1
|
Zhang X, Zhou Y, Yang H, Wei W, Zhao J. Ratiometric absorbance and fluorescence dual model immunoassay for detecting ochratoxin a based on porphyrin metalation. Food Chem 2025; 464:141608. [PMID: 39406144 DOI: 10.1016/j.foodchem.2024.141608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
In this work, a porphyrin metalation-based ratiometric absorbance and fluorescence dual model immunoassay was proposed to detect ochratoxin A (OTA). 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin (TMPyP) was pink and had a strong fluorescence, upon coordination with Hg(II), its fluorescence was quenched and the color became green. The alkaline phosphatase can catalyze the dephosphorylation of ascorbic acid 2-phosphate to produce ascorbic acid, which can reduce the coordinated Hg(II) to Hg(0) and then dissociated from TMPyP, its fluorescence was recovered. Meanwhile, the color changed from green to light pink, which can be identified by naked eye for semi-quantitative detection. The linear ranges of ratiometric absorbance and fluorescence model were 0-6.0 ng/mL and 0.1-6.0 ng/mL, respectively. The absorbance and fluorescence signals produced by porphyrin metalation can mutually verify to improve the accuracy of detection results. Besides, the ultra-sensitivity and high selectivity demonstrated this method was a powerful tool for trace OTA detection.
Collapse
Affiliation(s)
- Xingping Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China; School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yu Zhou
- School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Hualin Yang
- School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China.
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Bonerba E, Manfredi A, Dimuccio MM, Lorusso P, Pandiscia A, Terio V, Di Pinto A, Panseri S, Ceci E, Bozzo G. Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins (Basel) 2024; 16:487. [PMID: 39591242 PMCID: PMC11598023 DOI: 10.3390/toxins16110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi species belonging to the genera Aspergillus spp. and Penicillium spp. The proliferation of OTA-producing fungal species may occur due to inadequate practices during both the pre-harvest and post-harvest stages of feed. Consequently, poultry species may be exposed to high concentrations of this mycotoxin that can be transferred to animal tissues due to its carry-over, reaching dangerous concentrations in meat and meat products. Therefore, this review aims to propose a comprehensive overview of the effects of OTA on human health, along with data from global studies on the prevalence and concentrations of this mycotoxin in avian feeds, as well as in poultry meat, edible offal, and eggs. Moreover, the review examines significant gross and histopathological lesions in the kidneys and livers of poultry linked to OTA exposure. Finally, the key methods for OTA prevention and decontamination of feed are described.
Collapse
Affiliation(s)
- Elisabetta Bonerba
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Alessio Manfredi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Michela Maria Dimuccio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Patrizio Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Annamaria Pandiscia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell’ Università 6, 26900 Lodi, Italy;
| | - Edmondo Ceci
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| |
Collapse
|
3
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
4
|
Stoev SD. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses. Front Nutr 2024; 11:1335779. [PMID: 38450227 PMCID: PMC10915786 DOI: 10.3389/fnut.2024.1335779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
This review highlights the possible hazard of mycotoxins occurrence in foods and feeds in regards to foodborne diseases. The possible management of the risk of contamination of foods and feeds with mycotoxins by using natural feed additives, protecting against deleterious effects of mycotoxins or inhibiting the growth of fungi and mycotoxin production, is deeply investigated in the available literature and some effective measures for safe utilization of mycotoxin contaminated feed/food are proposed. The biological methods of decontamination, degradation or biotransformation of mycotoxins are deeply analyzed and discussed. Some natural antagonists against target fungi are also reviewed and a comparison is made with conventional fungicides for ensuring a safe prevention of mycotoxin contamination. The most common and useful chemical methods of mycotoxins decontamination of agricultural commodities or raw materials are also investigated, e.g., chemical additives inactivating or destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting the growth of fungi and mycotoxin production. The practical use and safety of various kind of feed/food additives or herbal/biological supplements as possible approach for ameliorating the adverse effects of some