1
|
Niu B, Liang C, Lundholm N, Li A, Liu Y, Ran R, Zhang L, Li Y. Abundance of non-toxic and low-level toxic Pseudo-nitzschia explains the low levels of neurotoxin domoic acid in Chinese coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137295. [PMID: 39862770 DOI: 10.1016/j.jhazmat.2025.137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Domoic acid (DA), a well-known marine neurotoxin, is produced by toxic Pseudo-nitzschia species. However, the knowledge of DA in Chinese coastal waters remains limited, and the primary biological sources in these waters are still unknown. In this study, 200 surface phytoplankton samples were collected during summer and spring, covering the entire Chinese coastline. Particulate DA (pDA) was detected in 41 samples, and among these, 34 were from summer, particularly nearshore. The peak content, 230 ng L-1, was in the southern Yellow Sea, followed by 116.6 ng L-1 in the Taiwan Strait, both in July. Multiple methods were employed to trace the biological sources of pDA. The results indicated that the primary producer was P. multistriata in the southern Yellow Sea, but P. cuspidata Clade III in the Taiwan Strait. Temperature was the key factor affecting the composition of Pseudo-nitzschia community, and both primary DA producers showed warm temperature preferences. The levels of pDA in this study was comparatively low, which may be explained by the prevalence of non-toxic Pseudo-nitzschia species and the low DA-production capacity of toxic species under the prevailing environmental conditions. This study represents the first exploration of pDA along the entire Chinese coastline, identifying primary producers and thus enhancing our understanding of DA and toxic Pseudo-nitzschia.
Collapse
Affiliation(s)
- Biaobiao Niu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| | - Cuiwen Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, Copenhagen 1353, Denmark.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, China.
| | - Yang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Ruiwei Ran
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| |
Collapse
|
2
|
Tan SN, Kotaki Y, Teng ST, Lim HC, Gao C, Lundholm N, Wolf M, Gu H, Lim PT, Leaw CP. Intraspecific genetic diversity with unrestricted gene flow in the domoic acid-producing diatom Nitzschia navis-varingica (Bacillariophyceae) from the Western Pacific. HARMFUL ALGAE 2025; 141:102769. [PMID: 39645396 DOI: 10.1016/j.hal.2024.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2). Frustule morphology of each strain was examined by TEM. The LSU rDNA phylogeny revealed a monophyletic lineage encompassing all strains, with sequence divergences of <0.9 %. Phylogenetic and population genetic analyses of ITS2 identified eight distinct clades (designated as Groups A to H) with moderate to high genetic heterogeneity (0.5-19.7 %). The low genetic differentiations between the geographically separated populations (pairwise FST of <0.03) suggested high gene flow and lack of spatial genetic structuring. Molecular clock analysis of the ITS2 phylogeny traced the evolutionary history of N. navis-varingica to the Eocene Epoch, and the split between clades likely occurred from the mid-Miocene to Pleistocene Epochs (10.8-1.2 Ma). The population dispersal in the WP were likely influenced by historical events like the Quarternary glacial cycles during the period, contributing to its homogenous distributions in the region.
Collapse
Affiliation(s)
- Suh Nih Tan
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia; China-ASEAN College of Marine Sciences, Xiamen University Malaysia 43900 Sepang, Selangor, Malaysia.
| | - Yuichi Kotaki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572 Japan
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hong Chang Lim
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Chunlei Gao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland 97074 Würzburg, Germany
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia.
| |
Collapse
|
3
|
He Z, Xu Q, Chen Y, Liu S, Song H, Wang H, Leaw CP, Chen N. Acquisition and evolution of the neurotoxin domoic acid biosynthesis gene cluster in Pseudo-nitzschia species. Commun Biol 2024; 7:1378. [PMID: 39443678 PMCID: PMC11499653 DOI: 10.1038/s42003-024-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Of the hitherto over 60 taxonomically identified species in the genus of Pseudo-nitzschia, 26 have been confirmed to be toxigenic. Nevertheless, the acquisition and evolution of the toxin biosynthesis (dab) genes by this extensive group of Pseudo-nitzschia species remains unclear. Through constructing chromosome-level genomes of three Pseudo-nitzschia species and draft genomes of ten additional Pseudo-nitzschia species, putative genomic integration sites for the dab genes in Pseudo-nitzschia species were explored. A putative breakpoint was observed in syntenic regions in the dab gene cluster-lacking Pseudo-nitzschia species, suggesting potential independent losses of dab genes. The breakpoints between this pair of conserved genes were also identified in some dab genes-possessing Pseudo-nitzschia species, suggesting that the dab gene clusters transposed to other loci after the initial integration. A "single acquisition, multiple independent losses (SAMIL)" model is proposed to explain the acquisition and evolution of the dab gene cluster in Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
4
|
Abdul Manaff AHN, Hii KS, Luo Z, Liu M, Law IK, Teng ST, Akhir MF, Gu H, Leaw CP, Lim PT. Mapping harmful microalgal species by eDNA monitoring: A large-scale survey across the southwestern South China Sea. HARMFUL ALGAE 2023; 129:102515. [PMID: 37951609 DOI: 10.1016/j.hal.2023.102515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 11/14/2023]
Abstract
A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.
