1
|
Fong-Coronado PA, Ramirez V, Quintero-Hernández V, Balleza D. A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs. J Membr Biol 2024; 257:165-205. [PMID: 38990274 PMCID: PMC11289363 DOI: 10.1007/s00232-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.
Collapse
Affiliation(s)
- Pedro Alejandro Fong-Coronado
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | - Verónica Ramirez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (FCQ-BUAP), Ciudad Universitaria, Puebla, México
| | | | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, México.
| |
Collapse
|
2
|
Riaño-Umbarila L, Olamendi-Portugal T, Romero-Moreno JA, Delgado-Prudencio G, Zamudio FZ, Becerril B, Possani LD. Toxic Peptides from the Mexican Scorpion Centruroides villegasi: Chemical Structure and Evaluation of Recognition by Human Single-Chain Antibodies. Toxins (Basel) 2024; 16:301. [PMID: 39057941 PMCID: PMC11280942 DOI: 10.3390/toxins16070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative recombinant sources of antivenoms have been successfully generated. The application of such strategies requires the characterization of the venoms for the development of specific neutralizing molecules against the toxic components. Five toxic peptides to mammals from the Mexican scorpion Centruroides villegasi were isolated by chromatographic procedures by means of gel filtration on Sephadex G-50, followed by ion-exchange columns on carboxy-methyl-cellulose (CMC) resins and finally purified by high-performance chromatography (HPLC) columns. Their primary structures were determined by Edman degradation. They contain 66 amino acids and are maintained well packed by four disulfide bridges, with molecular mass from 7511.3 to 7750.1 Da. They are all relatively toxic and deadly to mice and show high sequence identity with known peptides that are specific modifiers of the gating mechanisms of Na+ ion channels of type beta-toxin (β-ScTx). They were named Cv1 to Cv5 and used to test their recognition by single-chain variable fragments (scFv) of antibodies, using surface plasmon resonance. Three different scFvs generated in our laboratory (10FG2, HV, LR) were tested for recognizing the various new peptides described here, paving the way for the development of a novel type of scorpion antivenom.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- Investigadora por México, CONAHCYT, Mexico City 03940, Mexico;
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| |
Collapse
|
3
|
Valencia-Martínez H, Riaño-Umbarila L, Olamendi-Portugal T, Romero-Moreno JA, Possani LD, Becerril B. Neutralization of Centruroides tecomanus scorpion venom by the use of two human recombinant antibody fragments. Mol Immunol 2023; 164:79-87. [PMID: 37980772 DOI: 10.1016/j.molimm.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
The first toxic component identified against mammals in the venom from Centruroides tecomanus scorpion from Colima, Mexico was Ct1a toxin, which was neutralized by human single chain variable fragment (scFv) RAS27. Venom characterization from these scorpions collected on the Pacific coast of Colima, enabled the identification of a second component of medical importance named Ct71 toxin. Amino acid sequence of Ct71 shares a high identity with Chui5 toxin from C. huichol scorpion, which was neutralized by scFv HV. For this reason, the kinetic parameters of interaction between Ct71 toxin and scFv HV were determined by surface plasmon resonance. Results showed a significantly higher affinity for Ct71 as compared to Chui5. As expected, this toxin was neutralized by scFv HV. The injection of a mixture of scFvs HV and RAS27, resulted in the neutralization of C. tecomanus venom, corroborating that human recombinant antibody fragments can efficiently contribute to the neutralization of medically important toxins and their respective venoms from Mexican scorpions.
Collapse
Affiliation(s)
- Hugo Valencia-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, 62250, Mexico
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONAHCyT-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, 62250, Mexico
| | - José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, 62250, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, 62250, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, 62250, Mexico.
