1
|
Monteiro IDS, de Araújo IFS, Camargos TS, Ortiz E, de Souza ACB, Lima JD, Possani LD, Schwartz EF, Tibery DV. The First K +-Channel Blocker Described from Tityus fasciolatus Venom: The Purification, Molecular Cloning, and Functional Characterization of α-KTx4.9 (Tf5). Toxins (Basel) 2025; 17:96. [PMID: 39998113 PMCID: PMC11861696 DOI: 10.3390/toxins17020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Hundreds of toxins, particularly from scorpions of lesser medical significance, remain unknown, especially those from species endemic to specific ecosystems, such as Tityus fasciolatus. Their discovery could contribute to the development of new drugs for channelopathies and other diseases. Tf5 is a new peptide that has been identified from the venom of Tityus fasciolatus, a scorpion species endemic to the Brazilian Cerrado ecosystem. A full-length cDNA sequence of the Tf5 gene was obtained through a previously constructed transcriptomic library, where an ORF (Open Reading Frame) sequence with a length of 180 was found, including the 37 aa mature KTx domain, which has six Cys residues. Tf5 was purified from the crude venom, resulting in a peptide with a molecular mass of 3983.95 Da. Its K+ channel blocker activity was evaluated on Kv1.1, Kv1.2, Kv1.3, and Kv1.4 subtypes. Of these Kv channels, the peptide demonstrated an ability to block Kv1.2 and Kv1.3 with an IC50 of 15.53 nM and 116.41 nM, respectively. Additionally, Tf5 shares a high degree of sequence identity with toxins from the α-KTx4 subfamily, which led to it being classified as α-KTx4.9. This is the first Kv channel blocker described from the T. fasciolatus scorpion.
Collapse
Affiliation(s)
- Isolda de Sousa Monteiro
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Israel Flor Silva de Araújo
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Thalita Soares Camargos
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
- Colégio Militar de Brasília, Brasília 70790-020, Brazil
| | - Ernesto Ortiz
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Mexico; (E.O.); (L.D.P.)
| | - Adolfo Carlos Barros de Souza
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Jonathan Dias Lima
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Lourival D. Possani
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Mexico; (E.O.); (L.D.P.)
| | - Elisabeth Ferroni Schwartz
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Diogo Vieira Tibery
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| |
Collapse
|
2
|
Xia Z, Xie L, Li B, Lv X, Zhang H, Cao Z. Antimicrobial Potential of Scorpion-Venom-Derived Peptides. Molecules 2024; 29:5080. [PMID: 39519721 PMCID: PMC11547508 DOI: 10.3390/molecules29215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The frequent and irrational use of antibiotics by humans has led to the escalating rise of antimicrobial resistance (AMR) with a high rate of morbidity-mortality worldwide, which poses a challenge to the development of effective treatments. A large number of host defense peptides from different organisms have gained interest due to their broad antibacterial spectrum, rapid action, and low target resistance, implying that these natural sources might be a new alternative to antimicrobial drugs. As important effectors of prey capture, defense against other animal attacks, and competitor deterrence, scorpion venoms have been developed as important candidate sources for modern drug development. With the rapid progress of bioanalytical and high throughput sequencing techniques, more and more scorpion-venom-derived peptides, including disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs), have been recently identified as having massive pharmacological activities in channelopathies, pathogen infections, and cancer treatments. In this review, we summarize the molecular diversity and corresponding structural classification of scorpion venom peptides with antibacterial, antifungal, and/or antiparasitic activity. We also aim to improve the understanding of the underlying mechanisms by which scorpion-venom-derived peptides exert these antimicrobial functions, and finally highlight their key aspects and prospects for antimicrobial therapeutic or pharmaceutical application.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (Z.X.); (L.X.)