Collapse
Affiliation(s)
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minlu Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Mohd Fadzil Akhir
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| |
Collapse
|
5
|
Puilingi C, Tan SN, Maeno Y, Leaw CP, Lim PT, Yotsu-Yamashita M, Terada R, Kotaki Y. First record of the diatom Nitzschia navis-varingica (Bacillariophyceae) producing amnesic shellfish poisoning-toxins from Papua New Guinea. Toxicon 2022; 216:65-72. [PMID: 35792190 DOI: 10.1016/j.toxicon.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
To determine the species distribution of an amnesic shellfish poisoning (ASP) toxins-producing diatom Nitzschia navis-varingica outside its current restricted geographical distribution range in Asian coastal waters, samples were collected from two sites of Bootless Bay, located on southwest coast of Papua New Guinea near Port Moresby. A total of twenty-one strains of N. navis-varingica were isolated and the clonal cultures established. The species identity was confirmed by molecular characterization based on the ribosomal DNA markers. The LSU rDNA phylogenetic inference revealed a monophyletic clade of all strains, clustered with N. navis-varingica with high bootstrap supports. ASP toxin production in the strains was investigated by HPLC with fluorescence detection and subsequently confirmed for the representative isolates by LC-MS/MS with multiple reaction monitoring (MRM) mode. All eleven strains from site A showed presence of domoic acid (DA) and isodomoic acid (IB); the toxin quota ranged from 0.70 to 4.63 pg cell-1 (average 2.75 ± 1.26 pg cell-1, n = 11), with the composition of DA and IB of 21 DA: 79 IB. While for strains from site B, four out of ten strains showed presence of DA and IB, with the toxin quota ranged from 1.40 to 3.84 (average 2.57 ± 1.17 pg cell-1, n = 4); the composition was 52 DA: 48 IB. The strains examined in this study were divided into toxic and probably non-toxic groups in ITS2 phylogeny. This represents the first record of domoic acid-producing Nitzschia navis-varingica from Papua New Guinea.
Collapse
Affiliation(s)
- Clyde Puilingi
- School of Science & Technology, Pacific Adventist University, Private Mail Bag, Boroko, NCD, Papua New Guinea
| | - Suh Nih Tan
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia; China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Yukari Maeno
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8572, Japan
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8572, Japan
| | - Ryuta Terada
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21- 24 Korimoto, Kagoshima, 890-0065, Japan
| | - Yuichi Kotaki
- Fukushima College, 1-1 Chigoike Miyashiro, Fukushima, 960-0181, Japan.
| |
Collapse
|
6
|
Mohd-Din M, Hii KS, Abdul-Wahab MF, Mohamad SE, Gu H, Leaw CP, Lim PT. Spatial-temporal variability of microphytoplankton assemblages including harmful microalgae in a tropical semi-enclosed strait (Johor Strait, Malaysia). MARINE ENVIRONMENTAL RESEARCH 2022; 175:105589. [PMID: 35228143 DOI: 10.1016/j.marenvres.2022.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms (HABs) were not new to the tropical semi-enclosed Johor Strait, with incident records that could trace back to the 1980s. HAB monitoring in the area, often, is reactive, focusing only on HAB taxa previously causing problems but neglecting potential emerging HABs. To develop datasets on HABs that can better inform and improve management practices, monitoring should expand to sample whole microphytoplankton communities. In this study, microphytoplankton community structure across the Strait was investigated. Abundances of microphytoplankton and a suite of in situ water parameters of temperatures, salinity, pH, dissolved oxygen levels, macronutrients, and chlorophyll-a contents were collected at ten sites across the Strait at monthly intervals from January 2017 to December 2018. A total of 48 genera (51 taxa) microphytoplankton were identified microscopically. Diatom was the most diverse group (32 genera), followed by dinophyte (15 genera). Bloom-forming species included diatoms Chaetoceros, Coscinodiscus, Eucampia, Pseudo-nitzschia, Rhizosolenia, Skeletonema, Thalassiosira, and dinophytes Blixaea quinquecornis and Scrippsiella. Diatom taxa that exhibit high in situ growth rates were predominant in the low-nutrient marine-influenced environment. Bloom-forming taxa including HAB taxa were found dominant in the environment with high nutrient levels and mesohaline, salinity-stratified conditions. This study provides valuable baseline data that could assist in monitoring and prediction of HABs in the Johor Strait and could be of reference to other similar tropical coastal systems.
Collapse
Affiliation(s)
- Monaliza Mohd-Din
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia; Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Taiwan-Malaysia Innovation Center for Clean Water and Sustainable Energy (WISE Centre), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shaza Eva Mohamad
- Department of Environmental and Green Technology (EGT), Malaysia Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen City, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| |
Collapse
|