1
|
Alvarez-Flores MP, Correia Batista IDF, Villas Boas IM, Bufalo MC, de Souza JG, Oliveira DS, Bonfá G, Fernandes CM, Marques Porto R, Lichtenstein F, Picolo G, Tambourgi DV, Chudzinski-Tavassi AM, Ibañez OCM, Teixeira C. Snake and arthropod venoms: Search for inflammatory activity in human cells involved in joint diseases. Toxicon 2024; 238:107568. [PMID: 38110040 DOI: 10.1016/j.toxicon.2023.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Isadora Maria Villas Boas
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | | | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil
| | | | - Giuliano Bonfá
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | - Cristina Maria Fernandes
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil
| | - Rafael Marques Porto
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Gisele Picolo
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pain and Signaling, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Olga Célia Martinez Ibañez
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil.
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Identification of Daboia siamensis venome using integrated multi-omics data. Sci Rep 2022; 12:13140. [PMID: 35907887 PMCID: PMC9338987 DOI: 10.1038/s41598-022-17300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Snakebite, classified by World Health Organization as a neglected tropical disease, causes more than 100,000 deaths and 2 million injuries per year. Currently, available antivenoms do not bind with strong specificity to target toxins, which means that severe complications can still occur despite treatment. Moreover, the cost of antivenom is expensive. Knowledge of venom compositions is fundamental for producing a specific antivenom that has high effectiveness, low side effects, and ease of manufacture. With advances in mass spectrometry techniques, venom proteomes can now be analyzed in great depth at high efficiency. However, these techniques require genomic and transcriptomic data for interpreting mass spectrometry data. This study aims to establish and incorporate genomics, transcriptomics, and proteomics data to study venomics of a venomous snake, Daboia siamensis. Multiple proteins that have not been reported as venom components of this snake such as hyaluronidase-1, phospholipase B, and waprin were discovered. Thus, multi-omics data are advantageous for venomics studies. These findings will be valuable not only for antivenom production but also for the development of novel therapeutics.
Collapse
|
3
|
Han Y, Kamau PM, Lai R, Luo L. Bioactive Peptides and Proteins from Centipede Venoms. Molecules 2022; 27:molecules27144423. [PMID: 35889297 PMCID: PMC9325314 DOI: 10.3390/molecules27144423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.
Collapse
Affiliation(s)
- Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (R.L.); (L.L.)
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- Correspondence: (R.L.); (L.L.)
| |
Collapse
|
4
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
6
|
Ryan RYM, Lutzky VP, Herzig V, Smallwood TB, Potriquet J, Wong Y, Masci P, Lavin MF, King GF, Lopez JA, Ikonomopoulou MP, Miles JJ. Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential. Toxins (Basel) 2020; 12:toxins12110674. [PMID: 33114591 PMCID: PMC7693913 DOI: 10.3390/toxins12110674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Correspondence: (R.Y.M.R.); (J.J.M.)
| | - Viviana P. Lutzky
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
- GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Taylor B. Smallwood
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
| | - Paul Masci
- Translational Research Institute, Brisbane, QLD 4102, Australia;
| | - Martin F. Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Maria P. Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
- Correspondence: (R.Y.M.R.); (J.J.M.)
| |
Collapse
|
7
|
Cota-Arce JM, Zazueta-Favela D, Díaz-Castillo F, Jiménez S, Bernáldez-Sarabia J, Caram-Salas NL, Dan KWL, Escobedo G, Licea-Navarro AF, Possani LD, De León-Nava MA. Venom components of the scorpion Centruroides limpidus modulate cytokine expression by T helper lymphocytes: Identification of ion channel-related toxins by mass spectrometry. Int Immunopharmacol 2020; 84:106505. [PMID: 32380407 DOI: 10.1016/j.intimp.2020.106505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 11/19/2022]
Abstract
The study of the effector mechanisms of T helper cells has revealed different phenotypic characteristics that can be manipulated for designing new therapeutic schemes in different pathological scenarios. Ion channels are significant targets in T lymphocyte modulation since they are closely related to their effector activity. Remarkably, some toxins produced by scorpions specifically affect the function of these membrane proteins. For that reason, these toxins are important candidates in the search for new immunomodulators. Here, the effect of two venom fractions of the scorpion Centruroides limpidus was assessed on T lymphocyte proliferation and cytokine production. The venom fractions ClF8 and ClF9 were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and cultured at 25 and 35 µg/ml with murine T lymphocytes. The results indicate that the fraction ClF8 increased both production and secretion levels of IFN-γ, IL-4, IL-17A and IL-10 by CD4+ T cells at 24 h. In contrast, fraction ClF9 only promoted the secretion of IL-17A and IL-10 at its highest concentration (35 µg/ml). Both fractions did not show any effect on T cell proliferation. Subsequent analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed seventeen toxins in the fraction ClF8 and five toxins in the fraction ClF9, most of them with voltage-gated sodium (NaScTx) and potassium (KScTx) channels as molecular targets. These toxins might probably interact with ion channels involved in T lymphocyte activity. Our findings suggest that the difference in composition between the two fractions could be related to the observed effects, and the components identified could be isolated to search for possible immunomodulatory molecules.