| |
Collapse
|
4
|
Shakeel K, Olamendi-Portugal T, Naseem MU, Becerril B, Zamudio FZ, Delgado-Prudencio G, Possani LD, Panyi G. Of Seven New K + Channel Inhibitor Peptides of Centruroides bonito, α-KTx 2.24 Has a Picomolar Affinity for Kv1.2. Toxins (Basel) 2023; 15:506. [PMID: 37624263 PMCID: PMC10467108 DOI: 10.3390/toxins15080506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Seven new peptides denominated CboK1 to CboK7 were isolated from the venom of the Mexican scorpion Centruroides bonito and their primary structures were determined. The molecular weights ranged between 3760.4 Da and 4357.9 Da, containing 32 to 39 amino acid residues with three putative disulfide bridges. The comparison of amino acid sequences with known potassium scorpion toxins (KTx) and phylogenetic analysis revealed that CboK1 (α-KTx 10.5) and CboK2 (α-KTx 10.6) belong to the α-KTx 10.x subfamily, whereas CboK3 (α-KTx 2.22), CboK4 (α-KTx 2.23), CboK6 (α-KTx 2.21), and CboK7 (α-KTx 2.24) bear > 95% amino acid similarity with members of the α-KTx 2.x subfamily, and CboK5 is identical to Ce3 toxin (α-KTx 2.10). Electrophysiological assays demonstrated that except CboK1, all six other peptides blocked the Kv1.2 channel with Kd values in the picomolar range (24-763 pM) and inhibited the Kv1.3 channel with comparatively less potency (Kd values between 20-171 nM). CboK3 and CboK4 inhibited less than 10% and CboK7 inhibited about 42% of Kv1.1 currents at 100 nM concentration. Among all, CboK7 showed out-standing affinity for Kv1.2 (Kd = 24 pM), as well as high selectivity over Kv1.3 (850-fold) and Kv1.1 (~6000-fold). These characteristics of CboK7 may provide a framework for developing tools to treat Kv1.2-related channelopathies.
Collapse
Affiliation(s)
- Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary; (K.S.); (M.U.N.)
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary; (K.S.); (M.U.N.)
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary; (K.S.); (M.U.N.)
| |
Collapse
|
5
|
Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Tytgat J, Vassilevski AA. KV1.2-Selective Peptide with High Affinity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302206031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Valencia-Martínez H, Olamendi-Portugal T, Restano-Cassulini R, Serrano-Posada H, Zamudio F, Possani LD, Riaño-Umbarila L, Becerril B. Characterization of Four Medically Important Toxins from Centruroides huichol Scorpion Venom and Its Neutralization by a Single Recombinant Antibody Fragment. Toxins (Basel) 2022; 14:toxins14060369. [PMID: 35737030 PMCID: PMC9227038 DOI: 10.3390/toxins14060369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Centruroides huichol scorpion venom is lethal to mammals. Analysis of the venom allowed the characterization of four lethal toxins named Chui2, Chui3, Chui4, and Chui5. scFv 10FG2 recognized well all toxins except Chui5 toxin, therefore a partial neutralization of the venom was observed. Thus, scFv 10FG2 was subjected to three processes of directed evolution and phage display against Chui5 toxin until obtaining scFv HV. Interaction kinetic constants of these scFvs with the toxins were determined by surface plasmon resonance (SPR) as well as thermodynamic parameters of scFv variants bound to Chui5. In silico models allowed to analyze the molecular interactions that favor the increase in affinity. In a rescue trial, scFv HV protected 100% of the mice injected with three lethal doses 50 (LD50) of venom. Moreover, in mix-type neutralization assays, a combination of scFvs HV and 10FG2 protected 100% of mice injected with 5 LD50 of venom with moderate signs of intoxication. The ability of scFv HV to neutralize different toxins is a significant achievement, considering the diversity of the species of Mexican venomous scorpions, so this scFv is a candidate to be part of a recombinant anti-venom against scorpion stings in Mexico.
Collapse
Affiliation(s)
- Hugo Valencia-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Rita Restano-Cassulini
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Hugo Serrano-Posada
- Investigador por México, CONACyT-Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología-Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONACyT-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
- Correspondence: (L.R.-U.); (B.B.); Tel.: +52-(777)-329-1669 (B.B.)
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
- Correspondence: (L.R.-U.); (B.B.); Tel.: +52-(777)-329-1669 (B.B.)
