1
|
Gilliam LL, Gilliam J, Samuel SP, Carter RW, Ritchey J, Bulfone T, Gutiérrez JM, Williams DJ, Durkin DM, Stephens SI, Lewin MR. Oral and IV Varespladib Rescue Experiments in Juvenile Pigs with Weakness Induced by Australian and Papuan Oxyuranus scutellatus Venoms. Toxins (Basel) 2023; 15:557. [PMID: 37755983 PMCID: PMC10537020 DOI: 10.3390/toxins15090557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Antivenom is currently the standard-of-care treatment for snakebite envenoming, but its efficacy is limited by treatment delays, availability, and in many cases, species specificity. Many of the rapidly lethal effects of envenoming are caused by venom-derived toxins, such as phospholipase A2 (sPLA2); therefore, small molecule direct toxin inhibitors targeting these toxins may have utility as initial and adjunct therapies after envenoming. Varespladib (intravenous, IV) and varespladib-methyl (oral) have been shown to potently inhibit sPLA2s from snake venoms in murine and porcine models, thus supporting their further study as potential treatments for snakebite envenoming. In this pilot study, we tested the ability of these compounds to reverse neurotoxic effects of venom from the Australian and Papuan taipan (Oxyuranus scutellatus) subspecies in juvenile pigs (Sus domesticus). The mean survival time for control animals receiving Australian taipan venom (0.03 mg/kg, n = 3) was 331 min ± 15 min; for those receiving Papuan taipan venom (0.15 mg/kg, n = 3) it was 178 ± 31 min. Thirteen pigs received Australian taipan venom and treatment with either IV or oral varespladib (or with IV to oral transition) and all 13 survived the duration of the study (≥96 h). Eight pigs received Papuan taipan venom followed by treatment: Briefly: Two animals received antivenom immediately and survived to the end of the study. Two animals received antivenom treatment delayed 45 min from envenoming and died within 4 h. Two animals received similarly delayed antivenom treatment and were rescued by varespladib. Two animals were treated with varespladib alone after a 45-min delay. Treatment with varespladib only was effective but required repeat dosing over the course of the study. Findings highlight both the importance of early treatment and, as well, a half-life for the investigational inhibitors now in Phase II clinical trials for snakebite. Varespladib rapidly reversed weakness even when administered many hours post-envenoming and, overall, our results suggest that varespladib and varespladib-methyl could be efficacious tools in the treatment of sPLA2-induced weakness from Oxyuranus envenoming. Further clinical study as initial therapy and as potential method of rescue from some types of antivenom-resistant envenomings are supported by these data.
Collapse
Affiliation(s)
- Lyndi L. Gilliam
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (L.L.G.); (J.G.); (J.R.)
| | - John Gilliam
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (L.L.G.); (J.G.); (J.R.)
| | - Stephen P. Samuel
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
| | - Rebecca W. Carter
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
| | - Jerry Ritchey
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (L.L.G.); (J.G.); (J.R.)
| | - Tommaso Bulfone
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA; (T.B.)
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - David J. Williams
- Regulation and Prequalification Department (RPQ) at the World Health Organization (WHO), 1211 Geneva, Switzerland;
| | - Daniela M. Durkin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA; (T.B.)
| | - Sally I. Stephens
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
| | - Matthew R. Lewin
- Division of Research Ophirex, Inc., Corte Madera, CA 94925, USA; (S.P.S.); (R.W.C.); (S.I.S.)
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA; (T.B.)
| |
Collapse
|
2
|
Use of adjuvant ISA VG 71 to produce neutralizing egg yolk antibodies against bothropic venom. Appl Microbiol Biotechnol 2023; 107:1947-1957. [PMID: 36723703 DOI: 10.1007/s00253-023-12409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
The use of egg yolk antibodies-IgY technology-represents an alternative to the production of mammalian immunoglobulins and has several advantages regarding animal welfare and lower costs of production. The use of adjuvants to achieve the hyperimmunization of laying hens plays a key role in the success of the production of high levels of the antibodies. In the present work, two different adjuvant systems (Freund's adjuvants and MontanideTM ISA 71 VG) were compared to produce IgY anti-Bothrops alternatus. For the first immunization, formalin-inactivated Salmonella was added to MontanideTM ISA 71 VG to emulate Freund's complete adjuvant which includes a mycobacteria antigen. After eight immunizations, IgY produced by using either adjuvant was able to neutralize the lethal activity of the venom in a mouse model, but differences were found regarding the recognition of components of the venom between the two adjuvants tested. Overall, MontanideTM adjuvant used in this work could be a good alternative choice to produce antibodies capable of neutralizing the lethality of complex antigens. This adjuvant is commercially available and used in the formulation of several poultry vaccines and could be used for the IgY technology instead of traditional immunomodulators such as Freund's adjuvants. Key points • IgY extracts recognized major components of the venom.• Avidity indexes of the IgY extracts increased after the successive immunizations.• IgY obtained by two adjuvant systems neutralized the lethal activity of the venom.
