1
|
Lee CK, Wang FT, Huang CH, Chan WH. Dose-dependent effects of silver nanoparticles on cell death modes in mouse blastocysts induced via endoplasmic reticulum stress and mitochondrial apoptosis. Toxicol Res (Camb) 2024; 13:tfae158. [PMID: 39371680 PMCID: PMC11447381 DOI: 10.1093/toxres/tfae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/19/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
In view of the rapidly expanding medical and commercial applications of silver nanoparticles (AgNPs), their potential health risks and environmental effects are a significant growing concern. Earlier research by our group uncovered the embryotoxic potential of AgNPs, showing detrimental impacts of these nanoparticles on both pre- and post-implantation embryonic development. In the current study, we showed that low (50-100 μM) and high (200-400 μM) dose ranges of AgNPs trigger distinct cell death programs affecting mouse embryo development and further explored the underlying mechanisms. Treatment with low concentrations of AgNPs (50-100 μM) triggered ROS generation, in turn, inducing mitochondria-dependent apoptosis, and ultimately, harmful effects on embryo implantation, post-implantation development, and fetal development. Notably, high concentrations of AgNPs (200-400 μM) evoked more high-level ROS generation and endoplasmic reticulum (ER) stress-mediated necrosis. Interestingly, pre-incubation with Trolox, a strong antioxidant, reduced ROS generation in the group treated with 200-400 μM AgNPs to the level induced by 50-100 μM AgNPs, resulting in switching of the cell death mode from necrosis to apoptosis and a significant improvement in the impairment of embryonic development. Our findings additionally indicate that activation of PAK2 is a crucial step in AgNP-triggered apoptosis and sequent detrimental effects on embryonic development. Based on the collective results, we propose that the levels of ROS generated by AgNP treatment of embryos serve as a critical regulator of cell death type, leading to differential degrees of damage to embryo implantation, post-implantation development and fetal development through triggering apoptosis, necrosis or other cell death signaling cascades.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Taoyuan District, Daxing West Road, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
2
|
Yang S, Sun M, Zhang X. Protective Effect of Resveratrol on Knee Osteoarthritis and its Molecular Mechanisms: A Recent Review in Preclinical and Clinical Trials. Front Pharmacol 2022; 13:921003. [PMID: 35959426 PMCID: PMC9357872 DOI: 10.3389/fphar.2022.921003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is one of the progressing chronic joint associated with by many complex factors such as age, obesity, and trauma. Knee osteoarthritis (KOA) is the most common type of OA. KOA is characterized by articular cartilage destruction and degeneration, synovial inflammation, and abnormal subchondral bone changes. To date, no practical clinical approach has been able to modify the pathological progression of KOA. Drug therapy is limited to pain control and may lead to serious side effects when taken for a long time. Therefore, searching for safer and more reliable treatments has become necessary. Interestingly, more and more research has focused on natural products, and monomeric compounds derived from natural products have received much attention as drug candidates for KOA treatment. Resveratrol (RES), a natural phenolic compound, has various pharmacological and biological activities, including anti-cancer, anti-apoptotic, and anti-decay. Recently, studies on the effects of RES on maintaining the normal homeostasis of chondrocytes in KOA have received increasing attention, which seems to be attributed to the multi-targeted effects of RES on chondrocyte function. This review summarizes preclinical trials, clinical trials, and emerging tissue engineering studies of RES for KOA and discusses the specific mechanisms by which RES alleviates KOA. A better understanding of the pharmacological role of RES in KOA could provide clinical implications for intervention in the development of KOA.
