1
|
Paiva ALB, de Souza Santos JH, Queiroz Machado VP, Santos DM, Diniz MRV, Guerra-Duarte C. Unveiling hidden toxin diversity: Discovery of novel venom components through manual curation of highly expressed sequences annotated as "no hits" in Phoneutria nigriventer spider venom gland transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101155. [PMID: 37952503 DOI: 10.1016/j.cbd.2023.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Spider venoms have evolved over thousands of years, optimizing feeding and defense mechanisms. Venom components show pharmacological and biotechnological potential, rising interest in their study. However, the isolation of spider toxins for experimental evaluation poses significant challenges. To address this, transcriptomic analysis combined with computational tools has emerged as an appealing approach to characterizing spider venoms. However, many sequences remain unidentified after automatic annotation. In this study, we manually curated a subset of previously unannotated sequences from the Phoneutria nigriventer transcriptome and identified new putative venom components. Our manual analysis revealed 29 % of the analyzed sequences were potential venom components, 29 % hypothetical/uncharacterized proteins, and 17 % cellular function proteins. Only 25 % of the originally unannotated dataset remained without any identification. Most reclassified components were cysteine-rich peptides, including 23 novel putative toxins. We also found glycine-rich peptides (GRP), corroborating the previous description of GRPs in Phoneutria pertyi venom glands. Furthermore, to emphasize the recurrence of the lack of annotation in spider venom glands transcripts, we provide a survey of the percentage of unidentified sequences in several published spider venom transcriptomics studies. In conclusion, our study highlights the importance of manual curation in uncovering novel venom components and underscores the need for improved annotation strategies to fully exploit the medical and biotechnological potential of spider venoms.
Collapse
Affiliation(s)
| | | | | | - Daniel Moreira Santos
- Campus Centro-Oeste, Universidade Federal de São João Del-Rey, Divinópolis, Minas Gerais, Brazil
| | | | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil. https://twitter.com/@claraguerrad
| |
Collapse
|
2
|
Yin WH, You YM, Tembrock LR, Ding LJ, Zhang CG, Zhao Y, Yang ZZ. Transcriptome-based analyses reveal venom diversity in two araneomorph spiders, Psechrus triangulus and Hippasa lycosina. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101101. [PMID: 37352672 DOI: 10.1016/j.cbd.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/25/2023]
Abstract
The spiders Psechrus triangulus and Hippasa lycosina are widely distributed in Yunnan Province, China, and are important natural enemies of agricultural pests, yet studies regarding the composition of their venom are lacking. In this study, cDNA libraries were constructed from venom gland tissue of P. triangulus and H. lycosina and used for transcriptomic analysis. From the analysis, 39 and 31 toxin-like sequences were predicted for P. triangulus and H. lycosina, respectively. The predicted neurotoxin sequences were categorized according to cysteine sequence motifs, and the predicted neurotoxin sequences of P. triangulus and H. lycosina could be classified into 9 and 6 toxin families, respectively. In addition, potential acetylcholinesterase, hyaluronidase, and astaxanthin-like metalloproteinases were identified through annotation. In summary, transcriptomic techniques were invaluable in mining the gene expression information from these two spider species to explore the toxin composition of their venom and determine how they differ. Studies of this type provide essential baseline data for studying the evolution and physiological activities of spider toxins and for the potential development of medicinal compounds.
Collapse
Affiliation(s)
- Wen-Hao Yin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Yong-Ming You
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Li-Jun Ding
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China.
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China.
| |
Collapse
|
3
|
Ramírez DS, Alzate JF, Simone Y, van der Meijden A, Guevara G, Franco Pérez LM, González-Gómez JC, Prada Quiroga CF. Intersexual Differences in the Gene Expression of Phoneutria depilata (Araneae, Ctenidae) Toxins Revealed by Venom Gland Transcriptome Analyses. Toxins (Basel) 2023; 15:429. [PMID: 37505698 PMCID: PMC10467060 DOI: 10.3390/toxins15070429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The wandering spider, Phoneutria depilata, is one of Colombia's most active nocturnal arthropod predators of vertebrates and invertebrates. Its venom has been a relevant subject of study in the last two decades. However, the scarcity of transcriptomic data for the species limits our knowledge of the distinct components present in its venom for linking the mainly neurotoxic effects of the spider venom to a particular molecular target. The transcriptome of the P. depilata venom gland was analyzed to understand the effect of different diets or sex and the impact of these variables on the composition of the venom. We sequenced venom glands obtained from ten males and ten females from three diet treatments: (i) invertebrate: Tenebrio molitor, (ii) vertebrate: Hemidactylus frenatus, and (iii) mixed (T. molitor + H. frenatus). Of 17,354 assembled transcripts from all samples, 65 transcripts relating to venom production differed between males and females. Among them, 36 were classified as neurotoxins, 14 as serine endopeptidases, 11 as other proteins related to venom production, three as metalloprotease toxins, and one as a venom potentiator. There were no differences in transcripts across the analyzed diets, but when considering the effect of diets on differences between the sexes, 59 transcripts were differentially expressed. Our findings provide essential information on toxins differentially expressed that can be related to sex and the plasticity of the diet of P. depilata and thus can be used as a reference for venomics of other wandering spider species.
