1
|
Weinstein SA, Keyler DE, Jensen JP, Sawyers R, Steward H, Facente J, Dean D. Envenoming by a captive inland taipan, Oxyuranus microlepidotus (McCoy, 1879), Elapidae. A case report, observations on clinical efficacy of expired antivenom and review of O. microlepidotus envenoming. Toxicon 2025; 254:108210. [PMID: 39674408 DOI: 10.1016/j.toxicon.2024.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The clinical evolution and management of a 22-yr-old male envenomed by a captive female inland taipan, Oxyuranus microlepidotus (McCoy, 1879), Elapidae, at a public educational reptile exhibit (Florida, USA) is reported. The patient was bitten (quick 'bite and release') in the right hand between digits #3 and 4 while performing captive maintenance. The victim did not attempt any first aid, but urgently presented to the local hospital within 25 mins post-bite. The patient had an unremarkable medical/surgical history including no previous envenoming/treatment with antivenom. Within approximately 5 mins post-bite he reported experiencing transient loss of consciousness/syncope, altered sensorium, nausea, dull headache, weakness, and "severe" bite site pain. Laboratory investigations revealed profound defibrinating coagulopathy including thrombocytopenia; there was only mildly elevated creatine kinase and renal function remained within normal limits. The patient's clinical evolution included cranial nerve palsies manifested as dysconjugate gaze, persistent, but minor, bite site bleeding, asthenia and reported myalgia as well as prolonged intense bite site pain. He was successfully and uneventfully treated with four vials of Australian polyvalent antivenom and one vial of taipan monovalent; all were expired products with expiration dates ranging from one month to 38 years. Effective antivenom therapy might have been achieved with only 2, possibly 3 vials; however, concerns about reduced efficacy of the long-expired antivenom (4/5 vials were expired 18-38 years) and persistent bite site bleeding/pain contributed to the provision of the additional vials. The patient recovered sufficiently for discharge in 48 h; there were no sequelae. There have been approximately 12 formally documented cases of O. microlepidotus envenoming and selected, detailed examples of these are briefly considered and compared with the clinical evolution of our patient; patient-centred recommendations for management of Oxyuranus spp. envenoming are discussed. The need for advanced preparedness and an action plan for any institution/collection that contains non-native, medically significant venomous species is emphasised, and a general recommended approach is outlined.
Collapse
Affiliation(s)
- Scott A Weinstein
- Young Adult Institute and Premier HealthCare, 220 E. 41st and 42nd St., NY, NY, 10017, USA.
| | - Daniel E Keyler
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, 7-115, Weaver-Densford Hall, 308 Harvard Streed SE, Minneapolis, MN, 55455, USA
| | - J P Jensen
- Orlando Regional Medical Center, Department of Surgical Critical Care, Orlando, FL, USA
| | - Ryan Sawyers
- Orlando Regional Medical Center, Department of Emergency Medicine, Orlando, FL, USA
| | - Hunter Steward
- Orlando Regional Medical Center, Department of Emergency Medicine, Orlando, FL, USA
| | - Jack Facente
- Agritoxins Venom Lab., 6850 Old Melbourne Hwy., Saint Cloud, Florida, USA
| | - Diana Dean
- University of South Florida, Department of Emergency Medicine, Tampa, FL, USA; Florida Poison Information Center, Tampa, FL, USA
| |
Collapse
|
2
|
Soopairin S, Patikorn C, Taychakhoonavudh S. Preclinical testing of expired antivenoms and its uses in real-world experience: a systematic review. Emerg Med J 2024; 41:551-559. [PMID: 38844330 DOI: 10.1136/emermed-2023-213707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/15/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Limited access to antivenoms is a global challenge in treating snakebite envenoming. In emergency situations where non-expired antivenoms are not readily available, expired antivenoms may be used to save lives with the risk of deteriorating quality, efficacy and safety. Therefore, we aimed to systematically review and summarise the sparse preclinical evidence of neutralising efficacy of expired antivenoms and real-world experience of using expired antivenoms in humans. METHODS We searched for articles published until 1 March 2023 in PubMed, Scopus, Web of Science and Embase. Studies demonstrating the preclinical studies evaluating expired antivenoms or studies describing the real-world experience of using expired antivenoms were included. Narrative synthesis was applied to summarise the evidence of expired antivenoms. RESULTS Fifteen studies were included. Ten were preclinical studies and five were real-world experiences of using expired antivenoms in humans. The expired duration of antivenoms in the included studies ranged from 2 months to 20 years. The quality of expired antivenoms was evaluated in one study, and they met the standard quality tests. Five studies demonstrated that the expired antivenoms' immunological concentration and venom-binding activity were comparable to non-expired ones but could gradually deteriorate after expiration. Studies consistently exhibited that expired antivenoms, compared with non-expired antivenoms, were effective when stored in proper storage conditions. The safety profile of using expired antivenoms was reported in two included studies. However, it was inconclusive due to limited information. CONCLUSION Even though the quality and efficacy of expired antivenoms are comparable to non-expired antivenoms in preclinical studies, the information is limited in terms of real-world experiences of using expired antivenoms and their safety. Therefore, the use of expired antivenoms may be generally inconclusive due to scarce data. Further investigations may be needed to support the extension of antivenoms' expiration date according to their potential efficacy after expiration.
