1
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Mills C, Dillon MJ, Kulabhusan PK, Senovilla-Herrero D, Campbell K. Multiplex Lateral Flow Assay and the Sample Preparation Method for the Simultaneous Detection of Three Marine Toxins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12210-12217. [PMID: 35951987 PMCID: PMC9454242 DOI: 10.1021/acs.est.2c02339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A multiplex lateral flow immunoassay (LFA) has been developed to detect the primary marine biotoxin groups: amnesic shellfish poisoning toxins, paralytic shellfish poisoning toxins, and diarrhetic shellfish poisoning toxins. The performance characteristics of the multiplex LFA were evaluated for its suitability as a screening method for the detection of toxins in shellfish. The marine toxin-specific antibodies were class-specific, and there was no cross-reactivity between the three toxin groups. The test is capable of detecting all three marine toxin groups, with working ranges of 0.2-1.5, 2.5-65.0, and 8.2-140.3 ng/mL for okadaic acid, saxitoxin, and domoic acid, respectively. This allows the multiplex LFA to detect all three toxin groups at the EU regulatory limits, with a single sample extraction method and dilution volume. No matrix effects were observed on the performance of the LFA with mussel samples spiked with toxins. The developed LFA uses a simple and pocket-sized, portable Cube Reader to provide an accurate result. We also evaluated the use of this Cube Reader with commercially available monoplex lateral flow assays for marine toxins.
Collapse
Affiliation(s)
- Clare Mills
- Institute
for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K.
| | - Michael J. Dillon
- Institute
for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K.
- Faculty
of Health, Peninsula Medical School, University
of Plymouth, Plymouth PL4 8AA, U.K.
| | - Prabir Kumar Kulabhusan
- Institute
for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K.
- Kavli
Institute for NanoScience Discovery, Department of Physics, New Biochemistry
Building, University of Oxford, Dorothy Hodgkin Rd, Oxford OX13QU, U.K.
| | - Diana Senovilla-Herrero
- Institute
for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K.
| | - Katrina Campbell
- Institute
for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K.
| |
Collapse
|
3
|
Dillon M, Zaczek-Moczydlowska MA, Edwards C, Turner AD, Miller PI, Moore H, McKinney A, Lawton L, Campbell K. Current Trends and Challenges for Rapid SMART Diagnostics at Point-of-Site Testing for Marine Toxins. SENSORS (BASEL, SWITZERLAND) 2021; 21:2499. [PMID: 33916687 PMCID: PMC8038394 DOI: 10.3390/s21072499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
In the past twenty years marine biotoxin analysis in routine regulatory monitoring has advanced significantly in Europe (EU) and other regions from the use of the mouse bioassay (MBA) towards the high-end analytical techniques such as high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS). Previously, acceptance of these advanced methods, in progressing away from the MBA, was hindered by a lack of commercial certified analytical standards for method development and validation. This has now been addressed whereby the availability of a wide range of analytical standards from several companies in the EU, North America and Asia has enhanced the development and validation of methods to the required regulatory standards. However, the cost of the high-end analytical equipment, lengthy procedures and the need for qualified personnel to perform analysis can still be a challenge for routine monitoring laboratories. In developing regions, aquaculture production is increasing and alternative inexpensive Sensitive, Measurable, Accurate and Real-Time (SMART) rapid point-of-site testing (POST) methods suitable for novice end users that can be validated and internationally accepted remain an objective for both regulators and the industry. The range of commercial testing kits on the market for marine toxin analysis remains limited and even more so those meeting the requirements for use in regulatory control. Individual assays include enzyme-linked immunosorbent assays (ELISA) and lateral flow membrane-based immunoassays (LFIA) for EU-regulated toxins, such as okadaic acid (OA) and dinophysistoxins (DTXs), saxitoxin (STX) and its analogues and domoic acid (DA) in the form of three separate tests offering varying costs and benefits for the industry. It can be observed from the literature that not only are developments and improvements ongoing for these assays, but there are also novel assays being developed using upcoming state-of-the-art biosensor technology. This review focuses on both currently available methods and recent advances in innovative methods for marine biotoxin testing and the end-user practicalities that need to be observed. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid POST, indicating potential detection methods that will shape the future market.