Collapse
Affiliation(s)
- Julián M Cota-Arce
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Daniela Zazueta-Favela
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Fernando Díaz-Castillo
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Nadia L Caram-Salas
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México; Cátedra CONACYT/Departamento de Innovación Biomédica, CICESE, México
| | - Kee W L Dan
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Galileo Escobedo
- Laboratorio de Proteómica y Metabolómica, Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, C.P. 06720, México
| | - Alexei F Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, México
| | - Marco A De León-Nava
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México.
| |
Collapse
|
8
|
The pathology of Chironex fleckeri venom and known biological mechanisms. Toxicon X 2020; 6:100026. [PMID: 32550582 PMCID: PMC7285912 DOI: 10.1016/j.toxcx.2020.100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
The large box jellyfish Chironex fleckeri is found in northern Australian waters. A sting from this cubozoan species can kill within minutes. From clinical and animal studies, symptoms comprise severe pain, welts, scarring, hypotension, vasospasms, cardiac irregularities and cardiac arrest. At present, there is no cure and opioids are used to manage pain. Antivenom is available but controversy exists over its effectiveness. Experimental and combination therapies performed in vitro and in vivo have shown varied efficacy. These inconsistent results are likely a consequence of the different methods used to extract venom. Recent omics analysis has shed light on the systems of C. fleckeri venom action, including new toxin classes that use pore formation, cell membrane collapse and ion channel modulation. This review covers what is known on C. fleckeri pathomechanisms and highlights current gaps in knowledge. A more complete understanding of the mechanisms of C. fleckeri venom-induced pathology may lead to novel treatments and possibly, the discovery of novel cell pathways, novel drug scaffolds and novel drug targets for human disease.
Collapse
|
9
|
Morlighem JÉRL, Radis-Baptista G. The Place for Enzymes and Biologically Active Peptides from Marine Organisms for Application in Industrial and Pharmaceutical Biotechnology. Curr Protein Pept Sci 2019; 20:334-355. [PMID: 30255754 DOI: 10.2174/1389203719666180926121722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Since the beginning of written history, diverse texts have reported the use of enzymatic preparations in food processing and have described the medicinal properties of crude and fractionated venoms to treat various diseases and injuries. With the biochemical characterization of enzymes from distinct sources and bioactive polypeptides from animal venoms, the last sixty years have testified the advent of industrial enzymology and protein therapeutics, which are currently applicable in a wide variety of industrial processes, household products, and pharmaceuticals. Bioprospecting of novel biocatalysts and bioactive peptides is propelled by their unsurpassed properties that are applicable for current and future green industrial processes, biotechnology, and biomedicine. The demand for both novel enzymes with desired characteristics and novel peptides that lead to drug development, has experienced a steady increase in response to the expanding global market for industrial enzymes and peptidebased drugs. Moreover, although largely unexplored, oceans and marine realms, with their unique ecosystems inhabited by a large variety of species, including a considerable number of venomous animals, are recognized as untapped reservoirs of molecules and macromolecules (enzymes and bioactive venom-derived peptides) that can potentially be converted into highly valuable biopharmaceutical products. In this review, we have focused on enzymes and animal venom (poly)peptides that are presently in biotechnological use, and considering the state of prospection of marine resources, on the discovery of useful industrial biocatalysts and drug leads with novel structures exhibiting selectivity and improved performance.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| | - Gandhi Radis-Baptista
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| |
Collapse
|
10
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|
11
|
Cesar PHS, Braga MA, Trento MVC, Menaldo DL, Marcussi S. Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr Drug Targets 2019; 20:465-477. [DOI: 10.2174/1389450119666181022154737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Disintegrins are non-enzymatic proteins that interfere on cell–cell interactions and signal transduction, contributing to the toxicity of snake venoms and play an essential role in envenomations. Most of their pharmacological and toxic effects are the result of the interaction of these molecules with cell surface ligands, which has been widely described and studied. These proteins may act on platelets, leading to hemorrhage, and may also induce apoptosis and cytotoxicity, which highlights a high pharmacological potential for the development of thrombolytic and antitumor agents. Additionally, these molecules interfere with the functions of integrins by altering various cellular processes such as migration, adhesion and proliferation. This review gathers information on functional characteristics of disintegrins isolated from snake venoms, emphasizing a comprehensive view of the possibility of direct use of these molecules in the development of new drugs, or even indirectly as structural models.
Collapse
Affiliation(s)
- Pedro Henrique Souza Cesar
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Mariana Aparecida Braga
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Marcus Vinicius Cardoso Trento
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Danilo Luccas Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (FCFRP-USP), Ribeirão Preto-SP, Brazil
| | - Silvana Marcussi
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|