1
|
Zhao L, Qiu J, Zhang J, Li A, Wang G. Apoptosis and Oxidative Stress in Human Intestinal Epithelial Caco-2 Cells Caused by Marine Phycotoxin Azaspiracid-2. Toxins (Basel) 2024; 16:381. [PMID: 39330839 PMCID: PMC11435587 DOI: 10.3390/toxins16090381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
When humans consume seafood contaminated by lipophilic polyether phycotoxins, such as azaspiracids (AZAs), the toxins are mainly leached and absorbed in the small intestine, potentially causing intestinal damage. In this study, human intestinal epithelial Caco-2 cells were used to investigate the adverse effects of azaspiracid-2 (AZA-2) on human intestinal epithelial cells. Cell viability, apoptosis, oxidative damage and mitochondrial ultrastructure were investigated, and ribonucleic acid sequence (RNA-seq) analysis was applied to explore the potential mechanisms of AZA-2 toxicity to Caco-2 cells. Results showed that AZA-2 significantly reduced the proliferation of Caco-2 cells in a concentration-dependent response, and the 48 h EC50 of AZA-2 was 12.65 nmol L-1. AZA-2 can induce apoptosis in Caco-2 cells in a dose-dependent manner. Visible mitochondrial swelling, cristae disintegration, membrane rupture and autophagy were observed in Caco-2 cells exposed to AZA-2. Reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly increased in Caco-2 cells after 48 h of exposure to 1 and 10 nmol L-1 of AZA-2. Transcriptome analysis showed that KEGG pathways related to cellular oxidative damage and lipid metabolism were affected, mainly including mitophagy, oxidative phosphorylation, cholesterol metabolism, vitamin digestion and absorption, bile secretion and the peroxisome proliferator-activated receptor signaling pathway. The cytotoxic effects of AZA-2 on Caco-2 cells may be associated with ROS-mediated autophagy and apoptosis in mitochondrial cells. Results of this study improve understanding of the cytotoxicity and molecular mechanisms of AZA-2 on Caco-2 cells, which is significant for protecting human health.
Collapse
Affiliation(s)
- Liye Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
| |
Collapse
|
2
|
Ibghi M, Rijal Leblad B, L’Bachir El Kbiach M, Aboualaalaa H, Daoudi M, Masseret E, Le Floc’h E, Hervé F, Bilien G, Chomerat N, Amzil Z, Laabir M. Molecular Phylogeny, Morphology, Growth and Toxicity of Three Benthic Dinoflagellates Ostreopsis sp. 9, Prorocentrum lima and Coolia monotis Developing in Strait of Gibraltar, Southwestern Mediterranean. Toxins (Basel) 2024; 16:49. [PMID: 38251265 PMCID: PMC10819257 DOI: 10.3390/toxins16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Few works have been carried out on benthic harmful algal blooms (BHAB) species in the southern Mediterranean and no data are available for the highly dynamic Strait of Gibraltar (western Mediterranean waters). For the first time, Ostreopsis sp. 9, Prorocentrum lima and Coolia monotis were isolated in this key region in terms of exchanges between the Atlantic Ocean and the Mediterranean and subject to intense maritime traffic. Ribotyping confirmed the morphological identification of these three dinoflagellates species. Monoclonal cultures were established and the maximum growth rate and cell yield were measured at a temperature of 24 °C and an irradiance of 90 µmol photons m-2 s-1, for each species: 0.26 ± 0.02 d-1 (8.75 × 103 cell mL-1 after 28 days) for Ostreopsis sp. 9, 0.21 ± 0.01 d-1 (49 × 103 cell mL-1 after 145 days) for P. lima and 0.21 ± 0.01 d-1 (10.02 × 103 cell mL-1 after 28 days) for C. monotis. Only P. lima was toxic with concentrations of okadaic acid and dinophysistoxin-1 measured in optimal growth conditions ranging from 6.4 pg cell-1 to 26.97 pg cell-1 and from 5.19 to 25.27 pg cell-1, respectively. The toxin content of this species varied in function of the growth phase. Temperature influenced the growth and toxin content of P. lima. Results suggest that future warming of Mediterranean coastal waters may lead to higher growth rates and to increases in cellular toxin levels in P. lima. Nitrate and ammonia affected the toxin content of P. lima but no clear trend was noted. In further studies, we have to isolate other BHAB species and strains from Strait of Gibraltar waters to obtain more insight into their diversity and toxicity.
