1
|
Wiezel GA, Oliveira IS, Ferreira IG, Bordon KCF, Arantes EC. Hyperglycosylation impairs the inhibitory activity of rCdtPLI2, the first recombinant beta-phospholipase A 2 inhibitor. Int J Biol Macromol 2024; 280:135581. [PMID: 39270892 DOI: 10.1016/j.ijbiomac.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Crotoxin, a phospholipase A2 (PLA2) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA2 inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications. rCdtPLI2 (~41 kDa) presents both N- and O-linked glycans. Alpha-mannosidase digested-rCdtPLI2 (1 mol) strongly inhibited (73%) CB-Cdc catalytic activity (5 moles), demonstrating that glycosylations performed by P. pastoris affect rCdtPLI2 action. Digested-rCdtPLI2 also inhibited PLA2s from diverse Brazilian snake venoms. Furthermore, rCdtPLI2 (1 mol) abolished the catalytic activity of Lmr-PLA2 (5 moles) and reduced the CTx-Cdc (5 moles) enzyme activity by 65%, suppressing basic and acidic snake venom PLA2s. Additionally, crotalic antivenom did not recognize rCdtPLI2, suggesting a lack of neutralization by antivenom antibodies. These findings demonstrate that studying snake venom components may reveal interesting novel molecules to be studied in the snakebite treatment and help to understand these underexplored inhibitors.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Fortes-Dias CL, Fernandes CAH, Ortolani PL, Campos PC, Melo LA, Felicori LF, Fontes MRM. Identification, description and structural analysis of beta phospholipase A 2 inhibitors (sbβPLIs) from Latin American pit vipers indicate a binding site region for basic snake venom phospholipases A 2. Toxicon X 2019; 2:100009. [PMID: 32550566 PMCID: PMC7286088 DOI: 10.1016/j.toxcx.2019.100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Several snake species possess, in their circulating blood, endogenous PLA2 inhibitors (sbPLIs) with the primary function of natural protection against toxic enzymes from homologous and heterologous venoms. Among the three structural classes of sbPLIs – named α, β, and γ − the β class (sbβPLIs) is the least known with only four identified sequences, so far. The last class of inhibitors encompass molecules with leucine rich repeats (LRRs) motifs containing repeating amino acid segments. In the present study, we identified and characterized putative sbβPLIs from the liver and venom glands of six Latin American pit vipers belonging to Bothrops and Crotalus genera. The inhibitor from Crotalus durissus terrificus snakes (CdtsbβPLI) was chosen as a reference for the construction of the first in silico structural model for this class of inhibitors, using molecular modeling and molecular dynamics simulations. Detailed analyses of the electrostatic surface of the CdtsbβPLI model and protein-protein docking with crotoxin B from homologous venoms predict the interacting surface between these proteins. Transcripts of phospholipases A2 inhibitors from the β-class (sbβPLIs) were identified in Latin American pit vipers. Structural features of sbβPLIs were compared and discussed, including their characteristic leucine-rich repeats (LRRs). One sbβPLI (CdtsbβPLI) was chosen for the in silico construction of the first structural model of a sbβPLI. A possible mechanism of interaction between sbβPLIs and basic snake venom PLA2s was suggested. Docking predictions between CdtsbβPLI and crotoxin B highlighted the amino acids residues at the interaction surfaces.
Collapse
Affiliation(s)
- Consuelo Latorre Fortes-Dias
- Serviço de Enzimologia, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - Carlos Alexandre H Fernandes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.,Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Paula Ladeira Ortolani
- Serviço de Enzimologia, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - Patrícia Cota Campos
- Serviço de Enzimologia, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - L A Melo
- Serviço de Enzimologia, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - Liza Figueiredo Felicori
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marcos Roberto M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
4
|
Oliveira A, Bleicher L, Schrago CG, Silva Junior FP. Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA2s): Insights into the structure-function relationships of snake venom toxins. Toxicon 2018; 146:50-60. [DOI: 10.1016/j.toxicon.2018.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/02/2018] [Accepted: 03/28/2018] [Indexed: 01/27/2023]
|
5
|
Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes. Int J Biol Macromol 2017; 103:525-532. [DOI: 10.1016/j.ijbiomac.2017.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022]
|
6
|
Santos-Filho NA, Santos CT. Alpha-type phospholipase A 2 inhibitors from snake blood. J Venom Anim Toxins Incl Trop Dis 2017; 23:19. [PMID: 28344595 PMCID: PMC5364564 DOI: 10.1186/s40409-017-0110-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/16/2017] [Indexed: 01/22/2023] Open
Abstract
It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.
