1
|
Alarcan J, Braeuning A. Effects of okadaic acid, azaspiracid-1, yessotoxin and their binary mixtures on human intestinal Caco-2 cells. EXCLI JOURNAL 2024; 23:509-522. [PMID: 38741723 PMCID: PMC11089091 DOI: 10.17179/excli2023-6884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Phycotoxins are responsible for foodborne intoxications. Symptoms depend on the ingested toxins but mostly imply gastro-intestinal and neurological disorders. Importantly, humans are exposed to combinations of several phycotoxins, resulting in possible mixture effects. Most previous studies, however, have been focused on single toxin effects. Thus, the aim of this study was to examine the effects of binary mixtures of three main phycotoxins, okadaic acid (OA), azaspiracid-1 (AZA1) and yessotoxin (YTX), on human intestinal Caco-2 cells. The focus was placed on cell viability studies and inflammation responses using a multi-parametric approach to assess cell population (nuclei staining), cell metabolism/viability (reductase activity and lysosomal integrity), and release of inflammation markers (e.g., interleukins). Mixture effects were evaluated using the concentration addition (CA) and independent action (IA) models. Our assays show that none of the toxins had an impact on the cell population in the tested concentration range. Only OA modulated reductase activity, while all three toxins had strong effects on lysosomal integrity. Furthermore, all toxins triggered the release of interleukin 8 (IL-8), with OA being most potent. Mixture effect analysis showed additivity in most cases. However, supra-additivity was observed in regards to IL-6 and IL-8 release for combinations implying high concentrations of OA. This study extends the knowledge on mixture effects of phycotoxins in human cells.
Collapse
Affiliation(s)
- Jimmy Alarcan
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Reale O, Huguet A, Fessard V. Co-culture model of Caco-2/HT29-MTX cells: A promising tool for investigation of phycotoxins toxicity on the intestinal barrier. CHEMOSPHERE 2020; 273:128497. [PMID: 34756374 DOI: 10.1016/j.chemosphere.2020.128497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 06/13/2023]
Abstract
Most lipophilic phycotoxins have been involved in human intoxications but some of these toxins have never been proven to induce human gastro-intestinal symptoms, although intestinal damage in rodents has been documented. For investigating the in vitro toxicological profile of lipophilic phycotoxins on intestine, the epithelial Caco-2 cell line has been the most commonly used model. Nevertheless, considering the complexity of the intestinal epithelium, in vitro co-cultures integrating enterocyte-like and mucus-secreting cell types are expected to provide more relevant data. In this study, the toxic effects (viability, inflammation, cellular monolayer integrity, modulation of cell type proportion and production of mucus) of four lipophilic phycotoxins (PTX2, YTX, AZA1 and OA) were evaluated in Caco-2/HT29-MTX co-cultured cells. The four toxins induced a reduction of viability from 20% to 50% and affected the monolayer integrity. Our results showed that the HT29-MTX cells population were more sensitive to OA and PTX2 than Caco-2 cells. Among the four phycotoxins, OA induced inflammation (28-fold increase of IL-8 release) and also a slight increase of both mucus production (up-regulation of mucins mRNA expression) and mucus secretion (mucus area and density). For PTX2 we observed an increase of IL-8 release but weaker than OA. Intestinal cell models integrating several cell types can contribute to improve hazard characterization and to describe more accurately the modes of action of phycotoxins.