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
- Henan Topfond Pharmaceutical Company Limited, Zhumadian 463000, China;
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
| | - Lixia Xie
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (Z.X.); (L.X.)
| | - Bing Li
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
| | - Xiangyun Lv
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
| | - Hongzhou Zhang
- Henan Topfond Pharmaceutical Company Limited, Zhumadian 463000, China;
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Matkivska R, Samborska I, Maievskyi O. Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 2024; 20:16. [PMID: 38144889 PMCID: PMC10739175 DOI: 10.3892/br.2023.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro-inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
Collapse
Affiliation(s)
- Ruzhena Matkivska
- Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine
| | - Inha Samborska
- Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
| |
Collapse
|
4
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Primak AL, Orlov NA, Peigneur S, Tytgat J, Ignatova AA, Denisova KR, Yakimov SA, Kirpichnikov MP, Nekrasova OV, Feofanov AV. AgTx2-GFP, Fluorescent Blocker Targeting Pharmacologically Important K v1.x (x = 1, 3, 6) Channels. Toxins (Basel) 2023; 15:toxins15030229. [PMID: 36977120 PMCID: PMC10056440 DOI: 10.3390/toxins15030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The growing interest in potassium channels as pharmacological targets has stimulated the development of their fluorescent ligands (including genetically encoded peptide toxins fused with fluorescent proteins) for analytical and imaging applications. We report on the properties of agitoxin 2 C-terminally fused with enhanced GFP (AgTx2-GFP) as one of the most active genetically encoded fluorescent ligands of potassium voltage-gated Kv1.x (x = 1, 3, 6) channels. AgTx2-GFP possesses subnanomolar affinities for hybrid KcsA-Kv1.x (x = 3, 6) channels and a low nanomolar affinity to KcsA-Kv1.1 with moderate dependence on pH in the 7.0-8.0 range. Electrophysiological studies on oocytes showed a pore-blocking activity of AgTx2-GFP at low nanomolar concentrations for Kv1.x (x = 1, 3, 6) channels and at micromolar concentrations for Kv1.2. AgTx2-GFP bound to Kv1.3 at the membranes of mammalian cells with a dissociation constant of 3.4 ± 0.8 nM, providing fluorescent imaging of the channel membranous distribution, and this binding depended weakly on the channel state (open or closed). AgTx2-GFP can be used in combination with hybrid KcsA-Kv1.x (x = 1, 3, 6) channels on the membranes of E. coli spheroplasts or with Kv1.3 channels on the membranes of mammalian cells for the search and study of nonlabeled peptide pore blockers, including measurement of their affinity.
Collapse
Affiliation(s)
- Alexandra L Primak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Anastasia A Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Kristina R Denisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Sergey A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
6
|
López-Giraldo E, Carrillo E, Titaux-Delgado G, Cano-Sánchez P, Colorado A, Possani LD, Río-Portilla FD. Structural and functional studies of scorpine: A channel blocker and cytolytic peptide. Toxicon 2023; 222:106985. [PMID: 36436588 DOI: 10.1016/j.toxicon.2022.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Scorpine is an antimicrobial and antimalarial peptide isolated from Pandinus imperator scorpion venom. As there are few functional and structural studies reported on scorpine-like peptides, we investigated the recombinant truncated N- and C-terminal domains as well as complete scorpine using biological assays and determined the N- and C-terminal structures using solution nuclear magnetic resonance. The study was conducted using recombinant N- and C-terminal peptides and complete scorpine expressed in Escherichia coli. The results showed that N-scorpine presented a random coil structure in water and adopted α-helical folding in the presence of 50% trifluoroethanol (TFE). C-scorpine contains three disulfide bonds with two structural domains: an unstructured N-terminal domain in water that can form a typical secondary alpha-helix structure in 50% TFE and a C-terminal domain with the CS-αβ motif. Our findings demonstrate cytolytic activity associated with C-scorpine, N-scorpine, and scorpine, as well as channel blocking activity associated with the C-scorpine domain.