Collapse
Affiliation(s)
| | - Mingli Sun
- *Correspondence: Mingli Sun, ; Xinan Zhang,
| | | |
Collapse
|
3
|
Wang Z, Li ZX, Zhao WC, Huang HB, Wang JQ, Zhang H, Lu JY, Wang RN, Li W, Cheng Z, Xu WL, Di Zhu, Zhou LS, Jiang W, Yu L, Liu JY, Luo C, Zhu H, Dan Ye, Pan WJ, Ju JH, Dang YJ. Identification and characterization of isocitrate dehydrogenase 1 (IDH1) as a functional target of marine natural product grincamycin B. Acta Pharmacol Sin 2021; 42:801-813. [PMID: 32796956 DOI: 10.1038/s41401-020-0491-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Grincamycins (GCNs) are a class of angucycline glycosides isolated from actinomycete Streptomyces strains that have potent antitumor activities, but their antitumor mechanisms remain unknown. In this study, we tried to identify the cellular target of grincamycin B (GCN B), one of most dominant and active secondary metabolites, using a combined strategy. We showed that GCN B-selective-induced apoptosis of human acute promyelocytic leukemia (APL) cell line NB4 through increase of ER stress and intracellular reactive oxygen species (ROS) accumulation. Using a strategy of combining phenotype, transcriptomics and protein microarray approaches, we identified that isocitrate dehydrogenase 1(IDH1) was the putative target of GCN B, and confirmed that GCNs were a subset of selective inhibitors targeting both wild-type and mutant IDH1 in vitro. It is well-known that IDH1 converts isocitrate to 2-oxoglutarate (2-OG), maintaining intracellular 2-OG homeostasis. IDH1 and its mutant as the target of GCN B were validated in NB4 cells and zebrafish model. Knockdown of IDH1 in NB4 cells caused the similar phenotype as GCN B treatment, and supplementation of N-acetylcysteine partially rescued the apoptosis caused by IDH1 interference in NB4 cells. In zebrafish model, GCN B effectively restored myeloid abnormality caused by overexpression of mutant IDH1(R132C). Taken together, we demonstrate that IDH1 is one of the antitumor targets of GCNs, suggesting wild-type IDH1 may be a potential target for hematological malignancies intervention in the future.
Collapse
|
4
|
Filardo S, Di Pietro M, Mastromarino P, Sessa R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol Ther 2020; 214:107613. [PMID: 32562826 DOI: 10.1016/j.pharmthera.2020.107613] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Resveratrol has been widely studied for its therapeutic potential due to its antioxidant, anti-inflammatory and anti-microbial properties. In particular, resveratrol has shown promising antiviral activity against numerous viruses responsible for severe respiratory infections. Amongst these, influenza virus, respiratory syncytial virus and the emerging SARS-cov-2 are known to cause pneumonia, acute respiratory distress syndrome or multi-organ failure, especially, in vulnerable individuals like immunocompromised patients or the elderly, leading to a considerable economic burden worldwide. In this context, resveratrol may have potential value for its anti-inflammatory activity, since most of the severe virus-associated complications are related to the overactivation of the host-immune response, leading to lung damage. Herein, we present an overview of the antiviral activity and potential mechanisms of resveratrol against the respiratory tract viruses considered as a public threat for their rapid transmission and high morbidity and mortality in the general population.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy.
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
5
|
Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development. Int J Mol Sci 2017; 18:ijms18092018. [PMID: 28930172 PMCID: PMC5618666 DOI: 10.3390/ijms18092018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
Rhein, a glucoside chemical compound found in a traditional Chinese medicine derived from the roots of rhubarb, induces cell apoptosis and is considered to have high potential as an antitumor drug. Several previous studies showed that rhein can inhibit cell proliferation and trigger mitochondria-related or endoplasmic reticulum (ER) stress-dependent apoptotic processes. However, the side effects of rhein on pre- and post-implantation embryonic development remain unclear. Here, we show that rhein has cytotoxic effects on blastocyst-stage mouse embryos and induces oxidative stress and immunotoxicity in mouse fetuses. Blastocysts incubated with 5-20 μM rhein showed significant cell apoptosis, as well as decreases in their inner cell mass cell numbers and total cell numbers. An in vitro development assay showed that rhein affected the developmental potentials of both pre- and post-implantation embryos. Incubation of blastocysts with 5-20 μM rhein was associated with increased resorption of post-implantation embryos and decreased fetal weight in an embryo transfer assay. Importantly, in an in vivo model, intravenous injection of dams with rhein (1, 3, and 5 mg/kg body weight/day) for four days resulted in apoptosis of blastocyst-stage embryos, early embryonic developmental injury, and decreased fetal weight. Intravenous injection of dams with 5 mg/kg body weight/day rhein significantly increased the total reactive oxygen species (ROS) content of fetuses and the transcription levels of antioxidant proteins in fetal livers. Additional work showed that rhein induced apoptosis through ROS generation, and that prevention of apoptotic processes effectively rescued the rhein-induced injury effects on embryonic development. Finally, the transcription levels of the innate-immunity related genes, CXCL1, IL-1β and IL-8, were down-regulated in the fetuses of dams that received intravenous injections of rhein. These results collectively show that rhein has the potential to induce embryonic cytotoxicity and induce oxidative stress and immunotoxicity during the development of mouse embryos.