Collapse
Affiliation(s)
- Sutinee Soopairin
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Solano G, Cunningham S, Edge RJ, Duran G, Sanchez A, Villalta M, Clare RH, Wilkinson MC, Marriott AE, Abada C, Menzies SK, Keen M, Lalloo DG, Stienstra Y, Abouyannis M, Casewell NR, León G, Ainsworth S. African polyvalent antivenom can maintain pharmacological stability and ability to neutralise murine venom lethality for decades post-expiry: evidence for increasing antivenom shelf life to aid in alleviating chronic shortages. BMJ Glob Health 2024; 9:e014813. [PMID: 38485142 PMCID: PMC10941113 DOI: 10.1136/bmjgh-2023-014813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Antivenom is a lifesaving medicine for treating snakebite envenoming, yet there has been a crisis in antivenom supply for many decades. Despite this, substantial quantities of antivenom stocks expire before use. This study has investigated whether expired antivenoms retain preclinical quality and efficacy, with the rationale that they could be used in emergency situations when in-date antivenom is unavailable. METHODS Using WHO guidelines and industry test requirements, we examined the in vitro stability and murine in vivo efficacy of eight batches of the sub-Saharan African antivenom, South African Institute for Medical Research polyvalent, that had expired at various times over a period of 30 years. RESULTS We demonstrate modest declines in immunochemical stability, with antivenoms older than 25 years having high levels of turbidity. In vitro preclinical analysis demonstrated all expired antivenoms retained immunological recognition of venom antigens and the ability to inhibit key toxin families. All expired antivenoms retained comparable in vivo preclinical efficacy in preventing the lethal effects of envenoming in mice versus three regionally and medically important venoms. CONCLUSIONS This study provides strong rationale for stakeholders, including manufacturers, regulators and health authorities, to explore the use of expired antivenom more broadly, to aid in alleviating critical shortages in antivenom supply in the short term and the extension of antivenom shelf life in the longer term.
Collapse
Affiliation(s)
- Gabriela Solano
- Instituto Clodomiro Picado, Universidad de Costa Rica, San Jose, Costa Rica
| | | | - Rebecca J Edge
- Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Gina Duran
- Instituto Clodomiro Picado, Universidad de Costa Rica, San Jose, Costa Rica
| | - Adriana Sanchez
- Instituto Clodomiro Picado, Universidad de Costa Rica, San Jose, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Universidad de Costa Rica, San Jose, Costa Rica
| | | | | | - Amy E Marriott
- Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Camille Abada
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Molly Keen
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Ymkje Stienstra
- Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Internal Medicine/Infectious Diseases, University of Groningen, Groningen, The Netherlands
| | | | | | - Guillermo León
- Instituto Clodomiro Picado, Universidad de Costa Rica, San Jose, Costa Rica
| | - Stuart Ainsworth
- Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Warrell DA, Williams DJ. Clinical aspects of snakebite envenoming and its treatment in low-resource settings. Lancet 2023; 401:1382-1398. [PMID: 36931290 DOI: 10.1016/s0140-6736(23)00002-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/26/2022] [Accepted: 12/18/2022] [Indexed: 03/16/2023]
Abstract
There is increasing recognition of the public health importance of snakebite envenoming. Worldwide annual incidence is likely to be 5 million bites, with mortality exceeding 150 000 deaths, and the resulting physical and psychological morbidity leads to substantial social and economic repercussions. Prevention through community education by trained health workers is the most effective and economically viable strategy for reducing risk of bites and envenoming. Clinical challenges to effective treatment are most substantial in rural areas of low-resource settings, where snakebites are most common. Classic skills of history taking, physical examination, and use of affordable point-of-care tests should be followed by monitoring of evolving local and systemic envenoming. Despite the profusion of new ideas for interventions, hyperimmune equine or ovine plasma-derived antivenoms remain the only specific treatment for snakebite envenoming. The enormous interspecies and intraspecies complexity and diversity of snake venoms, revealed by modern venomics, demands a radical redesign of many current antivenoms.
