1
|
Hussain SS, Kingsley JD. Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition. Arch Toxicol 2025; 99:915-934. [PMID: 39760869 DOI: 10.1007/s00204-024-03947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Snake envenomation presents a significant global health challenge, especially in rural areas of tropical and subtropical regions. Traditional antivenom therapies face limitations related to efficacy, availability, and specificity, prompting a need for novel approaches. Recent advancements in omics technologies, particularly metabolomics and proteomics, have enhanced our understanding of snake venom composition, toxicity, and potential therapeutic strategies. Metabolomics allows for the study of metabolic changes induced by venom, providing insights into disrupted pathways and possible inhibitors. Proteomics facilitates the identification and characterization of venom proteins, unveiling their interactions with therapeutic agents. Integrative databases such as the Snake Venom Database (SVDB) and STAB Profiles enhance this research by cataloging venom components and aiding in the analysis of venom-antivenom interactions. The combined application of metabolomics and proteomics has led to the identification of crucial metabolic pathways and protein targets essential for effective venom inhibition. This review explores current advances in these fields, emphasizing the role of omics in identifying novel inhibitors and developing next-generation antivenoms. The integrated approach of metabolomics and proteomics offers a comprehensive understanding of snake venom biology, paving the way for more effective and tailored therapeutic solutions for envenomation.
Collapse
Affiliation(s)
- Sana S Hussain
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - J Danie Kingsley
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Lertwanakarn T, Reyes A, Salazar E, Barrientos M, Sanchez EE, Suntravat M. The Effect of Purified Opharin Isolated from the Venom of King Cobra ( Ophiophagus hannah) in Modulating Macrophage Inflammatory Responses and Vascular Integrity. Toxins (Basel) 2024; 16:550. [PMID: 39728808 PMCID: PMC11679020 DOI: 10.3390/toxins16120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
King cobra (Ophiophagus hannah) venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized. This study investigates the biological effects of Opharin, the CRiSP from king cobra venom (KCV). The effects of Opharin on cytokine production, specifically on IL-1β, IL-6, IL-8, TNF-α, and IL-10 release, were evaluated over 24 h in monocyte-derived macrophage (MDM) cells. Notably, the levels of these inflammatory cytokines were significantly increased over 24 h, with values higher than those observed in cells treated with crude KCV at most time points. Additionally, the in vivo Miles assay in mice revealed that Opharin increased vascular permeability by 26% compared to the negative control group. These findings highlight the Opharin's role in severe inflammatory and vascular responses observed in king cobra envenomation. Still, further research is essential to elucidate the pharmacological and toxicological effects of venom components, ultimately enhancing the clinical management of envenomation.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10310, Thailand;
| | - Armando Reyes
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (A.R.); (M.B.); (E.E.S.)
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (A.R.); (M.B.); (E.E.S.)
| | - Martha Barrientos
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (A.R.); (M.B.); (E.E.S.)
| | - Elda E. Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (A.R.); (M.B.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (A.R.); (M.B.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| |
Collapse
|
3
|
Rao S, Reghu N, Nair BG, Vanuopadath M. The Role of Snake Venom Proteins in Inducing Inflammation Post-Envenomation: An Overview on Mechanistic Insights and Treatment Strategies. Toxins (Basel) 2024; 16:519. [PMID: 39728777 PMCID: PMC11728808 DOI: 10.3390/toxins16120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024] Open
Abstract
The intricate combination of organic and inorganic compounds found in snake venom includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components work together to immobilise and consume prey through processes such as paralysis and hypotension. Proteins, both enzymatic and non-enzymatic, form the primary components of the venom. Based on the effects they produce, venom can be classified as neurotoxic, hemotoxic, and cytotoxic. Studies have shown that, after envenomation, proteins in snake venom also contribute significantly to the induction of inflammatory responses which can either have systemic or localized consequences. This review delves into the mechanisms by which snake venom proteins trigger inflammatory responses, focusing on key families such as phospholipase A2, metalloproteinases, serine proteases, C-type lectins, cysteine-rich secretory proteins, and L-amino acid oxidase. In addition, the role of venom proteins in activating various inflammatory pathways, including the complement system, inflammasomes, and sterile inflammation are also summarized. The available therapeutic options are examined, with a focus on antivenom therapy and its side effects. In general, this review offers a comprehensive understanding of the inflammatory mechanisms that are triggered by snake venom proteins and the side effects of antivenom treatment. All these emphasize the need for effective strategies to mitigate these detrimental effects.
