
|
Martínez-Torres AC, Reyes-Ruiz A, Calvillo-Rodriguez KM, Alvarez-Valadez KM, Uscanga-Palomeque AC, Tamez-Guerra RS, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces DAMPS release and ROS-dependent autophagosome formation in HeLa and MCF-7 cells. BMC Cancer 2020; 20:647. [PMID: 32660440 PMCID: PMC7359018 DOI: 10.1186/s12885-020-07124-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background IMMUNEPOTENT CRP (ICRP) can be cytotoxic to cancer cell lines. However, its widespread use in cancer patients has been limited by the absence of conclusive data on the molecular mechanism of its action. Here, we evaluated the mechanism of cell death induced by ICRP in HeLa and MCF-7 cells. Methods Cell death, cell cycle, mitochondrial membrane potential and ROS production were evaluated in HeLa and MCF-7 cell lines after ICRP treatment. Caspase-dependence and ROS-dependence were evaluated using QVD.oph and NAC pre-treatment in cell death analysis. DAMPs release, ER stress (eIF2-α phosphorylation) and autophagosome formation were analyzed as well. Additionally, the role of autophagosomes in cell death induced by ICRP was evaluated using SP-1 pre-treatment in cell death in HeLa and MCF-7 cells. Results ICRP induces cell death, reaching CC50 at 1.25 U/mL and 1.5 U/mL in HeLa and MCF-7 cells, respectively. Loss of mitochondrial membrane potential, ROS production and cell cycle arrest were observed after ICRP CC50 treatment in both cell lines, inducing the same mechanism, a type of cell death independent of caspases, relying on ROS production. Additionally, ICRP-induced cell death involves features of immunogenic cell death such as P-eIF2α and CRT exposure, as well as, ATP and HMGB1 release. Furthermore, ICRP induces ROS-dependent autophagosome formation that acts as a pro-survival mechanism. Conclusions ICRP induces a non-apoptotic cell death that requires an oxidative stress to take place, involving mitochondrial damage, ROS-dependent autophagosome formation, ER stress and DAMPs’ release. These data indicate that ICRP could work together with classic apoptotic inductors to attack cancer cells from different mechanisms, and that ICRP-induced cell death might activate an immune response against cancer cells.
Collapse
Affiliation(s)
- Ana Carolina Martínez-Torres
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico.
| | - Alejandra Reyes-Ruiz
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Kenny Misael Calvillo-Rodriguez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Karla Maria Alvarez-Valadez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Ashanti C Uscanga-Palomeque
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Reyes S Tamez-Guerra
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico.,Longeveden, SA de CV, Monterrey, Mexico
| |
Collapse
|
6
|
Feng C, Li D, Chen M, Jiang L, Liu X, Li Q, Geng C, Sun X, Yang G, Zhang L, Yao X. Citreoviridin induces myocardial apoptosis through PPAR-γ-mTORC2-mediated autophagic pathway and the protective effect of thiamine and selenium. Chem Biol Interact 2019; 311:108795. [PMID: 31419397 DOI: 10.1016/j.cbi.2019.108795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Citreoviridin (CIT), a mycotoxin and ATP synthase inhibitor, is regarded as one of aetiology factors of cardiac beriberi and Keshan disease. Thiamine (VB1) and selenium (Se) improve the recovery of these two diseases respectively. The underlying mechanisms of cardiotoxic effect of CIT and cardioprotective effect of VB1 and Se have not been fully elucidated. In this study, we found that ectopic ATP synthase was more sensitive to CIT treatment than mitochondrial ATP synthase in H9c2 cardiomyocytes. CIT inhibited the transcriptional activity of peroxisome proliferator activated receptor gamma (PPAR-γ) in mice hearts and H9c2 cells. PPAR-γ agonist attenuated the inhibitory effect of CIT on mechanistic target of rapamycin complex 2 (mTORC2) and stimulatory effect of CIT on autophagy in cardiomyocytes. CIT induced apoptosis through lysosomal-mitochondrial axis in cardiomyocytes. PPAR-γ agonist and autophagy inhibitor alleviated CIT-induced apoptosis and accelerated cardiac biomarker. VB1 and Se accelerated the basal transcriptional activity of PPAR-γ in mice hearts and H9c2 cells. Furthermore, VB1 and Se reversed the effect of CIT on PPAR-γ, autophagy and apoptosis. Our findings defined PPAR-γ-mTORC2-autophagy pathway as the key link between CIT cardiotoxicity and cardioprotective effect of VB1 and Se. The present study would shed new light on the pathogenesis of cardiomyopathy and the cardioprotective mechanism of micronutrients.