Collapse
Affiliation(s)
- Océane Reale
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Antoine Huguet
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Valérie Fessard
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| |
Collapse
|
3
|
Biological Effects of the Azaspiracid-Producing Dinoflagellate Azadinium dexteroporum in Mytilus galloprovincialis from the Mediterranean Sea. Mar Drugs 2019; 17:md17100595. [PMID: 31652521 PMCID: PMC6835248 DOI: 10.3390/md17100595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Azaspiracids (AZAs) are marine biotoxins including a variety of analogues. Recently, novel AZAs produced by the Mediterranean dinoflagellate Azadinium dexteroporum were discovered (AZA-54, AZA-55, 3-epi-AZA-7, AZA-56, AZA-57 and AZA-58) and their biological effects have not been investigated yet. This study aimed to identify the biological responses (biomarkers) induced in mussels Mytilus galloprovincialis after the bioaccumulation of AZAs from A. dexteroporum. Organisms were fed with A. dexteroporum for 21 days and subsequently subjected to a recovery period (normal diet) of 21 days. Exposed organisms accumulated AZA-54, 3-epi-AZA-7 and AZA-55, predominantly in the digestive gland. Mussels' haemocytes showed inhibition of phagocytosis activity, modulation of the composition of haemocytic subpopulation and damage to lysosomal membranes; the digestive tissue displayed thinned tubule walls, consumption of storage lipids and accumulation of lipofuscin. Slight genotoxic damage was also observed. No clear occurrence of oxidative stress and alteration of nervous activity was detected in AZA-accumulating mussels. Most of the altered parameters returned to control levels after the recovery phase. The toxic effects detected in M. galloprovincialis demonstrate a clear biological impact of the AZAs produced by A. dexteroporum, and could be used as early indicators of contamination associated with the ingestion of seafood.
Collapse
|
4
|
Dietrich J, Grass I, Günzel D, Herek S, Braeuning A, Lampen A, Hessel-Pras S. The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol In Vitro 2019; 58:150-160. [PMID: 30926360 DOI: 10.1016/j.tiv.2019.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Okadaic acid (OA) is a lipophilic phycotoxin that accumulates in the hepatopancreas and fatty tissue of shellfish. Consumption of highly OA-contaminated seafood leads to diarrhetic shellfish poisoning which provokes severe gastrointestinal symptoms associated with a disruption of the intestinal epithelium. Since the molecular mechanisms leading to intestinal barrier disruption are not fully elucidated, we investigated the influence of OA on intestinal tight junction proteins (TJPs) in differentiated Caco-2 cells. We found a concentration- and time-dependent deregulation of genes encoding for intestinal TJPs of the claudin family, occludin, as well as zonula occludens (ZO) 1 and 2. Immunofluorescence staining showed concentration-dependent effects on the structural organization of TJPs already after treatment with a subtoxic but human-relevant concentration of OA. In addition, changes in the structural organization of cytoskeletal F-actin as well as its associated protein ZO-1 were observed. In summary, we demonstrated effects of OA on TJPs in intestinal Caco-2 cells. TJP expressions were affected after treatment with food-relevant OA concentrations. These results might explain the high potential of OA to disrupt the intestinal barrier in vivo as its first target. Thereby the present data contribute to a better understanding of the OA-dependent induction of molecular effects within the intestinal epithelium.
Collapse
Affiliation(s)
- Jessica Dietrich
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Irina Grass
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Saadet Herek
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
5
|
Korsnes MS, Korsnes R. Single-Cell Tracking of A549 Lung Cancer Cells Exposed to a Marine Toxin Reveals Correlations in Pedigree Tree Profiles. Front Oncol 2018; 8:260. [PMID: 30023341 PMCID: PMC6039982 DOI: 10.3389/fonc.2018.00260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022] Open
Abstract
Long-term video-based tracking of single A549 lung cancer cells exposed to three different concentrations of the marine toxin yessotoxin (YTX) reveals significant variation in cytotoxicity, and it confirms the potential genotoxic effects of this toxin. Tracking of single cells subject to various toxic exposure, constitutes a conceptually simple approach to elucidate lineage correlations and sub-populations which are masked in cell bulk analyses. The toxic exposure can here be considered as probing a cell population for properties and change which may include long-term adaptation to treatments. Ranking of pedigree trees according to a measure of "size," provides definition of sub-populations. Following single cells through generations indicates that signaling cascades and experience of mother cells can pass to their descendants. Epigenetic factors and signaling downstream lineages may enhance differences between cells and partly explain observed heterogeneity in a population. Signaling downstream lineages can potentially link a variety of observations of cells making resulting data more suitable for computerized treatment. YTX exposure of A549 cells tends to cause two main visually distinguishable classes of cell death modalities ("apoptotic-like" and "necrotic-like") with approximately equal frequency. This special property of YTX enables estimation of correlation between cell death modalities for sister cells indicating impact downstream lineages. Hence, cellular responses and adaptation to treatments might be better described in terms of effects on pedigree trees rather than considering cells as independent entities.