Collapse
|
3
|
Morris NM, Blee JA, Hauert S. Developing a computational pharmacokinetic model of systemic snakebite envenomation and antivenom treatment. Toxicon 2022; 215:77-90. [PMID: 35716719 DOI: 10.1016/j.toxicon.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Snakebite envenomation is responsible for over 100,000 deaths and 400,000 cases of disability annually, most of which are preventable through access to safe and effective antivenoms. Snake venom toxins span a wide molecular weight range, influencing their absorption, distribution, and elimination within the body. In recent years, a range of scaffolds have been applied to antivenom development. These scaffolds similarly span a wide molecular weight range and subsequently display diverse pharmacokinetic behaviours. Computational simulations represent a powerful tool to explore the interplay between these varied antivenom scaffolds and venoms, to assess whether a pharmacokinetically optimal antivenom exists. The purpose of this study was to establish a computational model of systemic snakebite envenomation and treatment, for the quantitative assessment and comparison of conventional and next-generation antivenoms. A two-compartment mathematical model of envenomation and treatment was defined and the system was parameterised using existing data from rabbits. Elimination and biodistribution parameters were regressed against molecular weight to predict the dynamics of IgG, F(ab')2, Fab, scFv, and nanobody antivenoms, spanning a size range of 15-150 kDa. As a case study, intramuscular envenomation by Naja sumatrana (equatorial spitting cobra) and its treatment using Fab, F(ab')2, and IgG antivenoms was simulated. Variable venom dose tests were applied to visualise effective antivenom dose levels. Comparisons to existing antivenoms and experimental rescue studies highlight the large dose reductions that could result from recombinant antivenom use. This study represents the first comparative in silico model of snakebite envenomation and treatment.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
4
|
Choraria A, Somasundaram R, Janani S, Rajendran S, Oukkache N, Michael A. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1942063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - S. Janani
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Selvakumar Rajendran
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Naoual Oukkache
- Venoms and Toxins Laboratory, Institute Pasteur of Morocco, Casablanca, Morocco
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
5
|
Bustos CP, Leiva CL, Gambarotta M, Guida N, Chacana PA. In vitro Inhibitory Activity of IgY Antibodies Against Salmonella Ser. Newport Isolated from Horses. J Equine Vet Sci 2021; 103:103657. [PMID: 34281640 DOI: 10.1016/j.jevs.2021.103657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
Equine salmonellosis is caused by several Salmonella serotypes, including Salmonella Newport, which cause enterocolitis and diarrhea. Treatment usually includes the administration of antibiotics. However, since multidrug-resistant Salmonella is commonly detected, alternative options to control the pathogen are needed. One of these options is the use of specific egg yolk antibodies (IgY) for passive immunotherapy. Thus, the aim of our work was to produce IgY antibodies against an equine S. Newport strain and assess their in vitro inhibitory activity. To this end, laying hens were immunized with an inactivated S. Newport strain by using either Freund's or Montanide adjuvant and egg yolk extracts were obtained. The levels of specific IgY antibodies against Salmonella in sera and egg extracts were determined by dot-blot and microagglutination. Besides, the IgY extracts were characterized by total protein analysis, SDS-PAGE, Western Blot, and inhibition of bacterial motility. IgY extracts showed high purity (87.7 to 91.8 %), high microagglutination titers, and the ability to inhibit the motility of the bacterium. The results using Montanide were similar to those using the traditional Freund's adjuvant. Thus, Montanide may also be a good adjuvant to produce IgY. IgY-technology represents a potential tool for the control of salmonellosis in horses.