Collapse
Affiliation(s)
- Chang Feng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Dandan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Min Chen
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Xiaofang Liu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Chengyan Geng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Lianchun Zhang
- Department of Nursing, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
7
|
Wu S, Zhang X, Yang P, Li L, Tang S. Rapid detection and toxicity assessment of citreoviridin using luminescent Vibrio qinghaiensis
sp.-Q67 in drinking water. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shizheng Wu
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Xuhui Zhang
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Panpan Yang
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Liang Li
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Shuze Tang
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| |
Collapse
|
8
|
Hu C, Yang J, He Q, Luo Y, Chen Z, Yang L, Yi H, Li H, Xia H, Ran D, Yang Y, Zhang J, Li Y, Wang H. CysLTR1 Blockage Ameliorates Liver Injury Caused by Aluminum-Overload via PI3K/AKT/mTOR-Mediated Autophagy Activation in Vivo and in Vitro. Mol Pharm 2018; 15:1996-2006. [DOI: 10.1021/acs.molpharmaceut.8b00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qin He
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Honggang Yi
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Dongzhi Ran
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
9
|
Zhang Z, Liu Z, Chen J, Yi J, Cheng J, Dun W, Wei H. Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells. Exp Ther Med 2018; 15:3012-3019. [PMID: 29456707 DOI: 10.3892/etm.2018.5742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the crosstalk between resveratrol (Res)-induced autophagy and apoptosis, and the molecular pathway by which autophagy leads to apoptotic death in drug-resistant K562/ADM leukemia cells. The viability of K562/ADM cells was determined using the MTT assay. The formation of autophagic vacuoles was detected using transmission electron microscopy and monodansylcadaverine (MDC) staining. Cell apoptosis was evaluated using flow cytometry. The expression of apoptosis- or autophagy-associated proteins was measured using western blotting. The results indicated that treatment with Res inhibited cell viability in a concentration-dependent manner. Furthermore, the numbers of MDC-positive fluorescent points, autophagic vacuoles and autolysosome-engulfed cytoplasmic materials were markedly increased in Res-treated K562/ADM cells compared with untreated cells, as determined using fluorescence microscopy and transmission electron microscopy. Res-induced apoptosis was associated with increased cleaved caspase-3 and B-cell lymphoma 2 associated X protein, and decreased B-cell lymphoma 2 (Bcl-2) protein expression levels when compared with the control (P<0.05). However, the proportion of apoptotic cells decreased from 69.6 to 41.0% (40 µmol/l Res) and from 77.3 to 58.8% (80 µmol/l Res) following pre-treatment with the autophagy inhibitor 3-methyladenine (P<0.01). The protein expression levels of microtubule-associated protein 1A/1B-light chain 3 and beclin 1, two markers of autophagy, were upregulated in Res-treated cells compared with the control (P<0.05). In addition, lysosomal cathepsin D (Cath D) release increased during Res-induced autophagy and apoptosis (P<0.05). The present results demonstrated that Res-induced apoptosis of K562/ADM cells was autophagy-dependent and the released Cath D may trigger caspase-dependent cell death through the Bcl-2 family of proteins. Furthermore, the present data indicate that to enhancement of the autophagy-cathepsin-apoptosis pathway may be an effective approach for overcoming anticancer drug resistance.