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Nofima AS, Ås, Norway.,Korsnes Biocomputing (KoBio), Ås, Norway
| | - Reinert Korsnes
- Nofima AS, Ås, Norway.,Korsnes Biocomputing (KoBio), Ås, Norway.,Norwegian Defence Research Establishment (FFI), Kjeller, Norway.,Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
6
|
Korsnes MS, Korsnes R. Mitotic Catastrophe in BC3H1 Cells following Yessotoxin Exposure. Front Cell Dev Biol 2017; 5:30. [PMID: 28409150 PMCID: PMC5374163 DOI: 10.3389/fcell.2017.00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
The marine toxin yessotoxin (YTX) can cause various cytotoxic effects depending on cell type and cell line. It is well known to trigger distinct mechanisms for programmed cell death which may overlap or cross-talk. The present contribution provides the first evidence that YTX can cause genotoxicity and induce mitotic catastrophe which can lead to different types of cell death. This work also demonstrates potential information gain from non-intrusive computer-based tracking of many individual cells during long time. Treatment of BC3H1 cells at their exponential growth phase causes atypical nuclear alterations and formation of giant cells with multiple nuclei. These are the most prominent morphological features of mitotic catastrophe. Giant cells undergo slow cell death in a necrosis-like manner. However, apoptotic-like cell death is also observed in these cells. Electron microscopy of treated BC3H1 cells reveal uncondensed chromatin and cells with double nuclei. Activation of p-p53, p-H2AX, p-Chk1, p-ATM, and p-ATR and down-regulation of p-Chk2 indicate DNA damage response and cell cycle deregulation. Micronuclei formation further support this evidence. Data from tracking single cells reveal that YTX treatment suppresses a second round of cell division in BC3H1 cells. These findings suggest that YTX can induce genomic alterations or imperfections in chromosomal segregation leading to permanent mitotic failure. This understanding extends the list of effects from YTX and which are of interest to control cancer and tumor progression.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway.,Nofima ASÅs, Norway
| | - Reinert Korsnes
- Nofima ASÅs, Norway.,Norwegian Defence Research EstablishmentKjeller, Norway.,Norwegian Institute of Bioeconomy ResearchÅs, Norway
| |
Collapse
|
7
|
Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev 2016; 32:150-168. [PMID: 26947122 DOI: 10.1016/j.arr.2016.02.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biologicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Dolores Ledesma
- Department of Molecular Neurobiology, Centro Biologia Molecular Severo Ochoa, CSIC-UAM, C/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biologicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Synthesis of the ABCDEF and FGHI ring system of yessotoxin and adriatoxin. J Antibiot (Tokyo) 2016; 69:259-72. [PMID: 26956788 PMCID: PMC4898783 DOI: 10.1038/ja.2016.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 12/03/2022]
Abstract
Yessotoxin and adriatoxin are members of the polycyclic ether family of marine natural products. Outlined in this article is our synthetic approach to two subunits of these targets. Central to our strategy is a coupling sequence that employs an olefinic-ester cyclization reaction. As outlined, this sequence was used in two coupling sequences. First it was used to merge the A,B- and E,F-bicyclic precursors and in the process generate the C, D-rings. Second it was used to couple the F- and I-rings while building the eight-membered G-ring and subsequently the H-ring pyran.
Collapse
|
9
|
Alfonso A, Vieytes MR, Botana LM. Yessotoxin, a Promising Therapeutic Tool. Mar Drugs 2016; 14:md14020030. [PMID: 26828502 PMCID: PMC4771983 DOI: 10.3390/md14020030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
Yessotoxin (YTX) is a polyether compound produced by dinoflagellates and accumulated in filter feeding shellfish. No records about human intoxications induced by this compound have been published, however it is considered a toxin. Modifications in second messenger levels, protein levels, immune cells, cytoskeleton or activation of different cellular death types have been published as consequence of YTX exposure. This review summarizes the main intracellular pathways modulated by YTX and their pharmacological and therapeutic implications.