Collapse
Affiliation(s)
- Norival A. Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP – Univ Estadual Paulista), Araraquara, SP Brazil
| | - Claudia T. Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP – Univ Estadual Paulista), Araraquara, SP Brazil
| |
Collapse
|
7
|
Endogenous phospholipase A 2 inhibitors in snakes: a brief overview. J Venom Anim Toxins Incl Trop Dis 2016; 22:37. [PMID: 28031735 PMCID: PMC5175389 DOI: 10.1186/s40409-016-0092-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
The blood plasma of numerous snake species naturally comprises endogenous phospholipase A2 inhibitors, which primarily neutralize toxic phospholipases A2 that may eventually reach their circulation. This inhibitor type is generally known as snake blood phospholipase A2 inhibitors (sbPLIs). Most, if not all sbPLIs are oligomeric glycosylated proteins, although the carbohydrate moiety may not be essential for PLA2 inhibition in every case. The presently known sbPLIs belong to one of three structural classes – namely sbαPLI, sbβPLI or sbγPLI – depending on the presence of characteristic C-type lectin-like domains, leucine-rich repeats or three-finger motifs, respectively. Currently, the most numerous inhibitors described in the literature are sbαPLIs and sbγPLIs, whereas sbβPLIs are rare. When the target PLA2 is a Lys49 homolog or an Asp49 myotoxin, the sbPLI is denominated a myotoxin inhibitor protein (MIP). In this brief overview, the most relevant data on sbPLIs will be presented. Representative examples of sbαPLIs and sbγPLIs from two Old World – Gloydius brevicaudus and Malayopython reticulatus – and two New World – Bothrops alternatus and Crotalus durissus terrificus – snake species will be emphasized.
Collapse
|
8
|
rBaltMIP, a recombinant alpha-type myotoxin inhibitor from Bothrops alternatus (Rhinocerophis alternatus) snake, as a potential candidate to complement the antivenom therapy. Toxicon 2016; 124:53-62. [PMID: 28327300 DOI: 10.1016/j.toxicon.2016.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
Abstract
Phospholipase A2 inhibitors (PLIs) are important targets in the search and development of new drugs. This study aimed at evaluating the potential of an alpha-type phospholipase A2 inhibitor from Bothrops alternatus (Rhinocerophis alternatus) snake in its recombinant form (rBaltMIP) to complement the conventional antivenom therapy. Biochemical experiments showed that rBaltMIP presented pI 5.8 and molecular masses of ∼21 kDa by SDS-PAGE and 19.57 kDa by MALDI/TOF MS. After tryptic peptides sequencing, the results were compared with other PLIs available in databases, showing 100% identity between rBaltMIP and its native inhibitor BaltMIP and from 92% to 96% identity with other inhibitors. Myotoxic activities of BthTX-I and BthTX-II toxins were measured via plasma CK levels, showing myotoxic effective concentrations (EC50) of 0.1256 μg/μL and 0.6183 μg/μL, respectively. rBaltMIP neutralized the myotoxicity caused by these two toxins up to 65%, without promoting primary antibody response against itself. Nevertheless, this recombinant PLI was immunogenic when standard immunization protocol with Freud's adjuvant was used. In paw edema assays, EC50 of 0.02581 μg/μL and 0.02810 μg/μL, respectively, were observed with edema reductions of up to 40% by rBaltMIP, suggesting its use as an additional antivenom. In addition, myotoxicity neutralization experiments with the myotoxin BthTX-I showed that rBaltMIP was more effective in inhibiting muscle damage than the conventional antivenom. Thus, considering the severity of envenomations due to Bothrops alternatus (Rhinocerophis alternatus) and the low neutralization of their local effects (such as myotoxicity) by the current antivenoms, rBaltMIP is a promising molecule for the development of novel therapeutic strategies for clinical applications.
Collapse
|
9
|
Isolation and biochemical characterization of a gamma-type phospholipase A 2 inhibitor from Macropisthodon rudis snake serum. Toxicon 2016; 122:1-6. [PMID: 27641751 DOI: 10.1016/j.toxicon.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022]
Abstract
A novel phospholipaseA2 (PLA2) inhibitory protein (PLI) was purified from the serum of Macropisthodon rudis, a non-venomous snake mainly found in southern China. The molecular mass of the purified PLI was 160 kDa as determined by Superdex 200HR; however, the PLI protein had only one subunit of 25.4 kDa as determined by 12% SDS-PAGE, indicating an oligomeric protein. PLI cDNA obtained by PCR from the liver of Macropisthodon rudis, revealed 549 bps coding for a mature protein of 183 amino acid residues. Based on an amino acid sequence alignment with venomous and non-venomous snakes, this inhibitor was determined to be in the γ type family of PLI. In vitro experiments showed that PLIγ inhibited enzymatic, inflammatory, and antibacterial activities of snake venom PLA2 isolated from Agkistrodon acutus.
Collapse
|
10
|
Holding ML, Drabeck DH, Jansa SA, Gibbs HL. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integr Comp Biol 2016; 56:1032-1043. [PMID: 27444525 DOI: 10.1093/icb/icw082] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions.
Collapse
Affiliation(s)
- Matthew L Holding
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,*Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Danielle H Drabeck
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.,J. F. Bell Museum of Natural History, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Sharon A Jansa
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.,J. F. Bell Museum of Natural History, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - H Lisle Gibbs
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,Ohio Biodiversity Conservation Partnership, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|