Collapse
|
6
|
Dueñas-García IE, Heres-Pulido ME, Arellano-Llamas MR, De la Cruz-Núñez J, Cisneros-Carrillo V, Palacios-López CS, Acosta-Anaya L, Santos-Cruz LF, Castañeda-Partida L, Durán-Díaz A. Lycopene, resveratrol, vitamin C and FeSO 4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications. Food Chem Toxicol 2017; 103:233-245. [PMID: 28202360 DOI: 10.1016/j.fct.2017.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022]
Abstract
4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO4 resulted in genotoxicity; the three antioxidants and FeSO4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO4, were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.
Collapse
Affiliation(s)
- I E Dueñas-García
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.
| | - M R Arellano-Llamas
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J De la Cruz-Núñez
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - V Cisneros-Carrillo
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - C S Palacios-López
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Acosta-Anaya
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
7
|
Streltsova MA, Klinkova AV, Kuchukova AA, Kadin AY, Kanevskiy LM, Kovalenko EI. Ethanol-dependent expression of the NKG2D ligands MICA/B in human cell lines and leukocytes. Biochem Cell Biol 2017; 95:280-288. [PMID: 28177768 DOI: 10.1139/bcb-2016-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption affects the human immune system, causing a variety of disorders. However, the mechanisms of development of these changes are not fully understood. We hypothesized that ethanol may influence the expression of MICA and MICB, stress-induced molecules capable of regulating the activity of cytotoxic lymphocytes through the interaction with receptor NKG2D, which substantially affects the functionality of cellular immunity. We analyzed the effects of ethanol on MICA/B expression in tumor cell lines and human leukocytes. In the cell line models, ethanol caused different changes in the surface expression of MICA/B; in particular, it induced the translocation of intracellular proteins MICA/B to the cell surface and shedding of MICA (in soluble and microparticle-associated forms) from the plasma membrane. The observed results are not linked with cell death in cultures, taking place only under higher doses of ethanol. Ethanol at physiologically relevant concentrations (and higher) stimulated expression of MICA/B genes in different cell types. The effect of ethanol was more pronounced in hepatocyte line HepG2 compared with hematopoietic cell lines K562, Jurkat, and THP-1. Among the tested leukocytes, the most sensitive to ethanol action were T cells activated ex vivo with IL-2, in which the increase of MICA/B mRNA expression was registered with the smallest dose of ethanol (0.125%). In human monocytes, ethanol may lead to elevations in surface MICA/B levels. Presumably, changes in MICA/B expression caused by ethanol can affect the functions of NKG2D-positive cytotoxic lymphocytes, modulating immune reactions at excessive alcohol consumption.
