1
|
Tang J, Li G, Chen D, Jiang L, Huang B, Jiang P, Zhang C, Qin X. Effect of vitamin E on energy metabolism indicators and gill tissue structure of crucian carp (Carassius auratus) under cooling stress. Sci Rep 2024; 14:19484. [PMID: 39174601 PMCID: PMC11341694 DOI: 10.1038/s41598-024-66327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
The aim of this work is to examine the effects of vitamin E addition to water on the structure of the gill tissue and energy metabolism of crucian carp (Carassius auratus) under cooling stress. The crucian carp were chilled using a cold acclimation intelligent chilling equipment from 20 °C to 5 °C. They were divided into three groups: the control group (E1), the negative control group (E2), and the 100 mg/L vitamin E (E3) solution. Three different temperature points (20 °C, 10 °C, and 5 °C) were used to collect, test, and analyze the samples. The findings demonstrated that in the E3 treatment group, phosphoenolpyruvate carboxykinase, acetyl coenzyme A carboxylase, total cholesterol, urea nitrogen, triglyceride, and fatty acid synthase contents were significantly lower under cooling stress than those in the E1 and E2 treatment groups (P < 0.05). The E3 therapy group had significantly greater blood glucose, glycogen, and glycogen synthase levels than the E1 and E2 treatment groups (P < 0.05). The levels of pyruvate kinase in the E1, E2, and E3 treatment groups did not differ significantly. Crucian carp's gill tissue changed under cooling stress, including capillary dilatation, and the E3 treatment group experienced less damage overall than the E1 and E2 treatment groups. In conclusion, supplementing water with vitamin E to treat crucian carp can decrease damage, improve the body's ability to withstand cold, and slow down the stress response brought on by cooling stress. This provides a theoretical basis for supplementing water with vitamin E to fish stress relief.
Collapse
Affiliation(s)
- Jiaming Tang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Gongyan Li
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongjie Chen
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| | - Lexia Jiang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Baosheng Huang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China.
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China.
| | - Peihong Jiang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| | - Changfeng Zhang
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China.
- Shandong Guonong Logistics Technology Co., Ltd., Jinan, 250103, China.
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Zhang M, Li H, Guo M, Zhao F, Xie Y, Zhang Z, Lv J, Qiu L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171219. [PMID: 38408665 DOI: 10.1016/j.scitotenv.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 μM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 μg/L to 64.72, 108.62 and 72.78 μg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 μg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Mengyu Guo
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yao Xie
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Bownik A, Adamczuk M, Skowrońska BP. Effects of cyanobacterial metabolites: Aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin in binary and quadruple mixtures on the survival and oxidative stress biomarkers of Daphnia magna. Toxicon 2023; 229:107137. [PMID: 37121403 DOI: 10.1016/j.toxicon.2023.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The aim of our study was to determine the effects of aeruginosin 98 A (ARE-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A) cylindrospermopsin (CYL) and their binary and quadruple mixtures on the survival and the levels of oxidative stress biomarkers in Daphnia magna: total glutathione (GSH), catalase (CAT), dismutase (SOD) and malondialdehyde (MDA). The biochemical indicators were measured with ELISA kits and the interactive effects were determined by isobole and polygonal analysis with Compusyn® computer software. The study revealed that oligopeptides did not decrease daphnid survival, only CYL inhibited this parameter, with synergistic effects when it was used as a component. The single metabolites at the two highest concentrations and all the binary and quadruple mixtures at all concentrations diminished GSH level, however both in the binary and in the quadruple mixtures most of the interactions between the metabolites were antagonistic. Nearly additive effects were found only in AER-A + CYL and MG-FR1+CYL. On the other hand, CAT activity was slightly increased in daphnids exposed to the binary mixtures with antagonistic interactions, however nearly addivive effects were found in animals exposed to the mixture of AER-A + ANA-A and synergistic in the quadruple mixture. SOD was elevated in daphnids exposed to single AER-A and MG-FR1, however it was diminished in the animals exposed to ANA-A and CYL. Binary mixtures in which CYL was present as a component decreased the level of this enzyme with nearly additive interactions in ANA-A + CYL. The quadruple mixture increased SOD level, with antagonistic interactions. Both single cyanobacterial metabolites, their binary and quadruple mixtures induced lipid peroxidation measured by MDA level and most of interactions in the binary mixtures were synergistic. The study suggested that antioxidative system of Daphnia magna responded to the tested metabolites and the real exposure to mixtures of these products may lead to various interactive effects with varied total toxicity.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
4
|
Marins AT, Severo ES, Cerezer C, Leitemperger JW, Müller TE, Floriano L, Prestes OD, Zanella R, Loro VL. Environmentally relevant pesticides induce biochemical changes in Nile tilapia (Oreochromis niloticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:585-598. [PMID: 33770304 DOI: 10.1007/s10646-021-02368-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The high demand for food consequently increases the entry of agricultural residues into water resources, and this phenomenon can affect non-target organisms in different ways. Environmentally relevant pesticide effects (per se or in combinations) are scarce in the scientific literature. Therefore, the aim of this study was to investigate: (1) the presence of pesticide residues in an important Brazilian source of water supply and power generation (Jacuí river), during 1 year of monitoring. (2) in a laboratory study verify the effects of the most frequently, herbicide, fungicide, and insecticide found in Jacuí river (individualized or in a mixture) on biochemical parameters in different tissues of Oreochromis niloticus. Twenty pesticide residues were detected in superficial water samples, and two of them are banned in Brazilian territory. Atrazine (0.56 µg L-1), azoxystrobin (0.024 µg L-1), and imidacloprid (0.11 µg L-1) were the most frequently herbicide, fungicide, and insecticide, respectively, found in the river and were used in the laboratory assay. O. niloticus exposed to the pesticide mixture exhibited more biochemical effects than individualized exposure groups. This response can be a result of the combined pesticide effects, culminating in an additive or synergistic effect, depending on the biomarker. In individual exposure groups, atrazine presented the most pronounced alterations, followed by azoxystrobin and imidacloprid. Overall, pesticide exposure increased levels of oxidative stress parameters, reduced antioxidant enzyme activities, and induced acetylcholinesterase activity. These findings highlight the threat to aquatic organisms which may be exposed to a miscellaneous of toxic compounds in the environment.