Collapse
Affiliation(s)
- Diego Sierra Ramírez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | - Yuri Simone
- CIBIO/InBIO/Biopolis, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal; (Y.S.); (A.v.d.M.)
| | - Arie van der Meijden
- CIBIO/InBIO/Biopolis, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal; (Y.S.); (A.v.d.M.)
| | - Giovany Guevara
- Grupo de Investigación en Zoología (GIZ), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia;
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia;
| | - Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| | - Carlos F. Prada Quiroga
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| |
Collapse
|
4
|
Velásquez-Serra GC, García-Yuquilema CJ, Serrano-Murillo L. Aracnidismo: Caracteres diferenciales y manifestaciones clínicas. Revisión Sistemática. KASMERA 2022. [DOI: 10.56903/kasmera.5037666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Las arañas son artrópodos venenosos de distribución mundial, debido a su adaptabilidad y presencia en zonas tanto rurales como urbanas. Se establecieron como objetivos determinar los caracteres morfológicos más resaltantes, mencionar las características diferenciales con otros animales ponzoñosos, identificar los tres géneros de importancia médica y conocer los caracteres distintivos, incluyendo la presentación clínica y tratamiento, y finalmente algunas medidas preventivas. La revisión bibliográfica de este contenido corresponde a una serie de base de datos de los últimos veinte años. Los tres géneros más comunes en Latinoamérica, y con mayor reporte de casos en Ecuador son: Phoneutria, Loxosceles y Latrodectus. Las especies de importancia médica en Ecuador son: P. perty, P. fera, Latrodectus wakckenaer, Loxosceles heinecken. El componente principal del veneno de Loxosceles es la esfingomielinasa D, de Phoneutria al parecer interviene del sistema kalicreina-kininógeno-kinina; en cambio, Latrodectus, el veneno tiene como componente principal una alfa-latroxina. Esta revisión ofrece algunos fundamentos para conocer el género que causa, la sintomatología crucial, para prescribir un correcto tratamiento y evitar las complicaciones causadas por picaduras de arañas
Collapse
Affiliation(s)
- Glenda Coromoto Velásquez-Serra
- Universidad de Guayaquil. Facultad de Ciencias Médicas. Carrera de Medicina. Catedra de Medicina Tropical. Grupo de Investigación Enfermedades Tropicales desatendidas del Ecuador. Guayaquil-Guayas. Ecuador
| | - Camila Janina García-Yuquilema
- Universidad de Guayaquil. Facultad de Ciencias Médicas. Grupo de Investigación Enfermedades Tropicales desatendidas del Ecuador. Guayaquil-Guayas. Ecuador
| | - Lady Serrano-Murillo
- Universidad de Guayaquil. Facultad de Ciencias Médicas. Grupo de Investigación Enfermedades Tropicales desatendidas del Ecuador. Guayaquil-Guayas. Ecuador
| |
Collapse
|
5
|
Ding LJ, Wu XM, Zhang CG, Gao PF, Zhang Y, Yang ZZ, Zhao Y. Toxin diversity revealed by de novo transcriptome assembly for venom gland in two species of spiders (Trichonephila clavata and Sinopoda pengi). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100984. [PMID: 35462116 DOI: 10.1016/j.cbd.2022.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
During long-term predator-prey coevolution, spiders have generated a vast diversity of toxins. Trichonephila clavata is a web-spinning spider whose large, well-constructed webs and venomous arsenal facilitate prey capture. In contrast, Sinopoda pengi is an ambush predator with agile locomotion and strong chelicerae for hunting. In this study, transcriptomic analysis was performed to describe the predicted toxins of S. pengi and T. clavata. A total of 43 and 47 of these unigenes from S. pengi and T. clavata, respectively, were predicted to have toxin activity. Putative neurotoxins were classified to the family level according to cysteine arrangement; 4 and 6 toxin families were produced by S. pengi and T. clavata, respectively. In addition, potential metalloproteases, acetylcholinesterases, serine proteases, hyaluronidases and phospholipases were found by annotation in databases. In summary, molecular templates with potential application value for medical and biological fields were obtained by classifying and characterizing presumed venom components, which established a foundation for further study of venom.