Collapse
Affiliation(s)
- Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Anna V Klinkova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Anastasia A Kuchukova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Andrey Y Kadin
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Leonid M Kanevskiy
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| |
Collapse
|
8
|
Alcohol exposure impairs trophoblast survival and alters subtype-specific gene expression in vitro. Placenta 2016; 46:87-91. [DOI: 10.1016/j.placenta.2016.08.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/29/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
|
9
|
Evaluation of Resveratrol Oxidationin Vitroand the Crucial Role of Bicarbonate Ions. Biosci Biotechnol Biochem 2014; 74:63-8. [DOI: 10.1271/bbb.90549] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Prenatal alcohol exposure causes the over-expression of DHAND and EHAND by increasing histone H3K14 acetylation in C57 BL/6 mice. Toxicol Lett 2014; 228:140-6. [PMID: 24857828 DOI: 10.1016/j.toxlet.2014.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/12/2023]
Abstract
Prenatal alcohol exposure leads to congenital heart abnormal development, its mechanisms are still unknown. Recent reports have associated alcohol exposure with histone H3 acetylation. In the present study, we have performed the experiments to test the hypothesis that histone H3K14 acetylation is the key role in the fetal heart leads to over-expression of cardiac specific genes DHAND and EHAND caused by prenatal alcohol exposure. Seventy pregnant C57BL/6 mice were divided randomly into seven groups (n=10). They were the untreated group, dimethyl sulfoxide group, alcohol exposure group, curcumin treatment group, both alcohol and curcumin treatment group, SAHA treatment group, both alcohol and SAHA treatment group. Fetal mouse hearts were collected on embryonic day 14.5. The changes of HATs activities, the acetylation levels of histone H3K14 (H3K14ac), the expression levels of cardiac specific genes DHAND and EHAND, and structure of chromatin were determined. Our data indicates that curcumin and SAHA significantly reduces and increases the activities of HATs and the levels of histone H3K14ac in fetal hearts, respectively. The expression of DHAND and EHAND is significantly down-regulated and up-regulated in the groups treated with curcumin and SAHA. Furthermore, our results from ChIP assays have shown that the histone H3K14ac connects with the DHAND and EHAND genes are significantly inhibited by curcumin and simulated by SAHA. Our study suggests that prenatal alcohol exposure causes the over-expression of DHAND and EHAND by increasing H3K14ac in mice.
Collapse
|
11
|
Clave S, Joya X, Salat-Batlle J, Garcia-Algar O, Vall O. Ethanol cytotoxic effect on trophoblast cells. Toxicol Lett 2013; 225:216-21. [PMID: 24374569 DOI: 10.1016/j.toxlet.2013.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 01/13/2023]
Abstract
Prenatal ethanol exposure may cause both, altered fetal neurodevelopment and impaired placental function. These disturbances can lead to growth retardation, which is one of the most prevalent features in Fetal Alcohol Syndrome (FAS). It is not known whether there is a specific pattern of cytotoxicity caused by ethanol that can be extrapolated to other cell types. The aim of this study was to determine the cytotoxic effects caused by sustained exposure of trophoblast cells to ethanol. The cytotoxic effect of sustained exposure to standard doses of ethanol on an in vitro human trophoblast cell line, JEG3, was examined. Viable cell count by exclusion method, total protein concentration, lactate dehydrogenase (LDH) activity and activation of apoptotic markers (P-H2AX, caspase-3 and PARP-1) were determined. Sustained exposure to ethanol decreased viable cell count and total protein concentration. LDH activity did not increased in exposed cells but apoptotic markers were detected. In addition, there was a dose-dependent relationship between ethanol concentration and apoptotic pathways activation. Sustained ethanol exposure causes cellular cytotoxicity by apoptotic pathways induction as a result of DNA damage. This apoptotic induction may partially explain the altered function of placental cells and the damage previously detected in other tissues.
Collapse
Affiliation(s)
- S Clave
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), PRBB, C/ Dr. Aiguader 88, 08003 Barcelona, Spain; Red de Salud Materno Infantil y del Desarrollo (SAMID), Programa RETIC, Instituto Carlos III, C/ Sinesio Delgado 4, 28029 Madrid, Spain
| | - X Joya
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), PRBB, C/ Dr. Aiguader 88, 08003 Barcelona, Spain; Red de Salud Materno Infantil y del Desarrollo (SAMID), Programa RETIC, Instituto Carlos III, C/ Sinesio Delgado 4, 28029 Madrid, Spain
| | - J Salat-Batlle
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), PRBB, C/ Dr. Aiguader 88, 08003 Barcelona, Spain; Red de Salud Materno Infantil y del Desarrollo (SAMID), Programa RETIC, Instituto Carlos III, C/ Sinesio Delgado 4, 28029 Madrid, Spain
| | - O Garcia-Algar
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), PRBB, C/ Dr. Aiguader 88, 08003 Barcelona, Spain; Red de Salud Materno Infantil y del Desarrollo (SAMID), Programa RETIC, Instituto Carlos III, C/ Sinesio Delgado 4, 28029 Madrid, Spain; Departament de Pediatria, Obstetricia i Ginecologia, i Medicina Preventiva, Universitat Autònoma de Barcelona (UAB), Campus M, 08193 Bellaterra, Spain.