| |
Collapse
|
7
|
Bermúdez-Guzmán MJ, Jiménez-Vargas JM, Possani LD, Zamudio F, Orozco-Gutiérrez G, Oceguera-Contreras E, Enríquez-Vara JN, Vazquez-Vuelvas OF, García-Villalvazo PE, Valdez-Velázquez LL. Biochemical characterization and insecticidal activity of isolated peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2022; 206:90-102. [PMID: 34973996 DOI: 10.1016/j.toxicon.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
The venom of scorpions is a mixture of components that constitute a source of bioactive molecules. The venom of the scorpion Centruroides tecomanus contains peptides toxic to insects, however, to date no toxin responsible for this activity has yet been isolated and fully characterized. This communication describes two new peptides Ct-IT1 and Ct-IT2 purified from this scorpion. Both peptides contain 63 amino acids with molecular weight 6857.85 for Ct-IT1 and 6987.77 Da for Ct-IT2. The soluble venom was separated using chromatographic techniques of molecular size exclusion, cationic exchange, and reverse phase chromatography, allowing the identification of at least 99 components of which in 53 the insecticidal activity was evaluated. The LD50 determined for Ct-IT1 is 3.81 μg/100 mg of cricket weight, but low amounts of peptides (0.8 μg of peptide) already cause paralysis in crickets. The relative abundance of these two peptides in the venom is 2.1% for Ct-IT1 and 1% for Ct-IT2. The molecular masses and N-terminal sequences of both insecticidal toxins were determined by mass spectrometry and Edman degradation. The primary structure of both toxins was compared with other known peptides isolated from other scorpion venoms. The analysis of the sequence alignments revealed the position of a highly conserved amino acid residue, Gly39, exclusively present in anti-insect selective depressant β-toxins (DBTXs), which in Ct-IT1 and Ct-IT2 is at position Gly40. Similarly, a three-dimensional structure of this toxins was obtained by homology modeling and compared to the structure of known insect toxins of scorpions. An important similarity of the cavity formed by the trapping apparatus region of the depressant toxin LqhIT2, isolated from the scorpion Leiurus quinquestriatus hebraeus, was found in the toxins described here. These results indicate that Ct-IT1 and Ct-IT2 toxins have a high potential to be evaluated on pests that affect economically important crops to eventually consider them as a potential biological control method.
Collapse
Affiliation(s)
- M J Bermúdez-Guzmán
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - J M Jiménez-Vargas
- CONACYT-Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - F Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - G Orozco-Gutiérrez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - E Oceguera-Contreras
- Centro Universitario de los Valles, Universidad de Guadalajara, Km. 45.5 Carretera Guadalajara-Ameca, Ameca, Jalisco, México
| | - J N Enríquez-Vara
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Col. El Bajío C.P. 45019, Zapopan, Jalisco, México
| | - O F Vazquez-Vuelvas
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - P E García-Villalvazo
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L L Valdez-Velázquez
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México.
| |
Collapse
|
8
|
Hernández-Meza JM, Mares-Sámano S, Garduño-Juárez R. Insights into the Molecular Inhibition of the Oncogenic Channel K V10.1 by Globular Toxins. J Chem Inf Model 2021; 61:2328-2340. [PMID: 33900765 DOI: 10.1021/acs.jcim.0c01353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inhibition of the expression of the human ether-à-go-go (hEAG1 or hKV10.1) channel is associated with a dramatic reduction in the growth of several cancerous tumors. The modulation of this channel's activity is a promising target for the development of new anticancer drugs. Although some small molecules have shown inhibitory activity against KV10.1, their lack of specificity has prevented their use in humans. In vitro studies have recently identified a limited number of peptide toxins with proven specificity in their hKV10.1 channel inhibitory effect. These peptide toxins have become desirable candidates to use as lead compounds to design more potent and specific hKV10.1 inhibitors. However, the currently available studies lack the atomic resolution needed to characterize the molecular features that favor their binding to hKV10.1. In this work, we present the first attempt to locate the possible hKV10.1 binding sites of the animal peptide toxins APETx4, Aa1a, Ap1a, and k-hefutoxin 1, all of which described as hKV10.1 inhibitors. Our studies incorporated homology modeling to construct a robust three-dimensional (3D) model of hKV10.1, applied protein docking, and multiscale molecular dynamics techniques to reveal in atomic resolution the toxin-channel interactions. Our approach suggests that some peptide toxins bind in the outer vestibule surrounding the pore of hKV10.1; it also identified the channel residues Met397 and Asp398 as possible anchors that stabilize the binding of the evaluated toxins. Finally, a description of the possible mechanism for inhibition and gating is presented.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Sergio Mares-Sámano
- CONACYT - Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| |