Collapse
Affiliation(s)
- Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Department of Physiology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Department of Physiology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| |
Collapse
|
10
|
Korsnes MS, Kolstad H, Kleiveland CR, Korsnes R, Ørmen E. Autophagic activity in BC3H1 cells exposed to yessotoxin. Toxicol In Vitro 2015; 32:166-80. [PMID: 26743762 DOI: 10.1016/j.tiv.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 02/09/2023]
Abstract
The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Hilde Kolstad
- Imaging Centre, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway
| | - Charlotte Ramstad Kleiveland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway; Smerud Medical Research, Oslo, Norway
| | - Reinert Korsnes
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway; Norwegian Defense Research Establishment (FFI), Kjeller, Norway
| | - Elin Ørmen
- Imaging Centre, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
11
|
Korsnes MS, Korsnes R. Lifetime Distributions from Tracking Individual BC3H1 Cells Subjected to Yessotoxin. Front Bioeng Biotechnol 2015; 3:166. [PMID: 26557641 PMCID: PMC4617161 DOI: 10.3389/fbioe.2015.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/02/2015] [Indexed: 11/21/2022] Open
Abstract
This work shows examples of lifetime distributions for individual BC3H1 cells after start of exposure to the marine toxin yessotoxin (YTX) in an experimental dish. The present tracking of many single cells from time-lapse microscopy data demonstrates the complexity in individual cell fate and which can be masked in aggregate properties. This contribution also demonstrates the general practicality of cell tracking. It can serve as a conceptually simple and non-intrusive method for high throughput early analysis of cytotoxic effects to assess early and late time points relevant for further analyzes or to assess for variability and sub-populations of interest. The present examples of lifetime distributions seem partly to reflect different cell death modalities. Differences between cell lifetime distributions derived from populations in different experimental dishes can potentially provide measures of inter-cellular influence. Such outcomes may help to understand tumor-cell resistance to drug therapy and to predict the probability of metastasis.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences , Ås , Norway
| | - Reinert Korsnes
- Norwegian Institute of Bioeconomy Research , Ås , Norway ; Norwegian Defense Research Establishment , Kjeller , Norway
| |
Collapse
|
12
|
Accorsi A, Ottaviani E, Malagoli D. Effects of repeated hemolymph withdrawals on the hemocyte populations and hematopoiesis in Pomacea canaliculata. FISH & SHELLFISH IMMUNOLOGY 2014; 38:56-64. [PMID: 24636857 DOI: 10.1016/j.fsi.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Pomacea canaliculata is a freshwater gastropod considered an invasive pest by several European, North American and Asiatic countries. This snail presents a considerable resistance to pollutants and may successfully face stressful events. Thanks to the unusual possibility to perform several hemolymph collections without affecting its survival, P. canaliculata is a good model to study the hematopoietic process and the hemocyte turnover in molluscs. Here we have analyzed the effects of repeated hemolymph withdrawals on circulating hemocyte populations and pericardial organs, i.e., the heart, the main vessels entering and leaving the heart and the ampulla, of P. canaliculata. Our experiments revealed that the circulating hemocyte populations were maintained constant after 3 collections performed in 48 h. The tissue organization of the heart and the vessels remained unaltered, whereas the ampulla buffered the effects of hemolymph collections acting as hemocyte reservoir, and its original organization was progressively lost by the repeated hemolymph withdrawals. The hematopoietic tissue of P. canaliculata was evidenced here for the first time. It is positioned within the pericardial cavity, in correspondence of the principle veins. Mitoses within the hematopoietic tissue were not influenced by hemolymph collections, and circulating hemocytes never presented mitotic activity.
Collapse
Affiliation(s)
- Alice Accorsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Enzo Ottaviani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
13
|
Korsnes MS, Røed SS, Tranulis MA, Espenes A, Christophersen B. Yessotoxin triggers ribotoxic stress. Toxicol In Vitro 2014; 28:975-81. [PMID: 24780217 DOI: 10.1016/j.tiv.2014.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
This work tests the hypothesis that the marine algal toxin yessotoxin (YTX) can trigger ribotoxic stress response in L6 and BC3H1 myoblast cells. YTX exposure at a concentration of 100 nM displays the characteristics of a ribotoxic stress response in such cells. The exposure leads to activation of the p38 mitogen-activated protein kinase, the stress-activated protein kinase c-jun, and the double-stranded RNA-activated protein kinase (PKR). YTX treatment also causes ribosomal RNA cleavage and inhibits protein synthesis. These observations support the idea that YTX can act as a ribotoxin.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Campus Ås, P.O. Box 5003, NO-1432 ÅS, Norway.