Collapse
Affiliation(s)
- Zhewen Zhang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhuan Liu
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Yi
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Cheng
- Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wangqing Dun
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hulai Wei
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
10
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
11
|
Mono-(2-ethylhexyl) phthalate induced ROS-dependent autophagic cell death in human vascular endothelial cells. Toxicol In Vitro 2017; 44:49-56. [PMID: 28655635 DOI: 10.1016/j.tiv.2017.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/14/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di-(2-ethylhexyl) phthalate (DEHP). MEHP has toxic effects on cardiovascular system, but the possible molecular mechanisms are not completely elucidated. In our study, 3-methyladenine (3-MA), an autophagosome formation inhibitor, protected the EA.hy926 cells against MEHP cytotoxicity, and rapamycin, an autophagosome formation stimulator, further decreased the cell viability in the MEHP-treated EA.hy926 cells. Thus, autophagy may play an important role in MEHP-induced toxicity. MEHP increased the autophagosome number in EA.hy926 cells detected under transmission electron microscope. Collapses of ΔΨm and reactive oxygen species (ROS) level were increased in a dose-dependent manner under treatment with 0-200μM MEHP for 24h. N-acetyl-l-cysteine (NAC), a ROS inhibitor, protected against MEHP-induced cytotoxicity and decreased the protein expression of LC3-II. These findings suggested that MEHP-induced autophagic cell death was ROS-dependent in EA.hy926 cells. Knockdown of Akt1 with Akt1 siRNA aggravated MEHP-induced cell death, and insulin, an Akt1 activator, alleviated MEHP-induced cell death. These results were consistent with the expression of LC3-II using western blot. The phospho-Akt1(Ser473) (p-Akt1) level was enhanced after pretreatment with NAC. In conclusion, it is possible that ROS elicited autophagy through Akt1 pathway in the MEHP-treated EA.hy926 cells.
Collapse
|
12
|
Yin S, Liu X, Fan L, Hu H. Mechanisms of cell death induction by food-borne mycotoxins. Crit Rev Food Sci Nutr 2017; 58:1406-1417. [DOI: 10.1080/10408398.2016.1260526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| |
Collapse
|
13
|
Guamán-Ortiz LM, Orellana MIR, Ratovitski EA. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Curr Genomics 2017; 18:132-155. [PMID: 28367073 PMCID: PMC5345338 DOI: 10.2174/1389202917666160803150639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.
Collapse
Affiliation(s)
- Luis Miguel Guamán-Ortiz
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Isabel Ramirez Orellana
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward A Ratovitski
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Shi Q, Song X, Liu Z, Wang Y, Wang Y, Fu J, Su C, Xia X, Song E, Song Y. Quinones Derived from Polychlorinated Biphenyls Induce ROS-Dependent Autophagy by Evoking an Autophagic Flux and Inhibition of mTOR/p70S6k. Chem Res Toxicol 2016; 29:1160-71. [DOI: 10.1021/acs.chemrestox.6b00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qiong Shi
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Xiufang Song
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Zixuan Liu
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yawen Wang
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yuxin Wang
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Juanli Fu
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Chuanyang Su
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Xiaomin Xia
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Erqun Song
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Song
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| |
Collapse
|
15
|
Taurine protects against As2O3-induced autophagy in livers of rat offsprings through PPARγ pathway. Sci Rep 2016; 6:27733. [PMID: 27291853 PMCID: PMC4904213 DOI: 10.1038/srep27733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 11/08/2022] Open
Abstract
Chronic exposures to arsenic had been associated with metabolism diseases. Peroxisome proliferator-activated receptor gamma (PPARγ) was found in the liver, regulated metabolism. Here, we found that the expression of PPARγ was decreased, the generation of reactive oxygen species (ROS) and autophagy were increased after treatment with As2O3 in offsprings’ livers. Taurine (Tau), a sulfur-containing β–amino acid could reverse As2O3-inhibited PPARγ. Tau also inhibit the generation of ROS and autophagy. We also found that As2O3 caused autophagic cell death and ROS accelerated in HepG2 cells. Before incubation with As2O3, the cells were pretreated with PPARγ activator Rosiglitazone (RGS), we found that autophagy and ROS was inhibited in HepG2 cells, suggesting that inhibition of PPARγ contributed to As2O3-induced autophagy and the generation of ROS. After pretreatment with Tau, the level of PPARγ was improved and the autophagy and ROS was inhibited in As2O3-treated cells, suggesting that Tau could protect hepatocytes against As2O3 through modulating PPARγ pathway.
Collapse
|
16
|
HDAC6 Regulates the Chaperone-Mediated Autophagy to Prevent Oxidative Damage in Injured Neurons after Experimental Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7263736. [PMID: 26649145 PMCID: PMC4663006 DOI: 10.1155/2016/7263736] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/10/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022]
Abstract
Hypoxia-ischemia- (HI-) induced oxidative stress plays a role in secondary pathocellular processes of acute spinal cord injury (SCI) due to HI from many kinds of mechanical trauma. Increasing evidence suggests that the histone deacetylase-6 (HDAC6) plays an important role in cell homeostasis in both physiological and abnormal, stressful, pathological conditions. This paper found that inhibition of HDAC6 accelerated reactive oxygen species (ROS) generation and cell apoptosis in response to the HI. Deficiency of HDAC6 hindered the chaperone-mediated autophagy (CMA) activity to resistance of HI-induced oxidative stress. Furthermore, this study provided the experimental evidence for the potential role of HDAC6 in the regulation of CMA by affecting HSP90 acetylation. Therefore, HDAC6 plays an important role in the function of CMA pathway under the HI stress induced by SCI and it may be a potential therapeutic target in acute SCI model.
