1
|
Li C, Yang L, Zhang Z, Liu Y, Li X, Yang K, Chen M. Molecular Cloning and Functional Analysis of Secretory Phospholipase A 2 from Apostichopus japonicus. Biochem Genet 2025; 63:669-685. [PMID: 38502458 DOI: 10.1007/s10528-024-10738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Secretory phospholipase A2 (sPLA2) plays important roles in phospholipid metabolism, skin barrier maintenance, immune response and other processes in organisms. sPLA2 of sea cucumber A. japonicus (AjPLA2) has not yet been reported. This study successfully amplified the AjPLA2 sequence. The total cDNA of AjPLA2 is 931 bp, including a 480 bp ORF that encodes 159 amino acids. The AjPLA2 protein includes a 16-aa signal peptide, a 5-aa precursor peptide and a 138-aa mature peptide. Homologous alignment showed that AjPLA2 and the sPLA2s from starfish have the typical domains of the Group IB sPLA2. And additional amino acid sequences were found around the β-Wing, which is different from the Group IB sPLA2. These results showed that AjPLA2 and sPLA2s from starfish all belong to a new group in the Group I sPLA2 family. AjPLA2 is widely distributed in sea cucumber tissues. The functional analysis also showed that AjPLA2 was upregulated in the intestine by feeding. When the body wall was damaged, it was significantly upregulated around the wound. And the expression levels of AjPLA2 were significantly increased in V. splendens-infected sea cucumbers. The results indicated that AjPLA2 plays roles in the sea cucumber immunologic process. Combined with the upregulation of unsaturated fatty acids (PUFAs) content in A. japonicus, it demonstrated that AjPLA2 could participate in the immune of A. japonicus by hydrolyzing phospholipid and releasing PUFAs. This study had a solid foundation for the further research of AjPLA2 gene function in vivo, development and application of AjPLA2 protein.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China.
| | - Lili Yang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Zhongyun Zhang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Ying Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Xu Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Kai Yang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Ming Chen
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China.
| |
Collapse
|
2
|
Hatakeyama T, Kishigawa A, Unno H. Molecular cloning and characterization of the two putative toxins expressed in the venom of the devil stinger Inimicus japonicus. Toxicon 2021; 201:9-20. [PMID: 34391787 DOI: 10.1016/j.toxicon.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Various proteins are involved in fish venom toxicity, but limited information is available regarding their structure and mode of action. Here, we analyzed RNA transcripts in the dorsal spine of the devil stinger Inimicus japonicus using next-generation sequencing (NGS), and identified two putative protein toxins, a natterin-like protein (Ij-natterin) and a phospholipase A2 (Ij-PLA2), as well as a previously reported stonustoxin-like protein. The deduced amino acid sequence of Ij-natterin suggested that it acts as a pore-forming toxin through the cooperation of the N-terminal lectin-like domain and the C-terminal pore-forming domain. Ij-PLA2 showed significant homology with secreted Ca2+-dependent PLA2s from snake venom and mammals (sPLA2-I/II). The recombinant Ij-PLA2 protein exhibited PLA2 activity in the absence of Ca2+, in contrast to canonical sPLA2-I/II. Comparison of the amino acid sequences of Ij-PLA2 with the other sPLA2-I/II suggests that the C-terminal extended peptide region of Ij-PLA2 is involved in its Ca2+-independent activity.
Collapse
Affiliation(s)
- Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan.
| | - Akihiro Kishigawa
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Hideaki Unno
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| |
Collapse
|
3
|
Robles-Gómez E, Benítez-Villalobos F, Soriano-García M, Antúnez-Argüelles E. Non-peptide molecules in the pedicellariae of Toxopneustes roseus. Toxicon 2020; 184:143-151. [DOI: 10.1016/j.toxicon.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022]
|
4
|
Láruson ÁJ, Coppard SE, Pespeni MH, Reed FA. Gene expression across tissues, sex, and life stages in the sea urchin Tripneustes gratilla [Toxopneustidae, Odontophora, Camarodonta]. Mar Genomics 2018; 41:12-18. [PMID: 30064945 DOI: 10.1016/j.margen.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023]
Abstract
The pan-tropical sea urchin Tripneustes gratilla is an ecologically and economically important shallow water algal grazer. The aquaculture of T. gratilla has spurred growing interest in the population biology of the species, and by extension the generation of more molecular resources. To this purpose, de novo transcriptomes of T. gratilla were generated for two adults, a male and a female, as well as for a cohort of approximately 1000 plutei larvae. Gene expression profiles of three adult tissue samples were quantified and compared. These samples were of gonadal tissue, the neural ring, and pooled tube feet and pedicellariae. Levels of shared and different gene expression between sexes, as well as across functional categories of interest, including the immune system, toxins, genes involved in fertilization, and sensory genes are highlighted. Differences in expression of isoforms between the sexes and Sex determining Region Y-related High Mobility Group box groups is observed. Additionally an expansion of the tumor suppressor DMBT1 is observed in T. gratilla when compared to the annotated genome of the sea urchin Strongylocentrotus purpuratus. The draft transcriptome of T. gratilla is presented here in order to facilitate more genomic level analysis of emerging model sea urchin systems.
Collapse
Affiliation(s)
- Áki Jarl Láruson
- University of Hawai'i at Mānoa, Department of Biology, Honolulu, HI 96822, United States.
| | - Simon E Coppard
- Hamilton College, Department of Biology, Clinton, NY 13323, United States
| | - Melissa H Pespeni
- University of Vermont, Department of Biology, Burlington, VT 05405, United States
| | - Floyd A Reed
- University of Hawai'i at Mānoa, Department of Biology, Honolulu, HI 96822, United States
| |
Collapse
|
5
|
Tamori M, Koki J, Motokawa T. Dumbbell-Shaped Ossicles Discovered in Pedicellaria of Flower Sea Urchins. Zoolog Sci 2018; 35:92-98. [PMID: 29417895 DOI: 10.2108/zs170109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sea urchins have a globiferous pedicellaria that stands from a test with a stalk on which lies a head made of three movable jaws with venom-injecting teeth. The globiferous pedicellariae of the flower sea urchin Toxopneustes pileolus, one of the most developed among sea urchins, are unique in that the jaws are provided with a jaw membrane that gives the pedicellaria an appearance of a flower when the jaws are open. We observed this membrane in an ionic liquid that does not require processes, such as fixation, dehydration, or coating with conductive materials, for observation with a scanning electron microscope. Using this technique, we discovered dumbbell-shaped ossicles, which consist of two spheres of similar size connected by a cylinder. The diameter of the sphere is 4-8 µm, and the total length of the ossicle is 10-20 µm. The jaw membrane is trimmed with an edge zone. The ossicles were found sparsely in the connective tissue of general part of the membrane, but in the edge zone their density was so high that neighboring ossicles were in close contact with each other. Some neighboring ossicles crossed their cylinders and some inserted one of their spheres to snugly fit in the gap between the spheres of neighboring ossicles. Their structural role is very likely in strengthening the jaw membrane, probably serving as fillers in the general part of the membrane; in the edge zone the interlocking of adjacent ossicles forms a loose network providing a firm frame for the head of the globiferous pedicellaria. When opened, the stiff frame prevents the membrane from sagging. When clasped, it works as a closed door, firmly keeping prey trapped.
Collapse
Affiliation(s)
- Masaki Tamori
- 1 School of Life Science and Technology, W3-42, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan
| | - Jun Koki
- 2 Center for Advanced Materials Analysis, S7-18, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan
| | - Tatsuo Motokawa
- 1 School of Life Science and Technology, W3-42, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|