| | - Susan Skogtvedt Røed
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Michael A Tranulis
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Arild Espenes
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Berit Christophersen
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| |
Collapse
|
14
|
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014; 15:135-47. [PMID: 24452471 DOI: 10.1038/nrm3737] [Citation(s) in RCA: 1366] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell death research was revitalized by the understanding that necrosis can occur in a highly regulated and genetically controlled manner. Although RIPK1 (receptor-interacting protein kinase 1)- and RIPK3-MLKL (mixed lineage kinase domain-like)-mediated necroptosis is the most understood form of regulated necrosis, other examples of this process are emerging, including cell death mechanisms known as parthanatos, oxytosis, ferroptosis, NETosis, pyronecrosis and pyroptosis. Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- 1] Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium. [2]
| | - Andreas Linkermann
- 1] Division of Nephrology and Hypertension, Christian-Albrechts-University, 24105 Kiel, Germany. [2]
| | - Sandrine Jouan-Lanhouet
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
15
|
Pang M, Qu P, Gao CL, Tang X, Wang ZL. Effect of yessotoxin on cytosolic calcium levels in human hepatocellular carcinoma cells in vitro.. Biomed Rep 2013; 2:93-96. [PMID: 24649076 DOI: 10.3892/br.2013.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 11/05/2022] Open
Abstract
Yessotoxin (YTX) and its analogs are a type of marine toxins found in marine environments in numerous coastal countries. These toxins tend to accumulate in filter-feeding molluscs and may threaten the shellfish industry and public health. Several previous studies indicated that YTX may induce apoptosis in different types of cell lines, although the exact underlying mechanisms have not yet been elucidated. The aim of this study was to mainly focus on the effect of YTX on cytosolic Ca2+ levels in human hepatocellular carcinoma cells. In order to investigate the exact mechanism of YTX-evoked Ca2+ increase, laser scanning confocal microscopy was used, with the addition of the chelator ethylene glycol tetraacetic acid (EGTA) and nifedipine, an L-type Ca2+ channel blocker, to the reaction system. The results demonstrated that YTX caused cytosolic Ca2+ level increase in Bel7402 cells and the YTX-evoked Ca2+ increase was successfully blocked by EGTA and nifedipine. Therefore, our results indicated that YTX may cause apoptosis via inducing Ca2+ entry in Bel7402 cells.
Collapse
Affiliation(s)
- Min Pang
- First Institute of Oceanography, State Oceanic Administration, Qingdao, Shandong 266061, P.R. China
| | - Pei Qu
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Chun-Lei Gao
- First Institute of Oceanography, State Oceanic Administration, Qingdao, Shandong 266061, P.R. China
| | - Xuexi Tang
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Zong-Ling Wang
- First Institute of Oceanography, State Oceanic Administration, Qingdao, Shandong 266061, P.R. China
| |
Collapse
|
16
|
Korsnes MS, Espenes A, Hermansen LC, Loader JI, Miles CO. Cytotoxic responses in BC3H1 myoblast cell lines exposed to 1-desulfoyessotoxin. Toxicol In Vitro 2013; 27:1962-9. [DOI: 10.1016/j.tiv.2013.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
|
17
|
Buratti S, Franzellitti S, Poletti R, Ceredi A, Montanari G, Capuzzo A, Fabbri E. Bioaccumulation of algal toxins and changes in physiological parameters in Mediterranean mussels from the North Adriatic Sea (Italy). ENVIRONMENTAL TOXICOLOGY 2013; 28:451-470. [PMID: 21695759 DOI: 10.1002/tox.20739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 04/18/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
The Northwestern Adriatic Sea is a commercially important area in aquaculture, accounting for about 90% of the Italian mussel production, and it was subjected to recurring cases of mussel farm closures due to toxic algae poisoning. A spatial and temporal survey of four sites along the North Adriatic Sea coasts of Emilia Romagna (Italy) was undertaken to study the possible impairments of physiological parameters in Mytilus galloprovincialis naturally exposed to algal toxins. The sites were selected as part of the monitoring network for the assessment of algal toxins bioaccumulation by the competent Authority. Samples positive to paralytic shellfish toxins and to lipophilic toxins were detected through the mouse bioassay. Lipophilic toxins were assessed by HPLC. Decreasing yessotoxins (YTX) levels were observed in mussels from June to December, while homo-YTX contents increased concomitantly. Lysosome membrane stability (LMS), glutathione S-transferase and catalase activities, and multixenobiotic resistance (MXR)-related gene expressions were assessed as parameters related to the mussel health status and widely utilized in environmental biomonitoring. Levels of cAMP were also measured, as possibly involved in the algal toxin mechanisms of action. Low LMS values were observed in hemocytes from mussels positive to the mouse bioassay. MXR-related gene expressions were greatly inhibited in mussels positive to the mouse bioassay. Clear correlations were established between increasing homo-YTX contents (and decreasing YTX) and increasing cAMP levels in the tissues. Similarly, significant correlations were established between the increase of homo-YTX and cAMP levels, and the expressions of three MXR-related genes at submaximal toxin concentrations. In conclusion, YTXs may affect mussel physiological parameters, including hemocyte functionality, gene expression and cell signaling.