Collapse
Affiliation(s)
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | - Alland Colorado
- Instituto de Química, Universidad Nacional Autónoma de México, CdMx, Mexico
| | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | |
Collapse
|
7
|
Venomics of the Scorpion Tityus ocelote (Scorpiones, Buthidae): Understanding Venom Evolution in the Subgenus Archaeotityus. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ben Abderrazek R, Ksouri A, Idoudi F, Dhaouadi S, Hamdi E, Vincke C, Farah A, Benlasfar Z, Majdoub H, El Ayeb M, Muyldermans S, Bouhaouala-Zahar B. Neutralizing Dromedary-Derived Nanobodies Against BotI-Like Toxin From the Most Hazardous Scorpion Venom in the Middle East and North Africa Region. Front Immunol 2022; 13:863012. [PMID: 35514999 PMCID: PMC9063451 DOI: 10.3389/fimmu.2022.863012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023] Open
Abstract
Scorpion envenoming is a severe health problem in many regions causing significant clinical toxic effects and fatalities. In the Middle East/North Africa (MENA) region, Buthidae scorpion stings are responsible for devastating toxic outcomes in human. The only available specific immunotherapeutic treatment is based on IgG fragments of animal origin. To overcome the limitations of classical immunotherapy, we have demonstrated the in vivo efficacy of NbF12-10 bispecific nanobody at preclinical level. Nanobodies were developed against BotI analogues belonging to a distinct structural and antigenic group of scorpion toxins, occurring in the MENA region. From Buthus occitanus tunetanus venom, BotI-like toxin was purified. The 41 N-terminal amino acid residues were sequenced, and the LD50 was estimated at 40 ng/mouse. The BotI-like toxin was used for dromedary immunization. An immune VHH library was constructed, and after screening, two nanobodies were selected with nanomolar and sub-nanomolar affinity and recognizing an overlapping epitope. NbBotI-01 was able to neutralize 50% of the lethal effect of 13 LD50 BotI-like toxins in mice when injected by i.c.v route, whereas NbBotI-17 neutralized 50% of the lethal effect of 7 LD50. Interestingly, NbBotI-01 completely reduced the lethal effect of the 2 LD50 of BotG50 when injected at 1:4 molar ratio excess. More interestingly, an equimolar mixture of NbBotI-01 with NbF12-10 neutralized completely the lethal effect of 7 and 5 LD50 of BotG50 or AahG50, at 1:4 and 1:2 molar ratio, respectively. Hence, NbBotI-01 and NbF12-10 display synergic effects, leading to a novel therapeutic candidate for treating Buthus occitanus scorpion stings in the MENA region.
Collapse
Affiliation(s)
- Rahma Ben Abderrazek
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Ayoub Ksouri
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Faten Idoudi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sayda Dhaouadi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Emna Hamdi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
| | - Azer Farah
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zakaria Benlasfar
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hafedh Majdoub
- Unité des Services Communs de Recherche (USCR) Séquenceur de Protéines, Faculté des Sciences de Sfax, Sfax, Tunisia
| | - Mohamed El Ayeb
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia.,Unité des Services Communs de Recherche (USCR) Séquenceur de Protéines, Faculté des Sciences de Sfax, Sfax, Tunisia.,Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Jenkins TP, Ahmadi S, Bittenbinder MA, Stewart TK, Akgun DE, Hale M, Nasrabadi NN, Wolff DS, Vonk FJ, Kool J, Laustsen AH. Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the Middle East and North Africa. PLoS Negl Trop Dis 2021; 15:e0009880. [PMID: 34855751 PMCID: PMC8638997 DOI: 10.1371/journal.pntd.0009880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel-binding toxins and potassium channel-binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matyas A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Trenton K. Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dilber E. Akgun
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Melissa Hale
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nafiseh N. Nasrabadi
- Pharmaceutical Sciences Research Centre, Student Research Commitee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Venomous Animals and Antivenom Production, Razi Vaccine, and Serum Research Institute, Karaj, Iran