Collapse
Affiliation(s)
- David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Experimental Medicine Division, John Radcliffe Hospital, Headington, UK.
| | - David J Williams
- Regulation and Prequalification Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
5
|
Blessmann J, Hanlodsomphou S, Santisouk B, Krumkamp R, Kreuels B, Ismail AK, Yong MY, Tan KY, Tan CH. Experience of using expired lyophilized snake antivenom during a medical emergency situation in Lao People's Democratic Republic--A possible untapped resource to tackle antivenom shortage in Southeast Asia. Trop Med Int Health 2023; 28:64-70. [PMID: 36416013 DOI: 10.1111/tmi.13833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the safety and efficacy of expired lyophilized snake antivenom of Thai origin during a medical emergency in 2020/2021 in Lao People's Democratic Republic. METHODS Observational case series of patients with potentially life-threatening envenoming who consented to the administration of expired antivenom between August 2020 and May 2022. RESULTS A total of 31 patients received the expired antivenom. Malayan pit vipers (Calloselasma rhodostoma) were responsible for 26 (84%) cases and green pit vipers (Trimeresurus species) for two cases (6%). In three patients (10%) the responsible snake could not be identified. Of these, two presented with signs of neurotoxicity and one with coagulopathy. A total of 124 vials of expired antivenom were administered. Fifty-nine vials had expired 2-18 months earlier, 56 vials 19-36 months and nine vials 37-60 months before. Adverse effects of variable severity were observed in seven (23%) patients. All 31 patients fully recovered from systemic envenoming. CONCLUSIONS Under closely controlled conditions and monitoring the use of expired snake antivenom proved to be effective and safe. Discarding this precious medication is an unnecessary waste, and it could be a valuable resource in ameliorating the current shortage of antivenom. Emergency use authorization granted by health authorities and preclinical testing of expired antivenoms could provide the support and legal basis for such an approach.
Collapse
Affiliation(s)
- Jörg Blessmann
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Bounlom Santisouk
- Department of Emergency Medicine, Setthatirath Hospital, Vientiane, Laos
| | - Ralf Krumkamp
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Benno Kreuels
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Mun Yee Yong
- Department of Pharmacology, Faculty of Medicine, Venom Research and Toxicology Lab, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Protein and Interactomics Lab, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Venom Research and Toxicology Lab, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Tan KY, Shamsuddin NN, Tan CH. Sharp-nosed Pit Viper (Deinagkistrodon acutus) from Taiwan and China: A comparative study on venom toxicity and neutralization by two specific antivenoms across the Strait. Acta Trop 2022; 232:106495. [PMID: 35504314 DOI: 10.1016/j.actatropica.2022.106495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/01/2022]
Abstract
In East Asia, the Sharp-nosed Pit Viper (Deinagkistrodon acutus) is a medically important venomous snake in Taiwan and China, two geographical areas long separated by the Taiwan Strait. Yet, snake venom variation is little known between specimens found across the Strait. This study thus investigated the intra-species variation of D. acutus venoms from Taiwan (Da-Taiwan) and China (Da-China) in their profiles of gel electrophoresis, toxicity, immunoreactivity and neutralization effect by antivenom. Da-China venom exhibited higher procoagulant, hemorrhagic and lethal activities than Da-Taiwan venom, presumably attributed to the higher abundance of moderate-to-high molecular weight toxins (procoagulants and hemorrhagins) in the venom. The mono-specific antivenoms produced in Taiwan (DaMAV-Taiwan) and China (DaMAV-China) were immunoreactive toward both venoms, and were able to neutralize the venom toxicity to different extents. DaMAV-Taiwan was more efficacious in neutralizing the venom procoagulant and lethal effects, while DaMAV-China was more potent against hemorrhagic effect. The discrepancy in efficacy between the two antivenoms could be due to varying proportions of neutralizing antibodies in the respective products, influenced by techniques of antibody raising and purification. Further study is warranted to elucidate variation in the proteome and antigenicity of D. acutus venom between snakes from Taiwan and China.