| | - O Vall
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), PRBB, C/ Dr. Aiguader 88, 08003 Barcelona, Spain; Red de Salud Materno Infantil y del Desarrollo (SAMID), Programa RETIC, Instituto Carlos III, C/ Sinesio Delgado 4, 28029 Madrid, Spain; Departament de Pediatria, Obstetricia i Ginecologia, i Medicina Preventiva, Universitat Autònoma de Barcelona (UAB), Campus M, 08193 Bellaterra, Spain
| |
Collapse
|
12
|
Characterization of apoptosis induced by emodin and related regulatory mechanisms in human neuroblastoma cells. Int J Mol Sci 2013; 14:20139-56. [PMID: 24113589 PMCID: PMC3821607 DOI: 10.3390/ijms141020139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Recent studies have shown that emodin can induce or prevent cell apoptosis, although the precise molecular mechanisms underlying these effects are unknown. Experiments from the current study revealed that emodin (10–20 μM) induces apoptotic processes in the human neuroblastoma cell line, IMR-32, but exerts no injury effects at treatment doses below 10 μM. Treatment with emodin at concentrations of 10–20 μM led to a direct increase in the reactive oxygen species (ROS) content in IMR-32 cells, along with significant elevation of cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. Pretreatment with nitric oxide (NO) scavengers suppressed the apoptotic biochemical changes induced by 20 μM emodin, and attenuated emodin-induced p53 and p21 expression involved in apoptotic signaling. Our results collectively indicate that emodin at concentrations of 10–20 μM triggers apoptosis of IMR-32 cells via a mechanism involving both ROS and NO. Based on the collective results, we propose a model for an emodin-triggered apoptotic signaling cascade that sequentially involves ROS, Ca2+, NO, p53, caspase-9 and caspase-3.
Collapse
|
13
|
Huang FJ, Chin TY, Chan WH. Resveratrol protects against methylglyoxal-induced apoptosis and disruption of embryonic development in mouse blastocysts. ENVIRONMENTAL TOXICOLOGY 2013; 28:431-441. [PMID: 21793156 DOI: 10.1002/tox.20734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 05/31/2023]
Abstract
Methylglyoxal (MG) is a glucose metabolite. Diabetic patients have increased serum levels of MG, and MG is also implicated in tissue injury during embryonic development. In the present work, we show that MG induces apoptosis in the inner cell mass of mouse blastocysts and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. MG-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented MG-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that MG directly promotes reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks MG-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that MG triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents MG-induced toxicity.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
14
|
Chan WH, Houng WL, Lin CAJ, Lee CH, Li PW, Hsieh JT, Shen JL, Yeh HI, Chang WH. Impact of dihydrolipoic acid on mouse embryonic stem cells and related regulatory mechanisms. ENVIRONMENTAL TOXICOLOGY 2013; 28:87-97. [PMID: 21462292 DOI: 10.1002/tox.20700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). Recently, DHLA has been used as the hydrophilic nanomaterial preparations, and therefore, determination of its bio-safety profile is essential. In this article, we show that DHLA (50-100 μM) induces apoptotic processes in mouse embryonic stem cells (ESC-B5), but exerts no injury effects at treatment dosages below 50 μM. Higher concentrations of DHLA (50-100 μM) directly increased the reactive oxygen species (ROS) content in ESC-B5 cells, along with a significant increase in cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. Pretreatment with NO scavengers suppressed the apoptotic biochemical changes induced by 100 μM DHLA and promoted the gene expression levels of p53 and p21 involved in apoptotic signaling. Our results collectively indicate that DHLA at concentrations of 50-100 μM triggers apoptosis of ESC-B5 cells, which involves both ROS and NO. Importantly, at doses of less than 50 μM (0-25 μM), DHLA does not exert hazardous effects on ESC-B5 cell properties, including viability, development and differentiation. These results provide important information in terms of dosage safety and biocompatibility of DHLA to facilitate its further use as a precursor for biomaterial preparation.