Collapse
Affiliation(s)
- Aline Teixeira Marins
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
- Laboratório de Toxicologia Aquática, Labtaq, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Eduardo Stringini Severo
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
- Laboratório de Toxicologia Aquática, Labtaq, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Cristina Cerezer
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
- Laboratório de Toxicologia Aquática, Labtaq, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Jossiele Wesz Leitemperger
- Laboratório de Toxicologia Aquática, Labtaq, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Talise Ellwanger Müller
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Luana Floriano
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Osmar Damian Prestes
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Renato Zanella
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
- Laboratório de Toxicologia Aquática, Labtaq, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
5
|
Dettleff P, Zuloaga R, Fuentes M, Gonzalez P, Aedo J, Estrada JM, Molina A, Valdés JA. Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J Therm Biol 2020; 94:102750. [PMID: 33292991 DOI: 10.1016/j.jtherbio.2020.102750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Environmental stressors, such as temperature, may generate important effects in fish physiology with negative impact. However, no information exists on the effects of thermal stress in Genypterus species or how this stressor affects the skeletal muscle. The present study evaluated for the first time the effect of high temperature stress in red cusk-eel juveniles to determine changes in plasmatic markers of stress (cortisol, glucose and lactate dehydrogenase (LDH)), the transcriptional effect in skeletal muscle genes related to (i) heat shock protein response (hsp60 and hsp70), (ii) muscle atrophy and growth (foxo1, foxo3, fbxo32, murf-1, myod1 and ddit4), and (iii) oxidative stress (cat, sod1 and gpx1), and evaluate the DNA damage (AP sites) and peroxidative damage (lipid peroxidation (HNE proteins)) in this tissue. Thermal stress generates a significant increase in plasmatic levels of cortisol, glucose and LDH activity and induced heat shock protein transcripts in muscle. We also observed an upregulation of atrophy-related genes (foxo1, foxo3 and fbxo32) and a significant modulation of growth-related genes (myod1 and ddit4). Thermal stress induced oxidative stress in skeletal muscle, as represented by the upregulation of antioxidant genes (cat and sod1) and a significant increase in DNA damage and lipid peroxidation. The present study provides the first physiological and molecular information of the effects of thermal stress on skeletal muscle in a Genypterus species, which should be considered in a climate change scenario.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Pamela Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Jorge Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
6
|
Barka S, Gdara I, Ouanes-Ben Othmen Z, Mouelhi S, El Bour M, Hamza-Chaffai A. Seasonal ecotoxicological monitoring of freshwater zooplankton in Bir Mcherga dam (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5670-5680. [PMID: 30693446 DOI: 10.1007/s11356-019-04271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Dams represent large semi-closed reservoirs of pesticides and various organic and inorganic pollutants from agricultural and human activities, and their monitoring should receive special attention. This study evaluated the environmental health status of Bir Mcherga dam using zooplankton species. The dam has a capacity of 130 Mm3 and its waters are used for irrigation, water drinking supply, and fishery. Copepods and cladocerans (crustaceans) were collected in situ monthly between October and August 2012. Oxidative stress (CAT, MDA), neurotoxicity (AChE), and genotoxicity (micronucleus test) biomarkers were analyzed in two zooplankton species: Acanthocyclops robustus and Diaphanosoma mongolianum. High values of cells with a micronucleus were observed during summer. AChE activities were inhibited during early winter and summer. The high seasonal variability of CAT and MDA levels indicates that zooplankton is continuously exposed to different oxidative stresses. These results suggest that there is an obvious and continuous multi-faceted stress in Bir Mcherga reservoir and, consequently, an urgent monitoring of freshwater environments in Tunisia is needed, particularly those intended for human consumption and irrigation.
Collapse
Affiliation(s)
- Sabria Barka
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia.