Collapse
|
7
|
Patikorn C, Ismail AK, Abidin SAZ, Blanco FB, Blessmann J, Choumlivong K, Comandante JD, Doan UV, Mohamed Ismail Z, Khine YY, Maharani T, Nwe MT, Qamruddin RM, Safferi RS, Santamaria E, Tiglao PJG, Trakulsrichai S, Vasaruchapong T, Chaiyakunapruk N, Taychakhoonavudh S, Othman I. Situation of snakebite, antivenom market and access to antivenoms in ASEAN countries. BMJ Glob Health 2022; 7:e007639. [PMID: 35296460 PMCID: PMC8928241 DOI: 10.1136/bmjgh-2021-007639] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/02/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Snakebite envenoming is a neglected tropical disease posing public health challenges globally. The Association of Southeast Asian Nations (ASEAN) countries are among the tropical regions with disproportionately high incidence of snakebite. Hence, this study aimed to review the situation of snakebite, antivenom market and access to antivenoms in ASEAN. METHODS This mixed-methods study included comprehensive literature review and in-depth interviews with key informants to assess the situation of management system of snakebite, antivenom market and access to antivenoms in seven ASEAN countries, including Malaysia, Thailand, Indonesia, Philippines, Vietnam, Lao PDR and Myanmar. Data were analysed by a framework method. RESULTS ASEAN have developed various strategies to improve outcomes of snakebite victims. Five domestic antivenom manufacturers in the region produce up to 288 375 vials of antivenoms annually with the value of US$13 058 053 million which could treat 42 213 snakebite victims. However, there remain challenges to be addressed especially the lack of snakebite-related informatics system, inadequate antivenoms at the healthcare facilities and when the majority of snakebite victims seek traditional healers instead of conventional treatment. CONCLUSION Improving the situation of snakebite and antivenom is not only about the availability of antivenom, but the whole landscape of surrounding management and supporting system. The assessment of the situation of snakebite and antivenom is crucial for countries or regions where snakebites are prevalent to recognise their current standpoint to inform the development of strategies to achieve the goal set by the WHO of halving the global burden of snakebite by 2030.
Collapse
Affiliation(s)
- Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | | | - Francis Bonn Blanco
- Department of Emergency Medicine, Ospital ng Muntinlupa, Muntinlupa City, Philippines
- Department of Emergency Medicine, Eastern Visayas Regional Medical Center, Tacloban City, Philippines
| | - Jörg Blessmann
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - John David Comandante
- Department of Emergency, Prehospital, Disaster and Ambulatory Care Medicine, Ospital ng Makati, Makati City, Philippines
- National Poison Management and Control Center, University of the Philippines - Philippine General Hospital, Manilla, Philippines
| | - Uyen Vy Doan
- Division of Medical Toxicology, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | | | - Yi Yi Khine
- Nephrology Department, Thingangyun Sanpya General Hospital (TSGH), Yangon, Myanmar
| | - Tri Maharani
- National Institute of Research and Development, Ministry of Health Indonesia, Jakarta, Indonesia
| | | | | | - Ruth Sabrina Safferi
- Emergency and Trauma Department, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | - Emelia Santamaria
- Health Emergencies and Disasters (HEAD) Study Group, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
- Department of Emergency Medicine, University of the Philippines-Philippine General Hospital, Manila, Philippines
| | - Patrick Joseph G Tiglao
- Department of Emergency Medicine, Eastern Visayas Regional Medical Center, Tacloban City, Philippines
- Department of Emergency Medicine, University of the Philippines-Philippine General Hospital, Manila, Metro Manila, Philippines
| | - Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, The University of Utah College of Pharmacy, Salt Lake City, Utah, USA
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
8
|
Yong MY, Tan KY, Tan CH. Potential para-specific and geographical utility of Thai Green Pit Viper (Trimeresurus albolabris) Monovalent Antivenom: Neutralization of procoagulant and hemorrhagic activities of diverse Trimeresurus pit viper venoms. Toxicon 2021; 203:85-92. [PMID: 34600909 DOI: 10.1016/j.toxicon.2021.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
The Trimeresurus complex consists of diverse medically important venomous pit vipers that cause snakebite envenomation. Antivenoms, however, are in limited supply, and are specific to only two out of the many species across Asia. This study thus investigated the immunoreactivities of regional pit viper antivenoms toward selected Trimeresurus pit viper venoms, and examined the neutralization of their hemotoxic activities. Trimeresurus albolabris Monovalent Antivenom (TaMAV, Thailand) exhibited a higher immunoreactivity than Hemato Bivalent Antivenom (HBAV, raised against Trimeresurus stejnegeri and Protobothrops mucrosquamatus, Taiwan) and Gloydius brevicaudus Monovalent Antivenom (GbMAV, China), attributed to its monovalent nature and conserved antigens in the Trimeresurus pit viper venoms. The venoms showed moderate-to-strong in vitro procoagulant and in vivo hemorrhagic effects consistent with hemotoxic envenomation, except for the Sri Lankan Trimeresurus trigonocephalus venom which lacked hemorrhagic activity. TaMAV was able to differentially neutralize both in vitro and in vivo hemotoxic effects of the venoms, with the lowest efficacy shown against the procoagulant effect of T. trigonocephalus venom. The findings suggest that TaMAV is a potentially useful treatment for envenomation caused by hetero-specific Trimeresurus pit vipers, in particular those in Southeast Asia and East Asia. Clinical study is warranted to establish its spectrum of para-specific effectiveness, and dosages need be tailored to the different species in respective regions.
Collapse
Affiliation(s)
- Mun Yee Yong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Rafael de Roodt A, Lanari LC, Ramírez JE, Gómez C, Barragán J, Litwin S, Henriët van Grootheest J, Desio M, Dokmetjian JC, Dolab JA, Damin CF, Alagón A. Cross-reactivity of some Micrurus venoms against experimental and therapeutic anti-Micrurus antivenoms. Toxicon 2021; 200:153-164. [PMID: 34303716 DOI: 10.1016/j.toxicon.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023]
Abstract
We developed experimental equine polyvalent and monovalent antivenoms against the venoms of Micrurus (M.) fulvius, M. nigrocinctus and M. surinamensis and studied their immunochemical reactivity on the venoms used as immunogens and on M. pyrrhocryptus, M altirostris and M. balyocoriphus venoms. Assessment of the neutralizing capacity of the polyvalent experimental antivenom was based on inhibition of lethality (preincubation and rescue assay experiments in mice) and indirect hemolytic and phospholipase activities. The immunochemical reactivity and neutralizing capacity were compared with those of two therapeutic antivenoms used for the treatment of coral snake envenomation in North America and in Argentina. In general, the experimental antivenom conferred a comparable level of neutralization against the venoms used as immunogens when compared to the therapeutic antivenoms and a certain level of cross-neutralization against the other venoms. The results suggest the need for additional venoms in the immunogenic mixture used, in order to obtain a broad spectrum anti-Micrurus antivenom with a good neutralizing potency. Paraspecific neutralization of South American coral snake venoms, although present at a higher level than the neutralization conferred by available nonspecific Micrurus therapeutic antivenoms, was rather low in relation to the specific neutralizing capacity.