dangerous mycotoxins is deeply investigated and some suggestions are given. Various possibilities for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their toxicity and using some target antidotes and vitamins as supplements to the diet, are also studied in the literature and appropriate discussions or suggestions are made in this regard. Some studies on animal diets such as low carbohydrate intake, increased protein content, calorie restriction or the importance of dietary fats are also investigated in the available literature for possible amelioration of the ailments associated with mycotoxins exposure. It could be concluded that natural feed additives and bioactive supplements would be more safe and practical approach to combat foodborne mycotoxicoses as compared to chemical additives.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
5
|
Zheng X, Zhao Y, Zhang Y, Zhu Y, Zhang J, Xu D, Yang H, Zhou Y. Alkaline phosphatase triggered gold nanoclusters turn-on fluorescence immunoassay for detection of Ochratoxin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123317. [PMID: 37688875 DOI: 10.1016/j.saa.2023.123317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin which can cause a variety of diseases. Sensitive detection of OTA is significant for food safety. Herein, a feasible and sensitive immunoassay was established for OTA detection by alkaline phosphatase (ALP) triggered gold nanoclusters (AuNCs) turn-on fluorescence. The fluorescence of the AuNCs can be quenched by Cr6+ induced aggregation of AuNCs and the fluorescence resonance energy transfer (FRET) between AuNCs and Cr6+. Under the catalytic action of ALP-labelled IgG (IgG-ALP), the ascorbic acid 2-phosphate (AA2P) was hydrolyzed to ascorbic acid (AA) for the reducing of Cr6+ to Cr3+. As a result, the degrees of AuNCs aggregation and FRET were weakened and the fluorescence of AuNCs was turned on. The amount of OTA in the sample was negatively correlated with the amount of IgG-ALP captured by anti-OTA monoclonal antibody (McAb) in the microplate. In optimal conditions, the turn-on fluorescence immunoassay had a good linear range of 6.25-100 ng/mL, and the detection limit was 0.693 ng/mL. The recoveries of OTA from corn were 95.89%-101.08% for the fluorescence immunoassay. This work provided a feasible, sensitive and good selectivity fluorescence method for OTA detection.
Collapse
Affiliation(s)
- Xiaolong Zheng
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yanan Zhao
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yan Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yuanhua Zhu
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Die Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Hualin Yang
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China; College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| | - Yu Zhou
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
6
|
Badmos FO, Muhammad HL, Dabara A, Adefolalu F, Salubuyi S, Abdulkadir A, Oyetunji VT, Apeh DO, Muhammad HK, Mwanza M, Monjerezi M, Matumba L, Makun HA. Assessment of dietary exposure and levels of mycotoxins in sorghum from Niger State of Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:74-90. [PMID: 38109413 DOI: 10.1080/19440049.2023.2293998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
This study reports levels of mycotoxins in sorghum from Niger State, Nigeria, and provides a comprehensive assessment of their potential health risks by combining mycotoxin levels and dietary exposure assessment. A total of 240 samples of red and white sorghum were collected from both stores and markets across four microclimatic zones. Fungal species were identified using a dilution plate method. Aflatoxins (AFs), deoxynivalenol, nivalenol, and ochratoxin (OTA) were quantified using HPLC, whereas cyclopiazonic acid, fumonisins (FUMs) and zearalenone were quantified using ELISA. A. flavus and A. fumigatus were dominant fungal species followed by F. verticilloides, A. oryzae and P. verrucosum. Aflatoxins (mean: 29.97 µg/kg) were detected in all samples, whereas OTA (mean: 37.5 µg/kg) and FUMs (mean: 3269.8 µg/kg) were detected in 72% and 50% of the samples, respectively. Mycotoxins frequently co-occurred in binary mixtures of AFs + OTA and AFs + FUMs. Dietary exposure estimates were highest for FUMs at 230% of TDI and margin of exposures (MOEs) for both AFs and OTA (<10,000) indicating a potential risk associated with combined exposure to AFs and OTA. The Risk of hepatocellular carcinoma cases (HCC/year) attributable to AFs and OTA exposure from sorghum was estimated to be 5.99 × 105 and 0.24 × 105 cases for HBsAg + individuals based on 13.6% HBV incidence. Similarly, the HCC/year for AFs and OTA were assessed to be 3.59 × 105 and 0.14 × 105 at an 8.1% prevalence rate. Therefore, the results of this study demonstrate the high prevalence and dietary exposure to mycotoxins through sorghum consumption, raising public health and trade concerns.