Collapse
Affiliation(s)
- Carla P Bustos
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Enfermedades Infecciosas, Argentina; Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolás Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Carlos L Leiva
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolás Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Mariana Gambarotta
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Bioestadística, Argentina
| | - Nora Guida
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Enfermedades Infecciosas, Argentina
| | - Pablo A Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolás Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
6
|
Leiva CL, Geoghegan P, Lammer M, Cangelosi A, Mariconda V, Celi AB, Brero ML, Chacana P. In vivo neutralization of bee venom lethality by IgY antibodies. Mol Immunol 2021; 135:183-190. [PMID: 33930713 DOI: 10.1016/j.molimm.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Bee venom is a complex mixture of molecules, among which melittin and phospholipase A2 (PLA2) are the toxic components involved in envenoming accidents with multiple honeybee stings. Traditionally, the treatment of envenomings has been based on the administration of specific antibodies to neutralize the deleterious effects of toxins. An alternative to mammalian polyclonal antibodies is the use of egg yolk immunoglobulins (IgY) due to their advantages regarding animal welfare and lower costs of production as compared to the conventional production methods. In this work, a novel composition containing specific IgY antibodies was developed. After four immunizations, IgY extracted from the egg yolks was able to recognize several components of the bee venom, including melittin and PLA2. The performance of IgY to neutralize the lethal activity was evaluated in a mouse model by using one median lethal dose (LD50) of the bee venom. The effective dose of the IgY extract was determined as 30.66 μg/mg. These results demonstrate the feasibility to produce IgY-based antivenoms to treat envenomings by multiple bee stings.
Collapse
Affiliation(s)
- Carlos Leónidas Leiva
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Geoghegan
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Mónica Lammer
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Virginia Mariconda
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Ana Beatriz Celi
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - María Luisa Brero
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Pablo Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Di Fabio JL, Cortés Castillo MDLÁ, Griffiths E. Landscape of research, production, and regulation in venoms and antivenoms: a bibliometric analysis. Rev Panam Salud Publica 2021; 45:e55. [PMID: 34035797 PMCID: PMC8139637 DOI: 10.26633/rpsp.2021.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To assess the productivity and visibility in research, clinical studies, treatment, use and production of antivenoms against poisonous snakes, scorpions and spiders. METHODS Bibliometric analysis of research and other activities. Articles on venoms and antivenoms published between 2000 and 2020 were retrieved from the Scopus database. The records were analyzed by bibliometric indicators including number of documents per year, journals, authors, and citation frequency. VOSviewer® v.1.6.13 was used to construct bibliometric networks for country co-authorships and co-occurrence of terms. RESULTS Australia, Brazil, Costa Rica and India were among the six top countries with most documents and were selected for more detailed analysis. Costa Rica was the country with the largest percentage of its publications dedicated to antivenom production and venomics. Only a few papers dealt with the issues of quality, safety, and efficacy of antivenoms or the role of the national regulatory authorities. The use of VOSviewer ® allowed visualization through joint publications of networking between countries. Visualization by co-occurrence of terms showed differences in the research carried out. CONCLUSIONS Working in a collaborative and coordinated manner these four countries could have a major impact on envenoming globally. Attention should be given not only to antivenom production but also to strengthening regulatory oversight of antivenom products.
Collapse
Affiliation(s)
- José Luis Di Fabio
- Independent consultantWashington D.CUnited States of AmericaIndependent consultant, Washington D.C., United States of America
- José Luis Di Fabio,
| | - María de los Ángeles Cortés Castillo
- Independent consultantMexico CityMexicohttps://orcid.org/0000-0003-0029-665xIndependent consultant, Mexico City, Mexico, https://orcid.org/0000-0003-0029-665x
| | - Elwyn Griffiths
- Independent consultant in Vaccines and BiotherapeuticsKingston upon ThamesUnited Kingdomhttps://orcid.org/0000-0002-5801-2448Independent consultant in Vaccines and Biotherapeutics, Kingston upon Thames, United Kingdom, https://orcid.org/0000-0002-5801-2448
| |
Collapse
|
8
|
Lee CH, Liu CI, Leu SJ, Lee YC, Chiang JR, Chiang LC, Mao YC, Tsai BY, Hung CS, Chen CC, Yang YY. Chicken antibodies against venom proteins of Trimeresurus stejnegeri in Taiwan. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200056. [PMID: 33281887 PMCID: PMC7682652 DOI: 10.1590/1678-9199-jvatitd-2020-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. METHODS T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. RESULTS Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. CONCLUSION Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Ron Chiang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ching Chen