| | - Darian S. Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Toxin Ct1a, from venom of Centruroides tecomanus, modifies the spontaneous firing frequency of neurons in the suprachiasmatic nucleus. Toxicon 2021; 197:114-125. [PMID: 33901550 DOI: 10.1016/j.toxicon.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
The peptide, denominated Ct1a, is a β-toxin of 66 amino acids, isolated from venom of the scorpion, Centruroides tecomanus, collected in Colima, Mexico. This toxin was purified using size exclusion, cationic exchange, and reverse phase chromatography. It is the most abundant toxin, representing 1.7% of the soluble venom. Its molecular mass of 7588.9 Da was determined by mass spectrometry. The amino acid sequence was determined by Edman degradation and confirmed by transcriptomic analysis. Since neurons of the suprachiasmatic nucleus (SCN) maintain a spontaneous firing rate (SFR), we evaluated the physiological effects of toxin Ct1a on these neurons. The SFR exhibited a bimodal concentration-dependent response: 100 nM of Ct1a increased the SFR by 223%, whereas 500 nM and 1000 nM reduced it to 42% and 7%, respectively. Control experiments, consisting of recordings of the SFR during a time similar to that used in Ct1a testing, showed stability throughout the trials. Experiments carried out with denatured Ct1a toxin (500 nM) caused no variation in SFR recordings. Action potentials of SCN neurons, before and after Ct1a (100 nM) showed changes in the time constants of depolarization and repolarization phases, amplitude, and half-time. Finally, recordings of hNav1.6 sodium currents indicated that Ct1a shifts the channel activation to a more negative potential and reduces the amplitude of the peak current. These results all demonstrate that toxin Ct1a affects the SFR of SCN neurons by acting upon sodium channels of sub-type 1.6, implicating them in regulation of the SFR of SCN neurons.
Collapse
|
11
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Saikia C, Ben-Nissan G, Reuveny E, Karbat I. Production of recombinant venom peptides as tools for ion channel research. Methods Enzymol 2021; 654:169-201. [PMID: 34120712 DOI: 10.1016/bs.mie.2021.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal venom is a rich source for peptide toxins that bind and modulate the function of ion channels. Owing to their ability to bind receptor sites on the channel protein with high affinity and specificity, peptide neurotoxins have become an indispensable tool for ion channel research. Recent breakthroughs in structural biology and advances in computer simulations of biomolecules have sparked a new interest in animal toxins as probes of channel protein structure and function. Here, we focus on methods used to produce animal toxins for research purposes using recombinant expression. The specific challenges associated with heterologous production of venom peptides are discussed, and several methods targeting these issues are presented with an emphasis on E. coli based systems. An efficient protocol for the bacterial expression, folding, and purification of recombinant venom peptides is described.
Collapse
Affiliation(s)
- Chandamita Saikia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
BmK NSPK, a Potent Potassium Channel Inhibitor from Scorpion Buthus martensii Karsch, Promotes Neurite Outgrowth via NGF/TrkA Signaling Pathway. Toxins (Basel) 2021; 13:toxins13010033. [PMID: 33466524 PMCID: PMC7824859 DOI: 10.3390/toxins13010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin designated as BmK NSPK (Buthus martensii Karsch neurite-stimulating peptide targeting Kv channels) from the BmK venom. The primary structure was determined using Edman degradation. BmK NSPK directly inhibited outward K+ current without affecting sodium channel activities, depolarized membrane, and increased spontaneous calcium oscillation in spinal cord neurons (SCNs) at low nanomolar concentrations. BmK NSPK produced a nonmonotonic increase on the neurite extension that peaked at ~10 nM. Mechanistic studies demonstrated that BmK NSPK increased the release of nerve growth factor (NGF). The tyrosine kinases A (TrkA) receptor inhibitor, GW 441756, eliminated the BmK NSPK-induced neurite outgrowth. BmK NSPK also increased phosphorylation levels of protein kinase B (Akt) that is the downstream regulator of TrkA receptors. These data demonstrate that BmK NSPK is a new voltage-gated potassium (Kv) channel inhibitor that augments neurite extension via NGF/TrkA signaling pathway. Kv channels may represent molecular targets to modulate SCN development and regeneration and to develop the treatments for spinal cord injury.