Collapse
|
9
|
Gao J, Zhang H, Xiong P, Yan X, Liao C, Jiang G. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Gómez-Ramírez IV, Riaño-Umbarila L, Olamendi-Portugal T, Restano-Cassulini R, Possani LD, Becerril B. Biochemical, electrophysiological and immunological characterization of the venom from Centruroides baergi, a new scorpion species of medical importance in Mexico. Toxicon 2020; 184:10-18. [DOI: 10.1016/j.toxicon.2020.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
|
11
|
Housley DM, Pinyon JL, von Jonquieres G, Perera CJ, Smout M, Liddell MJ, Jennings EA, Wilson D, Housley GD. Australian Scorpion Hormurus waigiensis Venom Fractions Show Broad Bioactivity Through Modulation of Bio-Impedance and Cytosolic Calcium. Biomolecules 2020; 10:E617. [PMID: 32316246 PMCID: PMC7226344 DOI: 10.3390/biom10040617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Scorpion venoms are a rich source of bioactive molecules, but characterisation of toxin peptides affecting cytosolic Ca2+, central to cell signalling and cell death, is limited. We undertook a functional screening of the venom of the Australian scorpion Hormurus waigiensis to determine the breadth of Ca2+ mobilisation. A human embryonic kidney (HEK293) cell line stably expressing the genetically encoded Ca2+ reporter GCaMP5G and the rabbit type 1 ryanodine receptor (RyR1) was developed as a biosensor. Size-exclusion Fast Protein Liquid Chromatography separated the venom into 53 fractions, constituting 12 chromatographic peaks. Liquid chromatography mass spectroscopy identified 182 distinct molecules with 3 to 63 components per peak. The molecular weights varied from 258 Da-13.6 kDa, with 53% under 1 kDa. The majority of the venom chromatographic peaks (tested as six venom pools) were found to reversibly modulate cell monolayer bioimpedance, detected using the xCELLigence platform (ACEA Biosciences). Confocal Ca2+ imaging showed 9/14 peak samples, with molecules spanning the molecular size range, increased cytosolic Ca2+ mobilization. H. waigiensis venom Ca2+ activity was correlated with changes in bio-impedance, reflecting multi-modal toxin actions on cell physiology across the venom proteome.
Collapse
Affiliation(s)
- David M. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
- Department of Otolaryngology, Sunshine Coast University Hospital, Sunshine Coast, QLD 4575, Australia
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Jeremy L. Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| | - Chamini J. Perera
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (M.S.); (D.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4878, Australia
| | - Michael J. Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Ernest A. Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (M.S.); (D.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4878, Australia
| | - David Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (M.S.); (D.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4878, Australia
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| |
Collapse
|
12
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
13
|
Biochemical characterization of the venom from the Mexican scorpion Centruroides ornatus, a dangerous species to humans. Toxicon 2020; 173:27-38. [DOI: 10.1016/j.toxicon.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022]
|
14
|
Zhang Y, Zhang F, Shi S, Liu X, Cai W, Han G, Ke C, Long S, Di Z, Yin S, Li H. Immunosuppressive effects of a novel potassium channel toxin Ktx-Sp2 from Scorpiops Pocoki. Cell Biosci 2019; 9:99. [PMID: 31890149 PMCID: PMC6915869 DOI: 10.1186/s13578-019-0364-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023] Open
Abstract
Background The cDNA Library of venomous animals could provide abundant bioactive peptides coding information and is an important resource for screening bioactive peptides that target and regulate disease-related ion channels. To further explore the potential medicinal usage of the transcriptome database of Scorpiops Pocoki’s venom gland, this research identified the function of a new potassium channel toxin Ktx-Sp2, whose gene was screened from the database by sequence alignment. Results The mature peptide of Ktx-Sp2 was obtained by genetic engineering. Whole-cell patch-clamp experiment showed that Ktx-Sp2 peptide could effectively block three types of exogenous voltage-gated potassium channels—Kv1.1, Kv1.2 and Kv1.3, among which, the blocking activity for Kv1.3 was relatively high, showing selectivity to some extent. Taking Jurkat T cells as the cell model, this study found that Ktx-Sp2 peptide could also effectively block endogenous Kv1.3, significantly reduce the free calcium concentration in Jurkat T cells, inhibit the activation of Jurkat T cells and reduce the release of inflammatory cytokines IL-2, showing a strong immunosuppressant effect. Conclusions This study further proves that the transcriptome database of the Scorpiops Pocoki venom gland is an important resource for discovery of novel bioactive polypeptide coding genes. The newly screened Kv1.3 channel blocker Ktx-Sp2 expanded the range of leading compounds for the treatment of autoimmune diseases and promoted the development and application of scorpion toxin peptides in the field of biomedicine.