Collapse
Affiliation(s)
- Sudharshan Rao
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
- Systems Biology Ireland, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Nisha Reghu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | | | | |
Collapse
|
4
|
Sun J, Liu J, Liu M, Bi X, Huang C. New perspective for pathomechanism and clinical applications of animal toxins: Programmed cell death. Toxicon 2024; 249:108071. [PMID: 39134227 DOI: 10.1016/j.toxicon.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Various animal toxins pose a significant threat to human safety, necessitating urgent attention to their treatment and research. The clinical potential of programmed cell death (PCD) is widely regarded as a target for envenomation, given its crucial role in regulating physiological and pathophysiological processes. Current research on animal toxins examines their specific components in pathomechanisms and injuries, as well as their clinical applications. This review explores the relationship between various toxins and several types of PCD, such as apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis, to provide a reference for future understanding of the pathophysiology of toxins and the development of their potential clinical value.
Collapse
Affiliation(s)
- Jiaqi Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Meiling Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaowen Bi
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
5
|
Nandana MB, Bharatha M, Praveen R, Nayaka S, Vishwanath BS, Rajaiah R. Dimethyl ester of bilirubin ameliorates Naja naja snake venom-induced lung toxicity in mice via inhibiting NLRP3 inflammasome and MAPKs activation. Toxicon 2024; 244:107757. [PMID: 38740099 DOI: 10.1016/j.toxicon.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Naja naja snake bite causes thousands of deaths worldwide in a year. N. naja envenomed victims exhibit both local and systemic reactions that potentially lead to death. In clinical practice, pulmonary complications in N. naja envenomation are commonly encountered. However, the molecular mechanisms underlying N. naja venom-induced lung toxicity remain unknown. Here, we reasoned that N. naja venom-induced lung toxicity is prompted by NLRP3 inflammasome and MAPKs activation in mice. Treatment with dimethyl ester of bilirubin (BD1), significantly inhibited the N. naja venom-induced activation of NLRP3 inflammasome and MAPKs both in vivo and in vitro (p < 0.05). Further, BD1 reduced N. naja venom-induced recruitment of inflammatory cells, and hemorrhage in the lung toxicity examined by histopathology. BD1 also diminished N. naja venom-induced local toxicities in paw edema and myotoxicity in mice. Furthermore, BD1 was able to enhance the survival time against N. naja venom-induced mortality in mice. In conclusion, the present data showed that BD1 alleviated N. naja venom-induced lung toxicity by inhibiting NLRP3 inflammasome and MAPKs activation. Small molecule inhibitors that intervene in venom-induced toxicities may have therapeutic applications complementing anti-snake venom.
Collapse
Affiliation(s)
- Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|
6
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Nandana MB, Bharatha M, Vishwanath BS, Rajaiah R. Naja naja snake venom-induced local toxicities in mice is by inflammasome activation. Toxicon 2024; 238:107590. [PMID: 38163462 DOI: 10.1016/j.toxicon.2023.107590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Snake bite envenomation causes tissue damage resulting in acute and chronic inflammatory responses. Inflammasome activation is one of the factors involved in tissue damage in a mouse model of snake envenomation. The present study examines the potency of Indian Big Four snake venoms in the activation of inflammasome and its role in local and systemic tissue toxicity. Among Indian Big Four snake venoms, Naja naja venom activated NLRP3 inflammasome in mouse macrophages. Activation of NLRP3 inflammasome was also observed in mouse foot paw and thigh muscle upon administration of N. naja venom. Intraperitoneal administration of N. naja venom cause systemic lung damage showed activation of NLRP3 inflammasome. Treatment with MCC950, a selective NLRP3 inflammasome inhibitor effectively inhibited N. naja venom-induced activation of caspase-1 and liberation of IL-1β in macrophages. In mice, MCC950 partially inhibited the activation of NLRP3 inflammasome in N. naja venom administered foot paw and thigh muscle. In conclusion, the present data showed that inflammasome is one of the host responses involved in N. naja snake venom-induced toxicities. The inhibition of inflammasome activation will provide new insight into better management of snake bite-induced local tissue damage.
Collapse
Affiliation(s)
- Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|