- Department of Pathology and Laboratory Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|
10
|
Choraria A, Somasundaram R, Gautam M, Ramanathan M, Paray BA, Al-Sadoon MK, Michael A. Experimental antivenoms from chickens and rabbits and their comparison with commercially available equine antivenom against the venoms of Daboia russelii and Echis carinatus snakes. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1756858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - Mrinmoy Gautam
- Department of Molecular Pharmacology, PSG College of Pharmacy, Coimbatore, India
| | - Muthiah Ramanathan
- Department of Molecular Pharmacology, PSG College of Pharmacy, Coimbatore, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Al-Sadoon
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
11
|
Pereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int Immunopharmacol 2019; 73:293-303. [PMID: 31128529 PMCID: PMC7106195 DOI: 10.1016/j.intimp.2019.05.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Egg yolk constitutes a relevant alternative source of antibodies. It presents some advantages over mammalian serum immunoglobulins regarding productivity, animal welfare and specificity. The main immunoglobulin present in avian blood (IgY) is transmitted to their offspring and accumulates in egg yolks, which enables the non-invasive harvesting of high amounts of antibodies. Moreover, due to structural differences and phylogenetic distance, IgY is more suitable for diagnostic purposes than mammalian antibodies, since it does not react with certain components of the human immune system and displays greater avidity for mammalian conserved proteins. IgY has been extensively used in health researches, as both therapeutic and diagnostic tool. This article aims to review its applications in both human and veterinary health.
Collapse
Affiliation(s)
- E P V Pereira
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil.
| | - M F van Tilburg
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| | - E O P T Florean
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| | - M I F Guedes
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| |
Collapse
|
12
|
Leiva CL, Cangelosi A, Mariconda V, Farace M, Geoghegan P, Brero L, Fernández-Miyakawa M, Chacana P. IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy. Toxicon 2019; 163:84-92. [DOI: 10.1016/j.toxicon.2019.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
13
|
Sifi A, Adi-Bessalem S, Laraba-Djebari F. Development of a new approach of immunotherapy against scorpion envenoming: Avian IgYs an alternative to equine IgGs. Int Immunopharmacol 2018; 61:256-265. [DOI: 10.1016/j.intimp.2018.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
|
14
|
Lee CH, Lee YC, Lee YL, Leu SJ, Lin LT, Chen CC, Chiang JR, Mwale PF, Tsai BY, Hung CS, Yang YY. Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis. Toxins (Basel) 2017; 9:E347. [PMID: 29076991 PMCID: PMC5705962 DOI: 10.3390/toxins9110347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 11/17/2022] Open
Abstract
Russell's vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF) venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY) antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs) containing 3.4 × 10⁷ and 5.5 × 10⁷ transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yueh-Lun Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chi-Ching Chen
- Department of Pathology and Laboratory Medicine, Landseed Hospital, Taoyuan 32449, Taiwan.
| | - Jen-Ron Chiang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11558, Taiwan.
| | - Pharaoh Fellow Mwale
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan.
| | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
15
|
Herrera M, Sánchez M, Machado A, Ramírez N, Vargas M, Villalta M, Sánchez A, Segura Á, Gómez A, Solano G, Gutiérrez JM, León G. Effect of premedication with subcutaneous adrenaline on the pharmacokinetics and immunogenicity of equine whole IgG antivenom in a rabbit model. Biomed Pharmacother 2017; 90:740-743. [PMID: 28419970 DOI: 10.1016/j.biopha.2017.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022] Open
Abstract
Subcutaneous administration of a low dose of adrenaline is used to prevent the early adverse reactions (EARs) induced by snake antivenoms. We used a rabbit model to study the effect of premedication with adrenaline on the potential of antivenoms to exert therapeutic effects and to induce late adverse reactions. We found that premedication with adrenaline did not change the heart rate or blood pressure of normal rabbits, but reduced the rise in temperature in rabbits previously sensitized with antivenom. Pharmacokinetic studies suggest that premedication with adrenaline does not affect the ability of the antivenom to exert the initial control of envenomation nor the susceptibility of rabbits to develop recurrence of antigenemia and envenomation. Our results also indicate that it is unlikely that premedication with adrenaline decreases the incidence of late reactions induced by the antivenom administration, although it reduces the extent of early reactions.
Collapse
Affiliation(s)
- María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Sección de Química Analítica, Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | - Melvin Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Nils Ramírez
- Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|