Collapse
Affiliation(s)
- Sara Buratti
- Interdepartment Centre for Environmental Science Research (CIRSA), University of Bologna, Via Sant'Alberto 163, 48100 Ravenna, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Sala GL, Bellocci M, Callegari F, Rossini GP. Azaspiracid-1 Inhibits the Maturation of Cathepsin D in Mammalian Cells. Chem Res Toxicol 2013; 26:444-55. [DOI: 10.1021/tx300511z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gian Luca Sala
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 287, I-41125 Modena,
Italy
| | | | - Federica Callegari
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 287, I-41125 Modena,
Italy
| | - Gian Paolo Rossini
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 287, I-41125 Modena,
Italy
| |
Collapse
|
19
|
Martín-López A, Gallardo-Rodríguez JJ, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. Cytotoxicity of yessotoxin and okadaic acid in mouse T lymphocyte cell line EL-4. Toxicon 2012; 60:1049-56. [DOI: 10.1016/j.toxicon.2012.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/15/2012] [Accepted: 07/18/2012] [Indexed: 11/25/2022]
|
20
|
Ling S, Zhang R. Effect of fipronil on brain and muscle ultrastructure of Nilaparvata lugens (Stål) (Homoptera: Delphacidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1348-1354. [PMID: 21497400 DOI: 10.1016/j.ecoenv.2011.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 05/30/2023]
Abstract
The ultrastructure of Nilaparvata lugens brain cells was damaged by treatment at different fipronil concentrations. The cell showed swollen mitochondria and vacuolization, but no mitochondrial cristae. Rough endoplasmic reticulum (RER) fragmentation and degranulation were seen. The dilatation of endoplasmic reticulum cisterns was very prominent, and the predominant lamellar RERs were arranged chaotically. The Golgi apparatus demonstrated obvious changes in configuration, as dilated with closed cisternae and atypical vesicles. The mitochondria mainly showed large vacuolization in muscles. Nuclear degeneration and condensation and increased numbers of large hydropic vacuoles and lysosomes were observed. It was concluded that the effect on cellular components was fipronil-specific. Changes in cellular ultrastructure seem to be an appropriate ecotoxicological indicator of the insecticide's efficacy.
Collapse
Affiliation(s)
- Shanfeng Ling
- South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | |
Collapse
|
21
|
Yessotoxin as an apoptotic inducer. Toxicon 2011; 57:947-58. [DOI: 10.1016/j.toxicon.2011.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 01/31/2011] [Accepted: 03/14/2011] [Indexed: 12/12/2022]
|
22
|
Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead MG, Newton DL. A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med 2011; 50:110-21. [PMID: 20971185 PMCID: PMC3014388 DOI: 10.1016/j.freeradbiomed.2010.10.696] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/22/2010] [Accepted: 10/15/2010] [Indexed: 11/22/2022]
Abstract
In this study, a Cu(2+) chelate of the novel thiosemicarbazone NSC 689534 was evaluated for in vitro and in vivo anti-cancer activity. Results demonstrated that NSC 689534 activity (low micromolar range) was enhanced four- to fivefold by copper chelation and completely attenuated by iron. Importantly, once formed, the NSC 689534/Cu(2+) complex retained activity in the presence of additional iron or iron-containing biomolecules. NSC 689534/Cu(2+) mediated its effects primarily through the induction of ROS, with depletion of cellular glutathione and protein thiols. Pretreatment of cells with the antioxidant N-acetyl-l-cysteine impaired activity, whereas NSC 689534/Cu(2+) effectively synergized with the glutathione biosynthesis inhibitor buthionine sulfoximine. Microarray analysis of NSC 689534/Cu(2+)-treated cells highlighted activation of pathways involved in oxidative and ER stress/UPR, autophagy, and metal metabolism. Further scrutiny of the role of ER stress and autophagy indicated that NSC 689534/Cu(2+)-induced cell death was ER-stress dependent and autophagy independent. Last, NSC 689534/Cu(2+) was shown to have activity in an HL60 xenograft model. These data suggest that NSC 689534/Cu(2+) is a potent oxidative stress inducer worthy of further preclinical investigation.