Collapse
Affiliation(s)
- Mustapha Ibghi
- Marine Environment Monitoring Laboratory, INRH (Moroccan Institute of Fisheries Research), Tangier 90000, Morocco; (M.I.); (H.A.); (M.D.)
- Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Tetouan 93000, Morocco;
- MARBEC, University of Montpellier, CNRS, IRD, Ifremer, 34095 Montpellier, France; (E.M.); (E.L.F.)
| | - Benlahcen Rijal Leblad
- Marine Environment Monitoring Laboratory, INRH (Moroccan Institute of Fisheries Research), Tangier 90000, Morocco; (M.I.); (H.A.); (M.D.)
| | - Mohammed L’Bachir El Kbiach
- Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Tetouan 93000, Morocco;
| | - Hicham Aboualaalaa
- Marine Environment Monitoring Laboratory, INRH (Moroccan Institute of Fisheries Research), Tangier 90000, Morocco; (M.I.); (H.A.); (M.D.)
- Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Tetouan 93000, Morocco;
- MARBEC, University of Montpellier, CNRS, IRD, Ifremer, 34095 Montpellier, France; (E.M.); (E.L.F.)
| | - Mouna Daoudi
- Marine Environment Monitoring Laboratory, INRH (Moroccan Institute of Fisheries Research), Tangier 90000, Morocco; (M.I.); (H.A.); (M.D.)
| | - Estelle Masseret
- MARBEC, University of Montpellier, CNRS, IRD, Ifremer, 34095 Montpellier, France; (E.M.); (E.L.F.)
| | - Emilie Le Floc’h
- MARBEC, University of Montpellier, CNRS, IRD, Ifremer, 34095 Montpellier, France; (E.M.); (E.L.F.)
| | - Fabienne Hervé
- Laboratoire Phycotoxines, IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, 44311 Nantes, France; (F.H.); (Z.A.)
| | - Gwenael Bilien
- IFREMER, Unité Littoral, Station de Biologie Marine, Place de la Croix, 29185 Concarneau, France; (G.B.); (N.C.)
| | - Nicolas Chomerat
- IFREMER, Unité Littoral, Station de Biologie Marine, Place de la Croix, 29185 Concarneau, France; (G.B.); (N.C.)
| | - Zouher Amzil
- Laboratoire Phycotoxines, IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, 44311 Nantes, France; (F.H.); (Z.A.)
| | - Mohamed Laabir
- MARBEC, University of Montpellier, CNRS, IRD, Ifremer, 34095 Montpellier, France; (E.M.); (E.L.F.)
