1
|
Huang CY, Zuo MT, Qi XJ, Gong MD, Xu WB, Meng SY, Long JY, Li PS, Sun ZL, Zheng XF, Liu ZY. Hypoxia tolerance determine differential gelsenicine-induced neurotoxicity between pig and mouse. BMC Med 2025; 23:156. [PMID: 40075370 PMCID: PMC11905507 DOI: 10.1186/s12916-025-03984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) is widely recognized as one of the most toxic plants globally, particularly harmful to humans. Some reports indicate that it is non-toxic to pigs and even has a growth-promoting effect; however, the underlying reasons for this paradox remain unclear. METHODS Gelsenicine is the main toxic component of G. elegans. This study characterized gelsenicine-induced toxicity using electrophysiological recordings, molecular dynamic simulations, c-Fos immunostaining, and multi-omics technologies. Additionally, we conducted a comprehensive analysis comparing the toxic effects of gelsenicine across various animal species through examinations of tissue distribution, blood gas analysis, metabonomics, and behavioral tests. RESULTS We demonstrated that gelsenicine-induced hypoxia leads to respiratory depression in mice by enhancing the effect of gamma-aminobutyric acid (GABA) on GABA receptors (GABARs). Glycine significantly ameliorated hypoxia and improved the survival of gelsenicine-poisoned mice. Under gelsenicine-induced hypoxic conditions, N-methyl-D-aspartate (NMDA) receptor function and mitochondrial energy metabolism processes were perturbed, resulting in neuronal excitotoxicity. Finally, we confirmed that pigs could tolerate hypoxia and were resistant to gelsenicine toxicity due to high concentrations of circulating glycine and low levels of NMDA receptors (NMDARs) in the hippocampus. CONCLUSIONS These findings suggest that hypoxic protection should be considered as a potential therapeutic strategy for gelsenicine poisoning. Our study contributes to preventing potential risks posed by G. elegans poisoning to human and animal health.
Collapse
Affiliation(s)
- Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Meng-Die Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Jiang-Yu Long
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Pi-Shun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao-Feng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Ye B, Wang Q, Ye Q, Wang D, Wang Z, Dong Z, Zou J. Effects of different combinations of koumine and gelsemine on growth performance, intestinal health, and transcriptome of Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133130. [PMID: 38086301 DOI: 10.1016/j.jhazmat.2023.133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Koumine (KM) and gelsemine (GS) have shown significant benefits in livestock production, but their potential in aquaculture remains largely unexplored. This study examined the impact of different KM and GS combinations as feed additives on C. carpio (90 fish per group, initial weight 1.95 ± 0.08 g). KM and GS were introduced in ratios of 2:2 (mg/kg), 2:1 (mg/kg), and 2:0.67 (mg/kg) over a 10-week aquaculture experiment. The results demonstrate that the 2:1 (mg/kg) group increases the villus length, muscular layer thickness, crude protein, and crude fat content. Regarding fatty acid content, KM and GS enhance the levels of various fatty acids, including the total saturated fatty acid and total monounsaturated fatty acid. Additionally, KM and GS improve the composition and function of the intestinal microbiota. The 2:1 (mg/kg) group significantly elevates the enzymatic activities of SOD, MDA, CAT and upregulates the expression of immune-related genes such as toll-like receptor 2, transforming growth factor β, and glutathione S-transferase. Transcriptomic analysis suggests that KM and GS may have potential benefits for nutrient utilization and immune regulation in C. carpio. In summary, this study provides valuable insights into the use of KM and GS as feed additives in aquaculture.
Collapse
Affiliation(s)
- Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiao Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Cao YH, Chen TT, Peng X, Wu RR, Li X, Liu GF, Shen LX, Chen XJ, Yang Z, Liu ZY, Sun ZL, Wu Y. Effect of Dietary Gelsemium elegans Benth. Extract on the Growth, Slaughter Performance, Meat Quality, Intestinal Morphology, and Microflora of Yellow-Feathered Chickens. J Poult Sci 2023; 60:2023023. [PMID: 37691877 PMCID: PMC10482210 DOI: 10.2141/jpsa.2023023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
The plant species Gelsemium elegans Benth. (GEB) promotes pig and sheep growth; however, little is known about its effects in chickens. In this study, a GEB extract (GEBE) was prepared, and its effects on the growth, slaughter, antioxidant performance, meat quality, serum biochemical indices, intestinal morphology, and microflora of yellow-feathered chickens were evaluated. In total, 600 chickens aged 15 days were randomly divided into four groups with five replicates each and fed a basal diet containing 0% (control), 0.25% (0.25 GEBE), 0.75% (0.75 GEBE), or 1.25% (1.25 GEBE) GEBE until 49 days of age. Chickens were then killed, and their meat, organs, and serum and cecal contents were collected. GEBE reduced the feed conversion ratio, particularly in the 0.75 and 1.25 GEBE groups. Furthermore, the GEBE diet improved meat tenderness and reduced the meat expressible moisture content and liver malondialdehyde content, indicating high meat quality. Whereas the 0.25 GEBE diet increased the level of Lactobacillus acidophilus in the cecum, the 0.75 GEBE diet decreased the Escherichia coli level therein. These findings demonstrate that GEBE may improve the meat quality and cecal microbiota of yellow-feathered chickens, providing a basis for identifying candidate alternatives to conventional antibiotics as growth promoting feed additives.