Collapse
Affiliation(s)
- Chad N. Hancock
- Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Luke H. Stockwin
- Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Bingnan Han
- Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Raymond D. Divelbiss
- Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Jung Ho Jun
- Laboratory of Synthetic Chemistry, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Sanjay V. Malhotra
- Laboratory of Synthetic Chemistry, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Melinda G. Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Dianne L. Newton
- Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
23
|
Tubaro A, Dell'Ovo V, Sosa S, Florio C. Yessotoxins: A toxicological overview. Toxicon 2010; 56:163-72. [DOI: 10.1016/j.toxicon.2009.07.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 06/17/2009] [Accepted: 07/30/2009] [Indexed: 01/10/2023]
|
24
|
Dominguez HJ, Paz B, Daranas AH, Norte M, Franco JM, Fernández JJ. Dinoflagellate polyether within the yessotoxin, pectenotoxin and okadaic acid toxin groups: Characterization, analysis and human health implications. Toxicon 2010; 56:191-217. [DOI: 10.1016/j.toxicon.2009.11.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/11/2009] [Accepted: 11/09/2009] [Indexed: 11/26/2022]
|
25
|
Ellis C, Naicker D, Basson K, Botha C, Meintjes R, Schultz R. A fluorescent investigation of subcellular damage in H9c2 cells caused by pavetamine, a novel polyamine. Toxicol In Vitro 2010; 24:1258-65. [DOI: 10.1016/j.tiv.2010.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 12/09/2009] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
26
|
Targets and effects of yessotoxin, okadaic acid and palytoxin: a differential review. Mar Drugs 2010; 8:658-77. [PMID: 20411120 PMCID: PMC2857362 DOI: 10.3390/md8030658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 01/14/2023] Open
Abstract
In this review, we focus on processes, organs and systems targeted by the marine toxins yessotoxin (YTX), okadaic acid (OA) and palytoxin (PTX). The effects of YTX and their basis are analyzed from data collected in the mollusc Mytilus galloprovincialis, the annelid Enchytraeus crypticus, Swiss CD1 mice and invertebrate and vertebrate cell cultures. OA and PTX, two toxins with a better established mode of action, are analyzed with regard to their effects on development. The amphibian Xenopus laevis is used as a model, and the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) as the experimental protocol.
Collapse
|
27
|
Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. EXPERIENTIA SUPPLEMENTUM 2010; 100:65-122. [PMID: 20358682 DOI: 10.1007/978-3-7643-8338-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Orsi CF, Colombari B, Callegari F, Todaro AM, Ardizzoni A, Rossini GP, Blasi E, Peppoloni S. Yessotoxin inhibits phagocytic activity of macrophages. Toxicon 2009; 55:265-73. [PMID: 19647763 DOI: 10.1016/j.toxicon.2009.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/24/2009] [Accepted: 07/28/2009] [Indexed: 11/29/2022]
Abstract
Yessotoxin (YTX) is a sulphated polyether compound produced by some species of dinoflagellate algae, that can be accumulated in bivalve mollusks and ingested by humans upon eating contaminated shellfish. Experiments in mice have demonstrated the lethal effect of YTX after intraperitoneal injection, whereas its oral administration has only limited acute toxicity, coupled with an alteration of plasma membrane protein turnover in the colon of the animals. In vitro studies have shown that this effect is due to the inhibition of endocytosis induced by the toxin. In this work, we investigated the effects of YTX on phagocytosis by using the J774 macrophage cell line. We found that macrophages exposed to 10 or 1 nM YTX display a reduced phagocytic activity against Candida albicans; moreover, phagosome maturation is also inhibited in these cells. Such results were confirmed with resident peritoneal macrophages from normal mice. The inhibition of both phagocytosis and phagosome maturation likely involves cytoskeletal alterations, since a striking rearrangement of the F-actin organization occurs in YTX-treated J774 macrophages. Surprisingly, YTX also enhances cytokine production (TNF-alpha, MIP-1alpha and MIP-2) by J774 macrophages. Overall, our results show that low doses of YTX significantly affect both effector and secretory functions of macrophages.