Collapse
|
14
|
Activation of voltage-gated sodium channels by BmK NT1 augments NMDA receptor function through Src family kinase signaling pathway in primary cerebellar granule cell cultures. Neuropharmacology 2020; 180:108291. [PMID: 32931812 DOI: 10.1016/j.neuropharm.2020.108291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the generation and propagation of action potentials in excitable cells and are the molecular targets of an array of neurotoxins. BmK NT1, an α-scorpion toxin obtained from the scorpion Buthus martensii Karsch (BmK), produces neurotoxicity that is associated with extracellular Ca2+ influx through Na+-Ca2+ exchangers, N-methyl-d-aspartic acid (NMDA) receptors, and L-type Ca2+ channels in cultured cerebellar granule cells (CGCs). In the present study, we demonstrated that BmK NT1 triggered concentration-dependent release of excitatory neurotransmitters, glutamate and aspartate; both effects were eliminated by VGSC blocker, tetrodotoxin. More importantly, we demonstrated that a threshold concentration of BmK NT1 that produced marginal Ca2+ influx and neuronal death augmented glutamate-induced Ca2+ elevation and neuronal death in CGCs. BmK NT1-augmented glutamate-induced Ca2+ influx and neuronal death were suppressed by tetrodotoxin and MK-801 suggesting that the augmentation was through activation of VGSCs and NMDA receptors. Consistently, BmK NT1 also enhanced NMDA-induced Ca2+ influx. Further mechanistic investigations demonstrated that BmK NT1 increased the expression level of NMDA receptors on the plasma membrane and increased the phosphorylation level of NR2B at Tyr1472. Src family kinase inhibitor, 1-tert-butyl-3-(4-chlorophenyl)pyrazolo[3,4-d]pyrimidin-4-yl]amine (PP2), but not the inactive analogue, 4-amino-1-phenylpyrazolo[3,4-d]pyrimidine (PP3), eliminated BmK NT1-triggered NR2B phosphorylation, NMDA receptor trafficking, as well as BmK NT1-augmented NMDA Ca2+ response and neuronal death. Considered together, these data demonstrated that both presynaptic (excitatory amino acid release) and postsynaptic mechanisms (augmentation of NMDA receptor function) are critical for VGSC activation-induced neurotoxicity in primary CGC cultures.
Collapse
|
15
|
Zou X, Wang Y, Yu Y, He J, Zhao F, Xi C, Zhang C, Cao Z. BmK NSP, a new sodium channel activator from Buthus martensii Karsch, promotes neurite outgrowth in primary cultured spinal cord neurons. Toxicon 2020; 182:13-20. [PMID: 32353571 DOI: 10.1016/j.toxicon.2020.04.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Scorpion venom is a rich source of bioactive compounds that affect neuronal excitability by modulating the activities of various channels/receptors. In the current study, guided by a Ca2+ mobilization assay, we purified a new neuroactive peptide designated as BmK NSP (Buthus martensii Karsch neurite-stimulating peptide, MW: 7064.30 Da). The primary structure of BmK NSP was determined by Edman degradation. BmK NSP concentration-dependently elevated intracellular Ca2+ concentration ([Ca2+]i) with an EC50 value of 4.18 μM in primary cultured spinal cord neurons (SCNs). Depletion of extracellular Ca2+ abolished BmK NSP-triggered Ca2+ response. Moreover, we demonstrated that BmK NSP-induced Ca2+ response was partially suppressed by the inhibitors of L-type Ca2+ channels, Na+-Ca2+ exchangers and NMDA receptors and was abolished by voltage-gated sodium channel (VGSC) blocker, tetrodotoxin. Whole-cell patch clamp recording demonstrated that BmK NSP delayed VGSC inactivation (EC50 = 1.10 μM) in SCNs. BmK NSP enhanced neurite outgrowth in a non-monotonic manner that peaked at ~30 nM in SCNs. BmK NSP-promoted neurite outgrowth was suppressed by the inhibitors of L-type Ca2+ channels, NMDA receptors, and VGSCs. Considered together, these data demonstrate that BmK NSP is a new α-scorpion toxin that enhances neurite outgrowth through main routes of Ca2+ influx. Modulation of VGSC activity by α-scorpion toxin might represent a novel strategy to regulate the neurogenesis in SCNs.