Collapse
Affiliation(s)
- Yu-Hang Cao
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Ting-Ting Chen
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Xiong Peng
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Rong-Rong Wu
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Xiang Li
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang
410329, China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang
410329, China
| | - Li-Xia Shen
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Xiao-Jun Chen
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Zi Yang
- Academician Workstation, Changsha Medical University,
Changsha 410219, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| |
Collapse
|
4
|
Wu Y, Long XM, Liu GF, Bai X, Sun ZL, Liu ZY. The multicomponent residue depletion of Gelsemium elegans in pig tissues, urine, and plasma. Front Vet Sci 2023; 9:1111782. [PMID: 36713860 PMCID: PMC9880259 DOI: 10.3389/fvets.2022.1111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Gelsemium elegans (G. elegans) as a traditional medicinal plant used in livestock production. The use of G. elegans in veterinary clinics may pose safety risks to human health. Objectives The aim of this study was to investigate tissue residue depletion in pigs fed G. elegans powder. Methods A precise quantitation method and a simultaneous semi-quantitation method for multiple components independently of standards in pig tissues were developed for the first time. The two methods were validated in terms of specificity, LODs, LOQs, linearity, accuracy, precision, and matrix effects. They were then applied to a tissue residue depletion study after G. elegans powder at a dose of 2% per kg feed were fed to pigs. Results Compared with precise quantitation, the method validation results indicated that the semi-quantitation method was reliable and acceptable for multicomponent quantification independent of standards. Many G. elegans alkaloids are widely distributed in most tissues of pigs. Tissue residue depletion studies indicated that 14-hydroxygelsenicine, 11-hydroxygelsenicine, and gelsemoxonine could be used as potential residue markers, and pancreas, small intestine, and lung tissues could be considered as potential residue target tissues of G. elegans. In addition, both urine and plasma could be used to predict 14-hydroxygelsenicine and gelsemoxonine residues in the liver, pancreas, and small intestinal tissues of pigs. Conclusion The developed semi-quantification method can be applied to monitor the application and residue of G. elegans. The results provide scientific evidence for evaluating the safety of animal-derived food from G. elegans for consumers and will be helpful for its application and future development.
Collapse
Affiliation(s)
- Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, Hunan, China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang, Hunan, China
| | - Xia Bai
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,*Correspondence: Zhi-Liang Sun ✉
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,Zhao-Ying Liu ✉
| |
Collapse
|
5
|
Koumine ameliorates concanavalin A-induced autoimmune hepatitis in mice: involvement of the Nrf2, NF-κB pathways, and gut microbiota. Int Immunopharmacol 2023; 114:109573. [PMID: 36527886 DOI: 10.1016/j.intimp.2022.109573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Gelsemiumelegans(Gardner. & Chapm.) Benth. has long been considered a traditional Chinese medicine effective against rheumatoid pain, cancer, cirrhosis, and skin diseases. Koumine (KM), the most abundant alkaloid in G.elegans Benth., demonstrates a variety of biological effects, including antitumor, analgesic, anxiolytic, anti-inflammatory, antidepressant, antioxidant, immunoregulatory, and hepatoprotective effects. Furthermore, the relatively low toxicity of KM makes it a promising drug candidate. This study aimed to investigate the protective effects of KM and its possible mechanisms using a concanavalin A (Con A)-induced autoimmune hepatitis (AIH) model in mice. Mice were orally administered different doses of KM for 14 d before Con A tail vein injections. The effects of KM on serum biochemical markers and liver histopathology were then evaluated 12 h after Con A exposure. The Nrf2 and NF-κB signaling pathways and alterations in gut microbiota were determined using western blotting, immunohistochemistry, and 16S rRNA sequencing to explore the underlying mechanisms of KM exposure. KM pretreatment dose-dependently decreased serum liver injury markers (Alanine aminotransferase, and aspartate aminotransferase) and cytokine levels (Tumor necrosis factor-α and interleukin-6), as well as the liver pathological damage triggered by Con A. Furthermore, the results of the multi-technique analysis indicated that KM activated the Nrf2 pathway, upregulated the expression of anti-oxidation factors HO-1 and Nrf2, and downregulated the expression of Keap1. Moreover, the NF-κB signaling pathway was inhibited. Interestingly, pre-treatment with KM also significantly improved the composition of the gut microbiota probably because it increases the richness of probiotics. Our findings suggest that KM pretreatment could attenuate Con A-induced AIH, the Nrf2 and NF-κB signaling pathways, and that gut microbiota are involved in the process of the hepatoprotective effect. This study provides a theoretical basis for the development of KM as an effective agent against AIH.