Collapse
Affiliation(s)
- Yubiao Zhang
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Feng Zhang
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Shujuan Shi
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Xinqiao Liu
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Weisong Cai
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Guangtao Han
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Caihua Ke
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Siru Long
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Zhiyong Di
- 3School of Life Sciences, University of Science and Technology of China, Hefei, 230027 People's Republic of China
| | - Shijin Yin
- 2School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Haohuan Li
- 1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| |
Collapse
|
15
|
Gurrola GB, Guijarro JI, Delepierre M, Mendoza RLL, Cid-Uribe JI, Coronas FV, Possani LD. Cn29, a novel orphan peptide found in the venom of the scorpion Centruroides noxius: Structure and function. Toxicon 2019; 167:184-191. [PMID: 31226259 DOI: 10.1016/j.toxicon.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
A peptide (Cn29) from the venom of the scorpion Centruroides noxius (about 2% of the soluble venom) was purified and its primary and three-dimensional structures were determined. The peptide contains 27 amino acids with primary sequence: LCLSCRGGDYDCRVKGTCENGKCVCGS. The peptide is tightly packed by three disulfide linkages formed between C2-C23, C5-C18 and C12-C25. Since the native peptide was obtained in limited amounts, the full synthetic peptide was prepared using the standard F-moc-based solid phase synthesis method of Merrifield. The native and synthetic peptides were shown to be identical by sequencing, HPLC separation and mass spectrometry. The solution structure of the peptide solved from NMR data shows that it consists of a well-defined N-terminal region without regular secondary structure extending from Leu 1 to Asp 9, followed by a short helical fragment from Tyr10 to Val14 and two short β strands (Thr17-Glu19 and Lys22-Val24). The primary and tertiary structures of Cn29 are different from all other scorpion peptides described in the literature. Transcriptome analysis of RNA obtained from C. noxius confirmed the expression of a gene coding for Cn29 in its venom gland. Initial experiments were conducted to identify its possible function: lethality tests in mice and insects as well as ion-channel binding using in vitro electrophysiological assays. None of the physiological or biological tests displayed any activity for this peptide, which at present is considered to be another orphan peptide found in scorpion venoms. The peptide is thus the first example of a novel structural component present in scorpion venoms.
Collapse
Affiliation(s)
- G B Gurrola
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - J I Guijarro
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR3528, Paris, France
| | | | - R L L Mendoza
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - J I Cid-Uribe
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - F V Coronas
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - L D Possani
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
16
|
Riaño-Umbarila L, Gómez-Ramírez IV, Ledezma-Candanoza LM, Olamendi-Portugal T, Rodríguez-Rodríguez ER, Fernández-Taboada G, Possani LD, Becerril B. Generation of a Broadly Cross-Neutralizing Antibody Fragment against Several Mexican Scorpion Venoms. Toxins (Basel) 2019; 11:toxins11010032. [PMID: 30634620 PMCID: PMC6356842 DOI: 10.3390/toxins11010032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity that retained recognition for its original antigen. This variant is the first antibody fragment that neutralizes the effect of an estimated 13 neurotoxins present in the venom of nine species of Mexican scorpions. This single antibody fragment showed the properties of a polyvalent antivenom. These results represent a significant advance in the development of new antivenoms against scorpion stings, since the number of components would be minimized due to their broad cross-neutralization capacity, while at the same time bypassing animal immunization.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- CONACYT, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Ilse V Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Luis M Ledezma-Candanoza
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Everardo Remi Rodríguez-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Guillermo Fernández-Taboada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| |
Collapse
|
17
|
Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018; 151:137-155. [DOI: 10.1016/j.toxicon.2018.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023]
|
18
|
Batista C, Martins J, Restano-Cassulini R, Coronas F, Zamudio F, Procópio R, Possani L. Venom characterization of the Amazonian scorpion Tityus metuendus. Toxicon 2018; 143:51-58. [DOI: 10.1016/j.toxicon.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
|
19
|
McElroy T, McReynolds CN, Gulledge A, Knight KR, Smith WE, Albrecht EA. Differential toxicity and venom gland gene expression in Centruroides vittatus. PLoS One 2017; 12:e0184695. [PMID: 28976980 PMCID: PMC5627916 DOI: 10.1371/journal.pone.0184695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022] Open
Abstract
Variation in venom toxicity and composition exists in many species. In this study, venom potency and venom gland gene expression was evaluated in Centruroides vittatus, size class I-II (immature) and size class IV (adults/penultimate instars) size classes. Venom toxicity was evaluated by probit analysis and returned ED50 values of 50.1 μg/g for class IV compared to 134.2 μg/g for class I-II 24 hours post injection, suggesting size class IV was 2.7 fold more potent. Next generation sequencing (NGS and qPCR were used to characterize venom gland gene expression. NGS data was assembled into 36,795 contigs, and annotated using BLASTx with UNIPROT. EdgeR analysis of the sequences showed statistically significant differential expression in transcripts associated with sodium and potassium channel modulation. Sodium channel modulator expression generally favored size class IV; in contrast, potassium channel modulators were favored in size class I-II expression. Real-time quantitative PCR of 14 venom toxin transcripts detected relative expression ratios that paralleled NGS data and identified potential family members or splice variants for several sodium channel modulators. Our data suggests ontogenetic differences in venom potency and venom related genes expression exist between size classes I-II and IV.