Collapse
Affiliation(s)
- Xiaohan Zou
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yujing Wang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiyi Yu
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jing He
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Zhao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chi Zhang
- Jiangsu Provincial Supervision & Inspection Center of Green & Degradable Materials, Nanjing Institute of Product Quality Inspection, No. 3 E. Jialingjiang Street, Nanjing, Jiangsu, 210019, China
| | - Zhengyu Cao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
16
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
17
|
Lissabet JFB, Belén LH, Farias JG. PPLK +C: A Bioinformatics Tool for Predicting Peptide Ligands of Potassium Channels Based on Primary Structure Information. Interdiscip Sci 2020; 12:258-263. [PMID: 31912313 DOI: 10.1007/s12539-019-00356-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 10/25/2022]
Abstract
Potassium channels play a key role in regulating the flow of ions through the plasma membrane, orchestrating many cellular processes including cell volume regulation, hormone secretion and electrical impulse formation. Ligand peptides of potassium channels are molecules used in basic and applied research and are now considered promising alternatives in the treatment of many diseases, such as cardiovascular diseases and cancer. Currently, there are various bioinformatics tools focused on the prediction of peptides with different activities. However, none of the current tools can predict ligand peptides of potassium channels. In this work, we developed a tool called PPLK+C; this is the first tool that can predict peptide ligands of potassium channels. We also evaluated several amino acid molecular features and four machine-learning algorithms for the prediction of potassium channel ligand peptides: random forest, nearest neighbors, support vector machine and artificial neural network. All the biological data used in this study for training and validating models were obtained from peptides with experimentally verified activity. PPLK+C is a bioinformatics software written in the Python programming language, which showed a high predictive capacity with a model generated with the random forest algorithm: 0.77 sensitivity, 0.94 specificity, 0.91 accuracy and 0.70 Matthews correlation coefficient. PPLK+C is a novel tool with a friendly interface that can be used for the discovery of novel ligand peptides of potassium channels with high reliability, using only primary structure information.
Collapse
Affiliation(s)
- Jorge Félix Beltrán Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, 4811230, Temuco, Chile
| | - Lisandra Herrera Belén
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, 4811230, Temuco, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, 4811230, Temuco, Chile.
| |
Collapse
|
18
|
Li S, Sunchen S, He D, Qin C, Zuo Z, Shen B, Cao Z, Hong W, Miao L. ImKTx96, a peptide blocker of the Kv1.2 ion channel from the venom of the scorpion Isometrus maculates. Peptides 2020; 123:170172. [PMID: 31626826 DOI: 10.1016/j.peptides.2019.170172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/13/2023]
Abstract
Scorpion venom contains diverse bioactive peptides that can recognize and interact with membrane proteins such as ion channels. These natural toxins are believed to be useful tools for exploring the structure and function of ion channels. In this study, we characterized a K+-channel toxin gene, ImKTx96, from the venom gland cDNA library of the scorpion Isometrus maculates. The peptide deduced from the ImKTx96 precursor nucleotide sequence contains a signal peptide of 27 amino acid residues and a mature peptide of 29 residues with three disulfide bridges. Multiple sequence alignment indicated that ImKTx96 is similar with the scorpion toxins that typically target K+-channels. The recombined ImKTx96 peptide (rImKTx96) was expressed in the Escherichia coli system, and purified by GST-affinity chromatography and RP-HPLC. Results from whole-cell patch-clamp experiments revealed that rImKTx96 can inhibit the current of the Kv1.2 ion channel expressed in HEK293 cells. The 3D structure of ImKTx96 was constructed by molecular modeling, and the complex formed by ImKTx96 interacting with the Kv1.2 ion channel was obtained by molecular docking. Based on its structural features and pharmacological functions, ImKTx96 was identified as one member of K+-channel scorpion toxin α-KTx10 group and may be useful as a molecular probe for investigating the structure and function of the Kv1.2 ion channel.