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Premachandran S, Khan NM, Thakur VS, Shukla J, Poduval TB. Differential immunotoxic effects of ethanol on murine EL-4 lymphoma and normal lymphocytes is mediated through increased ROS production and activation of p38MAPK. Immunopharmacol Immunotoxicol 2012; 34:616-26. [PMID: 22211272 DOI: 10.3109/08923973.2011.643313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ethanol has been used to achieve thymic depletion in myasthenia gravis patients. Ethanol (95%) has also been used widely in the therapy of many tumors including hepatocellular carcinoma. In light of these findings, we delineated the differential immunotoxic behavior and mechanism of lower concentration of ethanol towards murine EL-4 lymphoma and its normal counterpart lymphocytes. EL-4 lymphoma and normal lymphocytes were cultured with ethanol (0%-5%) for 6 h and cytotoxicity was measured by various methods. EL-4 cells treated with ethanol showed concentration-dependent loss of viability at 2%-5% ethanol concentration and exhibit proliferative arrest at preG1 stage. Acridine-orange and ethidium-bromide staining indicated that ethanol induced death in EL-4 cells, by induction of both apoptosis and necrosis which was further supported by findings of DNA-fragmentation and trypan blue dye exclusion test. However, treatment of lymphocytes with similar concentration of ethanol did not show any death-associated parameters. Furthermore, ethanol induced significantly higher ROS generation in EL-4 cells as compared to lymphocytes and caused PARP cleavage and activation of apoptotic proteins like p53 and Bax, in EL-4 cells and not in normal lymphocytes. In addition, ethanol exposure to EL-4 cells led to phosphorylation of p38MAPK, and upregulation of death receptor Fas (CD95). Taken together, these results suggest that ethanol upto a concentration of 5% caused no significant immunotoxicity towards normal lymphocytes and induced cell death in EL-4 cells via phosphorylation of p38MAPK and regulation of p53 leading to further activation of both extrinsic (Fas) and intrinsic (Bax) apoptotic markers.
Collapse
Affiliation(s)
- Sudha Premachandran
- Immunology and Hyperthermia Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | | | | | | | | |
Collapse
|
16
|
Jen CP, Chen WF. An insulator-based dielectrophoretic microdevice for the simultaneous filtration and focusing of biological cells. BIOMICROFLUIDICS 2011; 5:44105-4410511. [PMID: 22662057 PMCID: PMC3364804 DOI: 10.1063/1.3658644] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 05/05/2023]
Abstract
Manipulating and discriminating biological cells of interest using microfluidic and micro total analysis system (μTAS) devices have potential applications in clinical diagnosis and medicine. Cellular focusing in microfluidic devices is a prerequisite for medical applications, such as cell sorting, cell counting, or flow cytometry. In the present study, an insulator-based dielectrophoretic microdevice is designed for the simultaneous filtration and focusing of biological cells. The cells are introduced into the microchannel and hydrodynamically pre-confined by funnel-shaped insulating structures close to the inlet. There are ten sets of X-patterned insulating structures in the microfluidic channel. The main function of the first five sets of insulating structures is to guide the cells by negative dielectrophoretic responses (viable HeLa cells) into the center region of the microchannel. The positive dielectrophoretic cells (dead HeLa cells) are attracted to regions with a high electric-field gradient generated at the edges of the insulating structures. The remaining five sets of insulating structures are mainly used to focus negative dielectrophoretic cells that have escaped from the upstream region. Experiments employing a mixture of dead and viable HeLa cells are conducted to demonstrate the effectiveness of the proposed design. The results indicate that the performance of both filtration and focusing improves with the increasing strength of the applied electric field and a decreasing inlet sample flow rate, which agrees with the trend predicted by the numerical simulations. The filtration efficiency, which is quantitatively investigated, is up to 88% at an applied voltage of 50 V peak-to-peak (1 kHz) and a sample flow rate of 0.5 μl/min. The proposed device can focus viable cells into a single file using a voltage of 35 V peak-to-peak (1 kHz) at a sample flow rate of 1.0 μl/min.