Collapse
Affiliation(s)
- Li-Jun Ding
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Xiu-Mei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Peng-Fei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Yan Zhang
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan 650051, China
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| |
Collapse
|
6
|
Verdes A, Taboada S, Hamilton BR, Undheim EAB, Sonoda GG, Andrade SCS, Morato E, Isabel Marina A, Cárdenas CA, Riesgo A. Evolution, expression patterns and distribution of novel ribbon worm predatory and defensive toxins. Mol Biol Evol 2022; 39:6580756. [PMID: 35512366 PMCID: PMC9132205 DOI: 10.1093/molbev/msac096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribbon worms are active predators that use an eversible proboscis to inject venom into their prey and defend themselves with toxic epidermal secretions. Previous work on nemertean venom has largely focused on just a few species and has not investigated the different predatory and defensive secretions in detail. Consequently, our understanding of the composition and evolution of ribbon worm venoms is still very limited. Here, we present a comparative study of nemertean venom combining RNA-seq differential gene expression analyses of venom-producing tissues, tandem mass spectrometry-based proteomics of toxic secretions, and mass spectrometry imaging of proboscis sections, to shed light onto the composition and evolution of predatory and defensive toxic secretions in Antarctonemertes valida. Our analyses reveal a wide diversity of putative defensive and predatory toxins with tissue-specific gene expression patterns and restricted distributions to the mucus and proboscis proteomes respectively, suggesting that ribbon worms produce distinct toxin cocktails for predation and defense. Our results also highlight the presence of numerous lineage-specific toxins, indicating that venom evolution is highly divergent across nemerteans, producing toxin cocktails that might be finely tuned to subdue different prey. Our data also suggest that the hoplonemertean proboscis is a highly specialized predatory organ that seems to be involved in a variety of biological functions besides predation, including secretion and sensory perception. Overall, our results advance our knowledge into the diversity and evolution of nemertean venoms and highlight the importance of combining different types of data to characterize toxin composition in understudied venomous organisms.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departament of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gabriel G Sonoda
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia C S Andrade
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Esperanza Morato
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel Marina
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
7
|
Vásquez-Escobar J, Romero-Gutiérrez T, Morales JA, Clement HC, Corzo GA, Benjumea DM, Corrales-García LL. Transcriptomic Analysis of the Venom Gland and Enzymatic Characterization of the Venom of Phoneutria depilata (Ctenidae) from Colombia. Toxins (Basel) 2022; 14:toxins14050295. [PMID: 35622542 PMCID: PMC9144723 DOI: 10.3390/toxins14050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
The transcriptome of the venom glands of the Phoneutria depilata spider was analyzed using RNA-seq with an Illumina protocol, which yielded 86,424 assembled transcripts. A total of 682 transcripts were identified as potentially coding for venom components. Most of the transcripts found were neurotoxins (156) that commonly act on sodium and calcium channels. Nevertheless, transcripts coding for some enzymes (239), growth factors (48), clotting factors (6), and a diuretic hormone (1) were found, which have not been described in this spider genus. Furthermore, an enzymatic characterization of the venom of P. depilata was performed, and the proteomic analysis showed a correlation between active protein bands and protein sequences found in the transcriptome. The transcriptomic analysis of P. depilata venom glands show a deeper description of its protein components, allowing the identification of novel molecules that could lead to the treatment of human diseases, or could be models for developing bioinsecticides.
Collapse
Affiliation(s)
- Julieta Vásquez-Escobar
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| | - Teresa Romero-Gutiérrez
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - José Alejandro Morales
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - Herlinda C. Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Gerardo A. Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Dora M. Benjumea
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
| | - Ligia Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| |
Collapse
|
8
|
Marchi FC, Mendes-Silva E, Rodrigues-Ribeiro L, Bolais-Ramos LG, Verano-Braga T. Toxinology in the proteomics era: a review on arachnid venom proteomics. J Venom Anim Toxins Incl Trop Dis 2022; 28:20210034. [PMID: 35291269 PMCID: PMC8893269 DOI: 10.1590/1678-9199-jvatitd-2021-0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.