Collapse
|
17
|
Hu CW, Hsu CL, Wang YC, Ishihama Y, Ku WC, Huang HC, Juan HF. Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin. Mol Cell Proteomics 2015; 14:3284-98. [PMID: 26503892 DOI: 10.1074/mcp.m115.051383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 12/19/2022] Open
Abstract
Citreoviridin, one of toxic mycotoxins derived from fungal species, can suppress lung cancer cell growth by inhibiting the activity of ectopic ATP synthase, but has limited effect on normal cells. However, the mechanism of citreoviridin triggering dynamic molecular responses in cancer cells remains unclear. Here, we performed temporal phosphoproteomics to elucidate the dynamic changes after citreoviridin treatment in cells and xenograft model. We identified a total of 829 phosphoproteins and demonstrated that citreoviridin treatment affects protein folding, cell cycle, and cytoskeleton function. Furthermore, response network constructed by mathematical modeling shows the relationship between the phosphorylated heat shock protein 90 β and mitogen-activated protein kinase signaling pathway. This work describes that citreoviridin suppresses cancer cell growth and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling by site-specific dephosphorylation of HSP90AB1 on Serine 255 and provides perspectives in cancer therapeutic strategies.
Collapse
Affiliation(s)
- Chia-Wei Hu
- From the ‡Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Lang Hsu
- §Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Chao Wang
- ¶Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yasushi Ishihama
- ‖Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Wei-Chi Ku
- **School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hsuan-Cheng Huang
- ¶Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan;
| | - Hsueh-Fen Juan
- From the ‡Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; §Department of Life Science, National Taiwan University, Taipei 106, Taiwan; ‡‡Genome and Systems Biology Degree Program, National Taiwan University, Taipei 106, Taiwan; §§Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
18
|
Wang Y, Liu Y, Liu X, Jiang L, Yang G, Sun X, Geng C, Li Q, Yao X, Chen M. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells. Toxins (Basel) 2015; 7:3030-44. [PMID: 26258792 PMCID: PMC4549738 DOI: 10.3390/toxins7083030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 01/07/2023] Open
Abstract
Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Yanan Liu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Xiaofang Liu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Liping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Chengyan Geng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Qiujuan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| | - Min Chen
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
19
|
Zhao C, She T, Wang L, Su Y, Qu L, Gao Y, Xu S, Cai S, Shou C. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner. Life Sci 2015. [PMID: 26209138 DOI: 10.1016/j.lfs.2015.07.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS This study aims to evaluate the anti-cancer effect of daucosterol and explore its possible mechanism. MAIN METHODS MTT and colony formation assay were performed to determine the effect of daucosterol on cancer cell proliferation in vitro. H22 allograft model was used for the assessment of its anti-cancer activity in vivo. Intracellular generation of reactive oxygen species (ROS) was measured using DCFH-DA probe with flow cytometry system and a laser scanning confocal microscope. LC3 (microtubule-associated protein 1 light chain 3)-II conversion was monitored with immunofluorescence and immunoblotting to demonstrate daucosterol-induced autophagy. KEY FINDINGS We found that daucosterol inhibits the proliferation of human breast cancer cell line MCF-7 and gastric cancer cell lines MGC803, BGC823 and AGS in a dose-dependent manner. Furthermore, daucosterol inhibits murine hepatoma H22 cell growth in ICR mice. Daucosterol treatment induces intracellular ROS generation and autophagy, but not apoptotic cell death. Treatment with ROS scavenger GSH (reduced glutathione), NAC (N-acetyl-l-cysteine) or autophagy inhibitor 3-Methyladenine (3-MA) counteracted daucosterol-induced autophagy and growth inhibition in BGC823 and MCF-7 cancer cells. SIGNIFICANCE Daucosterol inhibits cancer cell proliferation by inducing autophagy through ROS-dependent manner and could be potentially developed as an anti-cancer agent.
Collapse
Affiliation(s)
- Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Tiantian She
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Yahui Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Yujing Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shaoqing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital &Institute, Beijing, China.
| |
Collapse
|