Collapse
Affiliation(s)
- Sipian Li
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Shuwen Sunchen
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Dangui He
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Chenhu Qin
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Zheng Zuo
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Bingzheng Shen
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Zhijian Cao
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China; Hubei Province Engineering and Technology Research, Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430072, PR China
| | - Wei Hong
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China.
| | - Lixia Miao
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
19
|
Zhang F, Wu Y, Zou X, Tang Q, Zhao F, Cao Z. BmK AEP, an Anti-Epileptic Peptide Distinctly Affects the Gating of Brain Subtypes of Voltage-Gated Sodium Channels. Int J Mol Sci 2019; 20:ijms20030729. [PMID: 30744067 PMCID: PMC6387193 DOI: 10.3390/ijms20030729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
BmK AEP, a scorpion peptide purified form the venom of Buthus martensii Karsch, has been reported to display anti-epileptic activity. Voltage-gated sodium channels (VGSCs) are responsible for the rising phase of action potentials (APs) in neurons and, therefore, controlling neuronal excitability. To elucidate the potential molecular mechanisms responsible for its anti-epileptic activity, we examined the influence of BmK AEP on AP firing in cortical neurons and how BmK AEP influences brain subtypes of VGSCs (Nav1.1–1.3 and Nav1.6). BmK AEP concentration-dependently suppresses neuronal excitability (AP firing) in primary cultured cortical neurons. Consistent with its inhibitory effect on AP generation, BmK AEP inhibits Na+ peak current in cortical neurons with an IC50 value of 2.12 µM by shifting the half-maximal voltage of activation of VGSC to hyperpolarized direction by ~7.83 mV without affecting the steady-state inactivation. Similar to its action on Na+ currents in cortical neurons, BmK AEP concentration-dependently suppresses the Na+ currents of Nav1.1, Nav1.3, and Nav1.6, which were heterologously expressed in HEK-293 cells, with IC50 values of 3.20, 1.46, and 0.39 µM with maximum inhibition of 82%, 56%, and 93%, respectively. BmK AEP shifts the voltage-dependent activation in the hyperpolarized direction by ~15.60 mV, ~9.97 mV, and ~6.73 mV in Nav1.1, Nav1.3, and Nav1.6, respectively, with minimal effect on steady-state inactivation. In contrast, BmK AEP minimally suppresses Nav1.2 currents (~15%) but delays the inactivation of the channel with an IC50 value of 1.69 µM. Considered together, these data demonstrate that BmK AEP is a relatively selective Nav1.6 gating modifier which distinctly affects the gating of brain subtypes of VGSCs.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
20
|
Abstract
The millions of extant arthropod species are testament to their evolutionary success that can at least partially be attributed to venom usage, which evolved independently in at least 19 arthropod lineages. While some arthropods primarily use venom for predation (e.g., spiders and centipedes) or defense (e.g., bees and caterpillars), it can also have more specialised functions (e.g. in parasitoid wasps to paralyse arthropods for their brood to feed on) or even a combination of functions (e.g. the scorpion Parabuthus transvaalicus can deliver a prevenom for predator deterrence and a venom for predation). Most arthropod venoms are complex cocktails of water, salts, small bioactive molecules, peptides, enzymes and larger proteins, with peptides usually comprising the majority of toxins. Some spider venoms have been reported to contain >1000 peptide toxins, which function as combinatorial libraries to provide an evolutionary advantage. The astounding diversity of venomous arthropods multiplied by their enormous toxin arsenals results in an almost infinite resource for novel bioactive molecules. The main challenge for exploiting this resource is the small size of most arthropods, which can be a limitation for current venom extraction techniques. Fortunately, recent decades have seen an incredible improvement in transcriptomic and proteomic techniques that have provided increasing sensitivity while reducing sample requirements. In turn, this has provided a much larger variety of arthropod venom compounds for potential applications such as therapeutics, molecular probes for basic research, bioinsecticides or anti-parasitic drugs. This special issue of Toxicon aims to cover the breadth of arthropod venom research, including toxin evolution, pharmacology, toxin discovery and characterisation, toxin structures, clinical aspects, and potential applications.
Collapse
Affiliation(s)
- Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
21
|
The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 2018; 151:47-62. [DOI: 10.1016/j.toxicon.2018.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
|