Collapse
Affiliation(s)
- Filipi Calbaizer Marchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Edneia Mendes-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Gabriel Bolais-Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Fernandes FF, Moraes JR, Santos JLD, Soares TG, Gouveia VJP, Matavel ACS, Borges WDC, Cordeiro MDN, Figueiredo SG, Borges MH. Comparative venomic profiles of three spiders of the genus Phoneutria. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210042. [PMID: 35283937 PMCID: PMC8875809 DOI: 10.1590/1678-9199-jvatitd-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Spider venoms induce different physio-pharmacological effects by binding
with high affinity on molecular targets, therefore being of biotechnological
interest. Some of these toxins, acting on different types of ion channels,
have been identified in the venom of spiders of the genus
Phoneutria, mainly from P.
nigriventer. In spite of the pharmaceutical potential demonstrated
by P. nigriventer toxins, there is limited information on
molecules from venoms of the same genus, as their toxins remain poorly
characterized. Understanding this diversity and clarifying the differences
in the mechanisms of action of spider toxins is of great importance for
establishing their true biotechnological potential. This prompted us to
compare three different venoms of the Phoneutria genus:
P. nigriventer (Pn-V), P. eickstedtae
(Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by
SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and
electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall
similarity in their components, with only minor differences. The presence of
a high number of similar proteins was evident, particularly toxins in the
mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were
detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6.
All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning
protein composition and enzymatic activities, containing isoforms of the
same toxins sharing high sequence homology, with minor modifications.
However, these structural and functional variations are very important for
venom diversity. In addition, our findings will contribute to the
comprehension of the molecular diversity of the venoms of the other species
from Phoneutria genus, exposing their biotechnological
potential as a source for searching for new active molecules.
Collapse
|
10
|
Khamtorn P, Peigneur S, Amorim FG, Quinton L, Tytgat J, Daduang S. De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules 2021; 27:molecules27010047. [PMID: 35011282 PMCID: PMC8746590 DOI: 10.3390/molecules27010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.
Collapse
Affiliation(s)
- Pornsawan Khamtorn
- Program in Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Sakda Daduang
- Center for Research and Development of Herbal Health Products (CDR-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
11
|
Kuhn-Nentwig L, Lischer HEL, Pekár S, Langenegger N, Albo MJ, Isaia M, Nentwig W. Linear Peptides-A Combinatorial Innovation in the Venom of Some Modern Spiders. Front Mol Biosci 2021; 8:705141. [PMID: 34295924 PMCID: PMC8290080 DOI: 10.3389/fmolb.2021.705141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Heidi E. L. Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Maria J. Albo
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Marco Isaia
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Torino, Torino, Italy
| | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel) 2019; 11:toxins11100611. [PMID: 31652611 PMCID: PMC6832493 DOI: 10.3390/toxins11100611] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.
Collapse
|
13
|
Lüddecke T, Vilcinskas A, Lemke S. Phylogeny-Guided Selection of Priority Groups for Venom Bioprospecting: Harvesting Toxin Sequences in Tarantulas as a Case Study. Toxins (Basel) 2019; 11:E488. [PMID: 31450685 PMCID: PMC6784122 DOI: 10.3390/toxins11090488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Animal venoms are promising sources of novel drug leads, but their translational potential is hampered by the low success rate of earlier biodiscovery programs, in part reflecting the narrow selection of targets for investigation. To increase the number of lead candidates, here we discuss a phylogeny-guided approach for the rational selection of venomous taxa, using tarantulas (family Theraphosidae) as a case study. We found that previous biodiscovery programs have prioritized the three subfamilies Ornithoctoninae, Selenocosmiinae, and Theraphosinae, which provide almost all of the toxin sequences currently available in public databases. The remaining subfamilies are poorly represented, if at all. These overlooked subfamilies include several that form entire clades of the theraphosid life tree, such as the subfamilies Eumenophorinae, Harpactirinae, and Stromatopelminae, indicating that biodiversity space has not been covered effectively for venom biodiscovery in Theraphosidae. Focusing on these underrepresented taxa will increase the likelihood that promising candidates with novel structures and mechanisms of action can be identified in future bioprospecting programs.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstr. 2, 35394 Gießen, Germany.
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstr. 2, 35394 Gießen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Sarah Lemke
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|