Collapse
|
6
|
Sex Differences in the In Vivo Exposure Process of Multiple Components of Gelsemium elegans in Rats. Metabolites 2022; 13:metabo13010033. [PMID: 36676958 PMCID: PMC9865510 DOI: 10.3390/metabo13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Asian Gelsemium elegans (G. elegans) has a wide range of pharmacological activities. However, its strong toxicity limits its potential development and application. Interestingly, there are significant gender differences in G. elegans toxicity in rats. This work aimed to elucidate the overall absorption, distribution, metabolism, and excretion (ADME) of whole G. elegans crude extract in female and male rats using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS), which facilitates determining the reasons for the gender differences in toxicity. A total of 25 absorbed bioactive components and 3 related produced metabolites were tentatively identified in female rats, while only 17 absorbed bioactive components and 3 related produced metabolites were identified in male rats. By comparison of peak intensities, most compounds were found to be more active in absorption, distribution and excretion in female rats than in male rats, which showed that female rats were more sensitive to G. elegans. This study was the first to investigate the multicomponent in vivo process of G. elegans in rats and compare the differences between sexes. It was hypothesized that differences in the absorption of gelsedine-type alkaloids were one of the main reasons for the sex differences in G. elegans toxicity.
Collapse
|
7
|
Chao HH, Wang L, Ma HH, Zhao AH, Xiao HW, Zhang XF. Identification of apoptotic pathways in zearalenone-treated mouse sertoli cells. J Toxicol Sci 2022; 47:257-268. [PMID: 35650142 DOI: 10.2131/jts.47.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Zearalenone (ZEN), one of the most prevalent non-steroidal oestrogenic mycotoxins, is primarily produced by Fusarium fungi. Due to its toxicity as an oestrogenic compound and wide distribution in feed and foods, the reproductive toxicology of ZEN exposure is of public concern. The aim of the present study was to investigate the effect of ZEN on Sertoli cells to identify apoptotic pathways induced by this compound. We found that ZEN reduced the viability and caused apoptosis in Sertoli cells in vitro. Notably, we observed that such effects were associated with a significant increase in reactive oxygen species (ROS) and the number of cells that showed positive staining for γH2AX and RAD51, enzymes essential for repairing DNA damage. There was a parallel decrease in the expression of occludin and connexin 43, proteins that are present in the testis-blood barrier and gap junctions of Sertoli cells, respectively. Overall, the present study confirms that ZEN exposure can have serious deleterious effects on mammalian Sertoli cells and offers novel insight about its molecular targets in these cells.
Collapse
Affiliation(s)
- Hu-He Chao
- College of Veterinary medicine, Qingdao Agricultural University, China.,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, China
| | - Lei Wang
- College of Veterinary medicine, Qingdao Agricultural University, China
| | - Hao-Hai Ma
- College of Veterinary medicine, Qingdao Agricultural University, China
| | | | - Hong-Wei Xiao
- Institute of Animal Husbandry and Veterinary Research, Hubei Academy of Agricultural Sciences, China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, China
| |
Collapse
|
8
|
Li YJ, Yang K, Long XM, Xiao G, Huang SJ, Zeng ZY, Liu ZY, Sun ZL. Toxicity assessment of gelsenicine and the search for effective antidotes. Hum Exp Toxicol 2022; 41:9603271211062857. [PMID: 35018838 DOI: 10.1177/09603271211062857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gelsenicine, one of the most toxic alkaloids of Gelsemium elegans Benth (G. elegans), causes severe respiratory depression. However, its toxicity mechanisms are yet to be elucidated and no effective antidotes are available. OBJECTIVE This study aimed to analyse the toxicity characteristics of gelsenicine. METHODS Both acute and sub-acute toxicities were evaluated. Gelsenicine distribution and elimination in the central nervous system (CNS) and blood were observed. Effective antidotes for gelsenicine poisoning were screened. RESULTS In the acute toxicity study, gelsenicine was highly toxic, and female rats exhibited greater sensitivity to gelsenicine than male rats (LD50 0.520 mg/kg vs 0.996 mg/kg, respectively). Death was primarily caused by respiratory failure. However, in the sub-acute toxicity study, no significant organ damage was observed. Gelsenicine was easily absorbed from the gastrointestinal tract and penetrated the blood-brain barrier, reaching peak concentrations in the CNS within 15 min and rapidly decreasing thereafter. Flumazenil or diazepam combined with epinephrine reversed gelsenicine toxicity and significantly improved survival rate in mice. CONCLUSIONS Gelsenicine is a highly toxic substance that affects nerve conduction without causing damage; the potential toxic mechanism is possibly associated with GABAA receptors. Our findings provide insights into the clinical treatment of gelsenicine-related poisoning and its toxicity mechanisms.
Collapse
Affiliation(s)
- Yu-Juan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,Department of Basic Medicine, Xiangnan University, Chenzhou, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Kun Yang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, China
| | - Gang Xiao
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Si-Juan Huang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zi-Yue Zeng
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhi-Liang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| |
Collapse
|