Collapse
Affiliation(s)
- Thomas McElroy
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - C. Neal McReynolds
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, United States of America
| | - Alyssa Gulledge
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - Kelci R. Knight
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - Whitney E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - Eric A. Albrecht
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
21
|
Olamendi-Portugal T, Csoti A, Jimenez-Vargas J, Gomez-Lagunas F, Panyi G, Possani L. Pi5 and Pi6, two undescribed peptides from the venom of the scorpion Pandinus imperator and their effects on K + -channels. Toxicon 2017; 133:136-144. [DOI: 10.1016/j.toxicon.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 01/15/2023]
|
22
|
Cid Uribe JI, Jiménez Vargas JM, Ferreira Batista CV, Zamudio Zuñiga F, Possani LD. Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found. Toxicon 2017; 125:91-98. [DOI: 10.1016/j.toxicon.2016.11.256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
23
|
Olamendi-Portugal T, Restano-Cassulini R, Riaño-Umbarila L, Becerril B, Possani LD. Functional and immuno-reactive characterization of a previously undescribed peptide from the venom of the scorpion Centruroides limpidus. Peptides 2017; 87:34-40. [PMID: 27871874 DOI: 10.1016/j.peptides.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/23/2022]
Abstract
A previously undescribed toxic peptide named Cl13 was purified from the venom of the Mexican scorpion Centruroides limpidus. It contains 66 amino acid residues, including four disulfide bonds. The physiological effects assayed in 7 different subtypes of voltage gated Na+-channels, showed that it belongs to the β-scorpion toxin type. The most notorious effects were observed in subtypes Nav1.4, Nav1.5 and Nav1.6. Although having important sequence similarities with two other lethal toxins from this scorpion species (Cll1m and Cll2), the recently developed single chain antibody fragments (scFv) of human origin were not capable of protecting against Cl13. At the amino acid sequence level, in 3 stretches of peptide Cl13 (positions 7-9, 30-38 and 62-66) some differences with respect to other similar toxins are observed. Some of these differences coincide with contact points with the human antibody fragments.
Collapse
Affiliation(s)
- Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510.3 Cuernavaca, Morelos, 62210, Mexico
| | - Rita Restano-Cassulini
- Departamento de Medicina Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510.3 Cuernavaca, Morelos, 62210, Mexico
| | - Lidia Riaño-Umbarila
- CONACYT, Instituto de Biotecnología,Universidad Nacional Autónoma de México, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510.3 Cuernavaca, Morelos, 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510.3 Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
24
|
Nôga DAMF, Brandão LEM, Cagni FC, Silva D, de Azevedo DLO, Araújo A, Dos Santos WF, Miranda A, da Silva RH, Ribeiro AM. Anticonvulsant Effects of Fractions Isolated from Dinoponera quadriceps (Kempt) Ant Venom (Formicidae: Ponerinae). Toxins (Basel) 2016; 9:toxins9010005. [PMID: 28025529 PMCID: PMC5308238 DOI: 10.3390/toxins9010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt) protects mice against bicuculline (BIC)-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC) resulting in six fractions referred to as DqTx1-DqTx6. A liquid chromatography-mass spectrometry (LC/MS) analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL) was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM), DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.
Collapse
Affiliation(s)
| | | | - Fernanda Carvalho Cagni
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | - Delano Silva
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Arrilton Araújo
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Antonio Miranda
- Biophysics Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | - Regina Helena da Silva
- Pharmacology Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | | |
Collapse
|
25
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|