| |
Collapse
|
3
|
Song F, Zhang Z, Xu X, Lin X. Online highly selective recognition of domoic acid by an aptamer@MOFs affinity monolithic column coupled with HPLC for shellfish safety monitoring. RSC Adv 2023; 13:30876-30884. [PMID: 37869383 PMCID: PMC10588371 DOI: 10.1039/d3ra05901d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Enabling cost-effective safety monitoring of shellfish is an important measure for the healthy development of the coastal marine economy. Herein, a new aptamer@metal-organic framework (MOF)-functionalized affinity monolithic column was proposed and applied in selective in-tube solid-phase microextraction (IT-SPME) coupled with HPLC for the accurate recognition of domoic acid (DA) in shellfish. Using a surface engineering strategy, ZIF-8 MOF was grown in situ inside the poly(epoxy-MA-co-POSS-MA) hybrid monolith. A high BET surface area and abundant metal reactive sites of the MOF framework were obtained for anchoring massive aptamers with terminal-modified phosphate groups. Various characterizations, such as SEM, elemental mapping, XRD, and BET, were performed, and the affinity performance was also studied. The presence of a massive amount of aptamers with a super coverage density of 3140 μmol L-1 bound on ZIF-8 MOF activated a high-performance bionic-affinity interface, and perfect specificity was exhibited with little interference of tissue matrixes, thus assuring the highly selective capture of DA from the complex matrixes. Under the optimal conditions, DA toxins in shellfish were detected with the limit of detection (LOD) of 7.0 ng mL-1 (equivalent to 14.0 μg kg-1), representing a 5-28 fold enhancement in detection sensitivity over traditional SPE or MIP adsorbents reported previously. The recoveries of fortified mussel and clam samples were achieved as 91.8 ± 1.2%-94.1 ± 1.9% (n = 3) and 91.2 ± 1.1%-94.5 ± 3.6% (n = 3), respectively. This work sheds light on a cost-effective method for online selective IT-SPME and the accurate monitoring of DA toxins using an aptamer@MOF-mediated affinity monolith system coupled with the inexpensive HPLC-UV technique.
Collapse
Affiliation(s)
- Fang Song
- College of Economics and Management, Fujian Agriculture and Forestry University Fuzhou 350001 China
| | - Zhexiang Zhang
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University Fuzhou 350108 China
| | - Xuerong Xu
- College of Economics and Management, Fujian Agriculture and Forestry University Fuzhou 350001 China
| | - Xucong Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
4
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
5
|
Aboualaalaa H, Rijal Leblad B, Hormat-Allah A, Savar V, Ennaskhi I, Hammi I, Elkbiach ML, Ibghi M, Maamour N, Medhioub W, Amzil Z, Laabir M. New insights into the dynamics of causative dinoflagellates and the related contamination of molluscs by paralytic toxins in the southwestern Mediterranean coastal waters of Morocco. MARINE POLLUTION BULLETIN 2022; 185:114349. [PMID: 36410198 DOI: 10.1016/j.marpolbul.2022.114349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The distribution of the two potentially toxic dinoflagellates Gymnodinium catenatum and Alexandrium spp. was investigated in the Mediterranean Moroccan Sea from March 2018 to March 2019. The cockle Acanthocardia tuberculata and the smooth clam Callista chione were collected at four stations, and their toxin levels were assessed using the mouse bioassay. The toxin profile was analysed by LC-MS/MS in G. catenatum and in the bivalves harvested in M'diq and Djawn. The species G. catenatum was present throughout the year, whereas Alexandrium spp. was less abundant. The paralytic shellfish toxin (PST) level in cockles was, on average, six times above the sanitary threshold; GTX5 was the major contributor to the total PST level, followed by dc-STX and STX. The toxin level of the smooth clam was considerably lower than that of the cockle; GTX5 and C-toxins were the dominating analogues. Our results suggest the responsibility of G. catenatum for the recurrent PST contamination in the Moroccan Mediterranean Sea, with a west-east gradient.
Collapse
Affiliation(s)
- Hicham Aboualaalaa
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco; Univ Montpelier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| | - Benlahcen Rijal Leblad
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco.
| | - Amal Hormat-Allah
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Veronique Savar
- Ifremer (French Research Institute for Exploitation of the Sea), F-44311 Nantes Cedex 03, France
| | - Ismail Ennaskhi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Ikram Hammi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Mohamed L'Bachir Elkbiach
- Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco
| | - Mustapha Ibghi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco; Univ Montpelier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| | - Niama Maamour
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Walid Medhioub
- Aquaculture Laboratory, INSTM (National Institute of Marine Science and Technology), Monastir, Tunisia
| | - Zouher Amzil
- Ifremer (French Research Institute for Exploitation of the Sea), F-44311 Nantes Cedex 03, France
| | - Mohamed Laabir
- Univ Montpelier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| |
Collapse
|