Collapse
Affiliation(s)
- Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia Yi, Taiwan
| | | |
Collapse
|
17
|
Anti-tumor and immunomodulatory activity of resveratrol in vitro and its potential for combining with cancer immunotherapy. Int Immunopharmacol 2011; 11:1877-86. [PMID: 21854876 DOI: 10.1016/j.intimp.2011.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 11/23/2022]
Abstract
We evaluated the anti-tumor effect of Resveratrol (RV) on M21 and NXS2 tumor cell lines and its immunosuppressive activity on human and murine immune cells to determine the potential for combining RV and immunotherapy. In vitro, concentrations of RV≥25 mcM, inhibited cell proliferation, blocked DNA synthesis and induced G1 phase arrest in tumor and immune cells. RV at 12-50 mcM inhibited antibody dependent cell mediated cytotoxicity (ADCC) of tumor cells facilitated by the hu14.18-IL2 immunocytokine (IC). The in vivo anti-tumor and immunomodulating activity of RV given systemically were assessed in mice. Results showed that this RV regimen inhibited the growth of NXS2 tumors in vivo but did not appear to interfere with blood cell count, splenocyte or macrophage function. Thus, RV may be a candidate for combining with immunotherapy.
Collapse
|
18
|
Resveratrol protects against 2-bromopropane-induced apoptosis and disruption of embryonic development in blastocysts. Int J Mol Sci 2011; 12:4991-5010. [PMID: 21954340 PMCID: PMC3179147 DOI: 10.3390/ijms12084991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 01/31/2023] Open
Abstract
2-Bromopropane (2-BP) is used as an alternative to ozone-depleting cleaning solvents. Previously, we reported that 2-BP has cytotoxic effects on mouse blastocysts and is associated with defects in subsequent development. In the present work, we show that 2-BP induces apoptosis in the inner cell mass of mouse blastocysts, and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. 2-BP-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro, and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented 2-BP-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that 2-BP directly promotes ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks 2-BP-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that 2-BP triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents 2-BP-induced toxicity.
Collapse
|
19
|
Biflavanone-kolaviron protects human dopaminergic SH-SY5Y cells against atrazine induced toxic insult. Toxicol In Vitro 2011; 25:848-58. [DOI: 10.1016/j.tiv.2011.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/01/2011] [Accepted: 02/11/2011] [Indexed: 12/24/2022]
|
20
|
Li PW, Kuo TH, Chang JH, Yeh JM, Chan WH. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 2010; 197:82-7. [DOI: 10.1016/j.toxlet.2010.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/07/2010] [Accepted: 05/04/2010] [Indexed: 11/29/2022]
|
21
|
Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int J Mol Sci 2009; 10:3338-3357. [PMID: 20111678 PMCID: PMC2812821 DOI: 10.3390/ijms10083338] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 12/25/2022] Open
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis, but its precise regulatory mechanisms of action are currently unclear. Resveratrol, a member of the phytoalexin family found in grapes and other dietary plants, possesses antioxidant and anti-tumor properties. In the present study, we examined the effects of resveratrol on apoptotic biochemical events in Hep G2 cells induced by CTN. Resveratrol inhibited CTN-induced ROS generation, activation of JNK, loss of mitochondrial membrane potential (MMP), as well as activation of caspase-9, caspase-3 and PAK2. Moreover, resveratrol and the ROS scavengers, NAC and α-tocopherol, abolished CTN-stimulated intracellular oxidative stress and apoptosis. Active JNK was required for CTN-induced mitochondria-dependent apoptotic biochemical changes, including loss of MMP, and activation of caspases and PAK2. Activation of PAK2 was essential for apoptosis triggered by CTN. These results collectively demonstrate that CTN stimulates ROS generation and JNK activation for mitochondria-dependent apoptotic signaling in Hep G2 cells, and these apoptotic biochemical events are blocked by pretreatment with resveratrol, which exerts antioxidant effects.