Collapse
Affiliation(s)
- Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | - Laura Cecilia Lanari
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | | | - Carlos Gómez
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias de la Universidad Nacional de La Plata, Argentina
| | - Javier Barragán
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias de la Universidad Nacional de La Plata, Argentina
| | - Silvana Litwin
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Jantine Henriët van Grootheest
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Marcela Desio
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - José Christian Dokmetjian
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Jorge Adrián Dolab
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Carlos Fabián Damin
- Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Alejandro Alagón
- Instituto de Biotecnología de la Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
10
|
Tan CH, Palasuberniam P, Blanco FB, Tan KY. Immunoreactivity and neutralization capacity of Philippine cobra antivenom against Naja philippinensis and Naja samarensis venoms. Trans R Soc Trop Med Hyg 2021; 115:78-84. [PMID: 32945886 DOI: 10.1093/trstmh/traa087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/25/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Philippine cobra (Naja philippinensis) and Samar cobra (Naja samarensis) are two WHO Category 1 medically important venomous snakes in the Philippines. Philippine cobra antivenom (PCAV) is the only antivenom available in the country, but its neutralization capacity against the venoms of N. philippinensis and hetero-specific N. samarensis has not been reported. This knowledge gap greatly hinders the optimization of antivenom use in the region. METHODS This study examined the immunological binding and neutralization capacity of PCAV against the two cobra venoms using WHO-recommended protocols. RESULTS In mice, both venoms were highly neurotoxic and lethal with a median lethal dose of 0.18 and 0.20 µg/g, respectively. PCAV exhibited strong and comparable immunoreactivity toward the venoms, indicating conserved venom antigenicity between the two allopatric species. In in vivo assay, PCAV was only moderately effective in neutralizing the toxicity of both venoms. Its potency was even lower against the hetero-specific N. samarensis venom by approximately two-fold compared with its potency against N. philippinensis venom. CONCLUSION The results indicated that PCAV could be used to treat N. samarensis envenomation but at a higher dose, which might increase the risk of hypersensitivity and worsen the shortage of antivenom supply in the field. Antivenom manufacturing should be improved by developing a low-dose, high-efficacy product against cobra envenomation.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research & Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Praneetha Palasuberniam
- Venom Research & Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences & Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Francis Bonn Blanco
- Department of Emergency Medicine, Ospital ng Muntinlupa, Manila, The Philippinies.,Department of Emergency Medicine, Eastern Visayas Regional Medical Center, Tacloban, The Philippines
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Sánchez EE, Migl C, Suntravat M, Rodriguez-Acosta A, Galan JA, Salazar E. The neutralization efficacy of expired polyvalent antivenoms: An alternative option. Toxicon 2019; 168:32-39. [PMID: 31229628 DOI: 10.1016/j.toxicon.2019.06.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 01/17/2023]
Abstract
The expense of production and distribution of snakebite antivenom, as well as its relatively infrequent use, has caused antivenom to be increasingly difficult to obtain and ultimately producing an alarming global shortage. Unused, expired antivenom may represent a significant, untapped resource to ameliorate this crisis. This study examines the efficacy of expired antivenom over time using in vitro, whole blood clotting, and platelet function statistics. Representatives from three years for four different global brands of polyvalent antivenom were chosen and tested against their corresponding venoms as well as other venoms that could display cross-reactivity. These antivenoms include Wyeth Polyvalent (U.S.; exp. 1997, 2001, 2003), Antivipmyn® (Mexico; exp. 2005, 2013, 2017), Biotecfars Polyvalent (Venezuela; exp. 2010, 2014, 2016), and SAIMR (South Africa; exp. 1997, 2005, 2017). Venoms of species tested were Crotalus atrox against Wyeth; C. atrox and Crotalus vegrandis against Antivipmyn®; C. atrox, C. vegrandis and Bothrops colombiensis against Biotecfar; and Bitis gabonica and Echis carinatus against South African Institute for Medical Research (SAIMR). Parameters recorded were activated clotting time (ACT), clotting rate (CR), and platelet function (PF). Preliminary results are encouraging as the antivenoms maintained significant efficacy even 20 y after their expiration date. We anticipate these results will motivate further studies and provide hope in the cases of snakebite emergencies when preferable treatments are unavailable.
Collapse
Affiliation(s)
- Elda E Sánchez
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363-8202, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363-8202, USA.
| | - Chesney Migl
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363-8202, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363-8202, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363-8202, USA
| | - Alexis Rodriguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Jacob A Galan
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363-8202, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363-8202, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363-8202, USA
| |
Collapse
|