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia.
| | - Imene Gdara
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| | - Zouhour Ouanes-Ben Othmen
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| | - Samia Mouelhi
- Unité de Recherche de Biologie Animale et Systématique Evolutive 2092, Campus Universitaire, Manar II, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - Monia El Bour
- Laboratoire de Biotechnologie et Biodiversité Aquatiques, National Institute of Sea Sciences and Technologies INSTM, Salammbô, Tunisia
| | - Amel Hamza-Chaffai
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| |
Collapse
|
7
|
Díez-Quijada L, Llana-Ruiz-Cabello M, Cătunescu GM, Puerto M, Moyano R, Jos A, Cameán AM. In vivo genotoxicity evaluation of cylindrospermopsin in rats using a combined micronucleus and comet assay. Food Chem Toxicol 2019; 132:110664. [PMID: 31279043 DOI: 10.1016/j.fct.2019.110664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 01/31/2023]
Abstract
Cylindrospermopsin (CYN) is a potent cyanotoxin recognized as an emerging human threat due to its cytotoxicity and potential carcinogenicity. Although the genotoxicity of CYN has been extensively studied in vitro, limited data are available on its in vivo genotoxicity. The aim of this study was to evaluate the in vivo genotoxicity of pure CYN (7.5-75 μg/kg body weight) after oral exposure of rats through a combined assay of the micronucleus test (MN) in bone marrow, and the standard and modified comet assay in stomach, liver and blood. Also, histopathological changes in stomach and liver were evaluated. Positive results in the MN test were observed in bone marrow in the exposed rats at all the tested concentrations. However, the comet assay revealed that CYN did not induce DNA strand breaks nor oxidative DNA damage in any of the tissues investigated. Finally, histopathological changes were observed in stomach and liver (7.5-75 μg/kg) in intoxicated rats. These results could indicate that CYN is able to induce irritation in stomach before its biotransformation in rats orally exposed, and genotoxicity in bone marrow.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville. Spain
| | - Maria Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville. Spain.
| | - Giorgiana M Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville. Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Córdoba, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville. Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville. Spain
| |
Collapse
|
8
|
Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review. Toxins (Basel) 2017; 9:toxins9060175. [PMID: 28545227 PMCID: PMC5488025 DOI: 10.3390/toxins9060175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.
Collapse
|
9
|
Lopes KC, Ferrão-Filho ADS, dos Santos EG, Cunha RA, Santos CP. Effects of crude extracts of a saxitoxin-producer strain of the cyanobacterium Cylindrospermopsis raciborskii on the swimming behavior of wild and laboratory reared guppy Poecilia vivipara. Toxicon 2017; 129:44-51. [DOI: 10.1016/j.toxicon.2017.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/19/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
10
|
Dale K, Rasinger J, Thorstensen K, Penglase S, Ellingsen S. Vitamin E reduces endosulfan-induced toxic effects on morphology and behavior in early development of zebrafish (Danio rerio). Food Chem Toxicol 2017; 101:84-93. [DOI: 10.1016/j.fct.2017.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022]
|
11
|
Guzmán-Guillén R, Prieto Ortega AI, Moyano R, Blanco A, Vasconcelos V, Cameán AM. Dietary l-carnitine prevents histopathological changes in tilapia (Oreochromis Niloticus) exposed to cylindrospermopsin. ENVIRONMENTAL TOXICOLOGY 2017; 32:241-254. [PMID: 26714798 DOI: 10.1002/tox.22229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cylindrospermopsin (CYN) is a cytotoxin highly water-soluble, which is easily taken up by several aquatic organisms. CYN acts as a potent protein and glutathione synthesis inhibitor, as well as inducing genotoxicity, oxidative stress, and histopathological alterations. This is the first study reporting the protective effect of a l-carnitine (LC) pretreatment (400 or 880 mg LC/kg bw fish/day, for 21 days) on the histopathological alterations induced by pure CYN or Aphanizomenon ovalisporum lyophilized cells (400 µg CYN/kg bw fish) in liver, kidney, heart, intestines, and gills of tilapia (Oreochromis niloticus) acutely exposed to the toxin by oral route. The main histopathological changes induced by CYN were disorganized parenchyma with presence of glycogen and lipids in the cytoplasm (liver), glomerulonephritis, glomerular atrophy, and dilatation of Bowman's capsule (kidney), myofibrolysis, loss of myofibrils, with edema and hemorrhage (heart), intestinal villi with necrotic enterocytes and partial loss of microvilli (gastrointestinal tract), and hyperemia and hemorrhage (gills). LC pretreatment was able to totally prevent those CYN-induced alterations from 400 mg LC/kg bw fish/day in almost all organs, except in the heart, where 880 mg LC/kg bw fish/day were needed. In addition, the morphometric study indicated that LC managed to recover totally the affectation in the cross sections of the proximal and distal convoluted tubules in CYN-exposed fish. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 241-254, 2017.
Collapse
Affiliation(s)
- Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba. Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Alfonso Blanco
- Department of Anatomy and Comparative Pathology and Anatomy, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, 4169-007, Portugal
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| |
Collapse
|