Collapse
Affiliation(s)
- Fatimah Omolola Badmos
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Hadiza Lami Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Achi Dabara
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Funmilola Adefolalu
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Susan Salubuyi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Abdullahi Abdulkadir
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Victor Tope Oyetunji
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Daniel Ojochenemi Apeh
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
- Department of Biological Sciences, Confluence University of Science and Technology, Osara, Nigeria
| | - Hadiza Kudu Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Mulunda Mwanza
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Animal Health, Northwest University, Mafikeng, South Africa
| | - Maurice Monjerezi
- Department of Animal Health, Northwest University, Mafikeng, South Africa
- Department of Chemistry and Chemical Engineering, University of Malawi, Zomba, Malawi
| | - Limbikani Matumba
- Centre for Resilient Agri-Food Systems (CRAFS), University of Malawi, Zomba, Malawi
- Food Technology and Nutrition Group-NRC, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
| | - Hussaini Anthony Makun
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| |
Collapse
|
7
|
Stoev SD. Foodborne Diseases Due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment. Toxins (Basel) 2023; 15:464. [PMID: 37505733 PMCID: PMC10467111 DOI: 10.3390/toxins15070464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The subject of this review paper is to evaluate the underestimated hazard of multiple mycotoxin exposure of animals/humans for the appearance of foodborne ailments and diseases. The significance of joint mycotoxin interaction in the development of foodborne diseases is discussed, and appropriate conclusions are made. The importance of low feed/food levels of some target mycotoxins co-contaminations in food and feedstuffs for induction of target foodborne mycotoxicoses is also studied in the available literature. The appropriate hygiene control and the necessary risk assessment in regard to possible hazards for animals and humans are also discussed, and appropriate suggestions are made. Some internationally recognized prophylactic measures, management of the risk, and the necessity of elaboration of new international regulations in regard to the maximum permitted levels are also carefully discussed and analysed in the cases of multiple mycotoxin contaminations. The necessity of harmonization of mycotoxin regulations and control measures at international levels is also discussed in order to facilitate food trade between the countries and to ensure global food safety.
Collapse
Affiliation(s)
- Stoycho D Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
8
|
Chen W, Zhang X, Zhang Q, Zhang G, Wu S, Yang H, Zhou Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Anal Chim Acta 2022; 1231:340445. [DOI: 10.1016/j.aca.2022.340445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
|
9
|
Zhang Y, Li Z, Lu Y, Zhang J, Sun Y, Zhou J, Tu T, Gong W, Sun W, Wang Y. Characterization of Bacillus velezensis E2 with abilities to degrade ochratoxin A and biocontrol against Aspergillus westerdijkiae fc-1. Toxicon 2022; 216:125-131. [PMID: 35850255 DOI: 10.1016/j.toxicon.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA), primarily produced by the fungi belonging to the species of Aspergillus and Penicillium, is one of the most common mycotoxins found in cereals and fruits. In addition to resulting in huge economic losses, OTA contamination also poses considerable threat to human and livestock health. Microbial degradation of mycotoxins has been considered with great potential in mycotoxins decontamination. In a previous study, Bacillus velezensis E2 was isolated by our laboratory and showed appreciable inhibitory effect on Aspergillus flavus growth and aflatoxin production in rice grains. In this study, B. velezensis E2 was investigated for its ability to remove OTA and biocontrol against the ochratoxigenic Aspergillus westerdijkiae fc-1. The results revealed that B. velezensis E2 has considerable inhibitory effect on A. westerdijkiae fc-1 both on PDA medium and pear fruits, with inhibitory rate of 51.7% and 73.9%, respectively. In addition, its ability to remove OTA was evaluated in liquid medium and the results showed that more than 96.1% of OTA with an initial concentration of 2.5 μg/mL could be removed by B. velezensis E2 in 48 h. Further experiments revealed that enzymatic transformation and alkaline hydrolysis might be the main mechanisms related to OTA degradation by B. velezensis E2, with ring open ochratoxin α (OP-OTα) as a possible degradation product. Our study indicated that the B. velezensis E2 strain could be a potential bacterial candidate in biodegradation of OTA and biocontrol against A. westerdijkiae fc-1.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhenchao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yenan Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaqi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yemei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiayu Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weihong Sun
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|