Collapse
Affiliation(s)
- Michael Dillon
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
- Faculty of Health, Peninsula Medical School, University of Plymouth, Plymouth PL4 8AA, UK
| | - Maja A. Zaczek-Moczydlowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK;
| | - Peter I. Miller
- Plymouth Marine Laboratory, Remote Sensing Group, Prospect Place, Plymouth PL1 3DH, UK;
| | - Heather Moore
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - April McKinney
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| |
Collapse
|
4
|
Turner AD, Hatfield RG, Maskrey BH, Algoet M, Lawrence JF. Evaluation of the new European Union reference method for paralytic shellfish toxins in shellfish: A review of twelve years regulatory monitoring using pre-column oxidation LC-FLD. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Dhanji-Rapkova M, O'Neill A, Maskrey BH, Coates L, Teixeira Alves M, Kelly RJ, Hatfield RG, Rowland-Pilgrim SJ, Lewis AM, Algoet M, Turner AD. Variability and profiles of lipophilic toxins in bivalves from Great Britain during five and a half years of monitoring: Okadaic acid, dinophysis toxins and pectenotoxins. HARMFUL ALGAE 2018; 77:66-80. [PMID: 30005803 DOI: 10.1016/j.hal.2018.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Official control biotoxin testing of bivalve molluscs from Great Britain has been conducted by Cefas for over a decade. Reflecting the changes in legislation, bioassays were gradually replaced by analytical methods, firstly for analysis of Paralytic shellfish toxins, followed by introduction of liquid chromatography tandem mass spectrometric (LCMS/MS) method for lipophilic toxins (LTs) in 2011. Twelve compounds, representing three main groups of regulated lipophilic toxins, as well as two non-regulated cyclic imines were examined in over 20,500 samples collected between July 2011 and December 2016. The toxins belonging to Okadaic acid (OA) group toxins were the most prevalent and were quantified in 23% of samples, predominantly from Scotland. The temporal pattern of OA group occurrences remained similar each year, peaking in summer months and tailing off during autumn and winter, however their abundance and magnitude varied between years significantly, with concentrations reaching up to 4993 μg OA eq./kg. Three toxin profiles were identified, reflecting the relative contribution of the two main toxins, OA and dinophysis toxin-2 (DTX2). Dinophysis toxin-1 (DTX1) was less common and was never detected in samples with high proportions of DTX2. Inter-annual changes in profiles were observed within certain regions, with the most notable being an increase of DTX2 occurrences in north-west Scotland and England in the last three years of monitoring. In addition, seasonal changes of profiles were identified when OA, the dominant toxin in early summer, was replaced by higher proportions of DTX2 in late summer and autumn. The profile distribution possibly reflected the availability of individual Dinophysis species as a food source for shellfish, however persistence of DTX2 during autumn and winter in mussels might have also been attributed to their physiology. Mussels were the only species with higher average proportions of non-esterified toxins, while Pacific oysters, cockles, surf clams, razors and queen scallops contained almost exclusively ester forms. In addition, a temporal change in proportion of OA and DTX2 free form was observed in mussels. Pectenotoxin-2 (PTX2) was quantified only on rare occasions.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| | - Alison O'Neill
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Rebecca J Kelly
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Stephanie J Rowland-Pilgrim
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Myriam Algoet
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
6
|
|
7
|
Beach DG, Walsh CM, Cantrell P, Rourke W, O'Brien S, Reeves K, McCarron P. Laser ablation electrospray ionization high-resolution mass spectrometry for regulatory screening of domoic acid in shellfish. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2379-2387. [PMID: 27534707 PMCID: PMC5434922 DOI: 10.1002/rcm.7725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 05/11/2023]
Abstract
RATIONALE Domoic acid (DA) is a potent neurotoxin that accumulates in shellfish. Routine testing involves homogenization, extraction and chromatographic analysis, with a run time of up to 30 min. Improving throughput using ambient ionization for direct analysis of DA in tissue would result in significant time savings for regulatory testing labs. METHODS We assess the suitability of laser ablation electrospray ionization high-resolution mass spectrometry (LAESI-HRMS) for high-throughput screening or quantitation of DA in a variety of shellfish matrices. The method was first optimized for use with HRMS detection. Challenges such as tissue sub-sampling, isobaric interferences and method calibration were considered and practical solutions developed. Samples included 189 real shellfish samples previously analyzed by regulatory labs as well as mussel matrix certified reference materials. RESULTS Domoic acid was selectively analyzed directly from shellfish tissue homogenates with a run time of 12 s. The limits of detection were between 0.24 and 1.6 mg DA kg-1 tissue, similar to those of LC/UV methods. The precision was between 27 and 44% relative standard deviation (RSD), making the technique more suited to screening than direct quantitation. LAESI-MS showed good agreement with LC/UV and LC/MS and was capable of identifying samples above and below 5 mg DA kg-1 wet shellfish tissue, one quarter of the regulatory limit. CONCLUSIONS These findings demonstrate the suitability of LAESI-MS for routine, high-throughput screening of DA. This approach could result in significant time savings for regulatory labs carrying out shellfish safety testing on thousands of samples annually. © 2016 Her Majesty the Queen in Right of Canada and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Daniel G Beach
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
| | - Callee M Walsh
- Protea Biosciences Inc., 1311 Pineview Dr., Morgantown, WV, 26505, USA
| | - Pamela Cantrell
- Protea Biosciences Inc., 1311 Pineview Dr., Morgantown, WV, 26505, USA
| | - Wade Rourke
- Canadian Food Inspection Agency, 1992 Agency Drive, Dartmouth, NS, B3B 1Y9, Canada
| | - Sinead O'Brien
- Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Kelley Reeves
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| |
Collapse
|
8
|
Application of rapid test kits for the determination of paralytic shellfish poisoning (PSP) toxins in bivalve molluscs from Great Britain. Toxicon 2016; 119:352-61. [DOI: 10.1016/j.toxicon.2016.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
|