Collapse
|
22
|
Impact of methylglyoxal and high glucose co-treatment on human mononuclear cells. Int J Mol Sci 2009; 10:1445-1464. [PMID: 19468318 PMCID: PMC2680626 DOI: 10.3390/ijms10041445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/13/2009] [Accepted: 03/26/2009] [Indexed: 12/31/2022] Open
Abstract
Hyperglycemia and elevation of methylglyoxal (MG) are symptoms of diabetes mellitus (DM). In this report, we show that co-treatment of human mononuclear cells (HMNCs) with MG (5 μM) and high glucose (HG; 15 – 30 mM) induces apoptosis or necrosis. HG/MG co-treatment directly enhanced the reactive oxygen species (ROS) content in HMNCs, leading to decreased intracellular ATP levels, which control cell death via apoptosis or necrosis. Concentrations of 5 μM MG and 15 mM glucose significantly increased cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. In contrast, no apoptotic biochemical changes were detected in HMNCs treated with 5 μM MG and 25 mM glucose, which appeared to undergo necrosis. Pretreatment with nitric oxide (NO) scavengers inhibited apoptotic biochemical changes induced by 5 μM MG/15 mM glucose, and increased the gene expression levels of p53 and p21 involved in apoptotic signaling. The results collectively suggest that the treatment dosage of MG and glucose determines the mode of cell death (apoptosis vs. necrosis) of HMNCs, and that both ROS and NO play important roles in MG/HG-induced apoptosis.
Collapse
|
23
|
Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdevices 2008; 11:597-607. [DOI: 10.1007/s10544-008-9269-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Chan WH, Wu HJ. Methylglyoxal and high glucose co-treatment induces apoptosis or necrosis in human umbilical vein endothelial cells. J Cell Biochem 2008; 103:1144-57. [PMID: 17721990 DOI: 10.1002/jcb.21489] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperglycemia and elevation of methylglyoxal (MG) are symptoms of diabetes mellitus (DM). We previously showed that high glucose (HG; 30 mM) or MG (50-400 microM) could induce apoptosis in mammalian cells, but these doses are higher than the physiological concentrations of glucose and MG in the plasma of DM patients. The physiological concentration of MG and glucose in the normal blood circulation is about 1 microM and 5 mM, respectively. Here, we show that co-treatment with concentrations of MG and glucose comparable to those seen in the blood circulation of DM patients (5 microM and 15-30 mM, respectively) could cause cell apoptosis or necrosis in human umbilical vein endothelial cells (HUVECs) in vitro. HG/MG co-treatment directly increased the reactive oxygen species (ROS) content in HUVECs, leading to increases in intracellular ATP levels, which can control cell death through apoptosis or necrosis. Co-treatment of HUVECs with 5 microM MG and 20 mM glucose significantly increased cytoplasmic free calcium levels, activation of nitric oxide synthase (NOS), caspase-3 and -9, cytochrome c release, and apoptotic cell death. In contrast, these apoptotic biochemical changes were not detected in HUVECs treated with 5 microM MG and 30 mM glucose, which appeared to undergo necrosis. Pretreatment with nitric oxide (NO) scavengers could inhibit 5 microM MG/20 mM glucose-induced cytochrome c release, decrease activation of caspase-9 and caspase-3, and increase the gene expression and protein levels of p53 and p21, which are known to be involved in apoptotic signaling. Inhibition of p53 protein expression using small interfering RNA (siRNA) blocked the activation of p21 and the cell apoptosis induced by 5 microM MG/20 mM glucose. In contrast, inhibition of p21 protein expression by siRNA prevented apoptosis in HUVECs but had no effect on p53 expression. These results collectively suggest that the treatment dosage of MG and glucose could determine the mode of cell death (apoptosis vs. necrosis) in HUVECs, and both ROS and NO played important roles in MG/HG-induced apoptosis of these cells.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| | | |
Collapse
|
25
|
Huang LH, Shiao NH, Hsuuw YD, Chan WH. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts. Toxicology 2007; 242:109-22. [DOI: 10.1016/j.tox.2007.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 02/03/2023]
|
26
|
The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells. Int J Mol Sci 2007. [DOI: 10.3390/i8111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|