Collapse
Affiliation(s)
- Carlotta Francesca Orsi
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Young C, Truman P, Boucher M, Keyzers RA, Northcote P, Jordan TW. The algal metabolite yessotoxin affects heterogeneous nuclear ribonucleoproteins in HepG2 cells. Proteomics 2009; 9:2529-42. [DOI: 10.1002/pmic.200800725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Marine biotoxins in shellfish - Yessotoxin group - Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
New insights into autophagic cell death in the gypsy moth Lymantria dispar: a proteomic approach. Cell Tissue Res 2009; 336:107-18. [PMID: 19184113 DOI: 10.1007/s00441-008-0748-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Autophagy is an evolutionary ancient process based on the activity of genes conserved from yeast to metazoan taxa. Whereas its role as a mechanism to provide energy during cell starvation is commonly accepted, debate continues about the occurrence of autophagy as a means specifically activated to achieve cell death. The IPLB-LdFB insect cell line, derived from the larval fat body of the lepidoptera Lymantria dispar, represents a suitable model to address this question, as both autophagic and apoptotic cell death can be induced by various stimuli. Using morphological and functional approaches, we have observed that the culture medium conditioned by IPLB-LdFB cells committed to death by the ATPase inhibitor oligomycin A stimulates autophagic cell death in untreated IPLB-LdFB cells. Moreover, proteomic analysis of the conditioned media suggests that, in IPLB-LdFB cells, oligomycin A promotes a shift towards lipid metabolism, increases oxidative stress and specifically directs the cells towards autophagic activity.
Collapse
|
32
|
Abstract
Mitochondrial outer membrane permeabilization (MOMP) constitutes one of the major checkpoint(s) of apoptotic and necrotic cell death. Recently, the permeabilization of yet another organelle, the lysosome, has been shown to initiate a cell death pathway, in specific circumstances. Lysosomal membrane permeabilization (LMP) causes the release of cathepsins and other hydrolases from the lysosomal lumen to the cytosol. LMP is induced by a plethora of distinct stimuli including reactive oxygen species, lysosomotropic compounds with detergent activity, as well as some endogenous cell death effectors such as Bax. LMP is a potentially lethal event because the ectopic presence of lysosomal proteases in the cytosol causes digestion of vital proteins and the activation of additional hydrolases including caspases. This latter process is usually mediated indirectly, through a cascade in which LMP causes the proteolytic activation of Bid (which is cleaved by the two lysosomal cathepsins B and D), which then induces MOMP, resulting in cytochrome c release and apoptosome-dependent caspase activation. However, massive LMP often results in cell death without caspase activation; this cell death may adopt a subapoptotic or necrotic appearance. The regulation of LMP is perturbed in cancer cells, suggesting that specific strategies for LMP induction might lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- P Boya
- 3D Lab (Development, Differentiation and Degeneration), Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | |
Collapse
|
33
|
Yessotoxins, a group of marine polyether toxins: an overview. Mar Drugs 2008; 6:73-102. [PMID: 18728761 PMCID: PMC2525482 DOI: 10.3390/md20080005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 11/17/2022] Open
Abstract
Yessotoxin (YTX) is a marine polyether toxin that was first isolated in 1986 from the scallop Patinopecten yessoensis. Subsequently, it was reported that YTX is produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. YTXs have been associated with diarrhetic shellfish poisoning (DSP) because they are often simultaneously extracted with DSP toxins, and give positive results when tested in the conventional mouse bioassay for DSP toxins. However, recent evidence suggests that YTXs should be excluded from the DSP toxins group, because unlike okadaic acid (OA) and dinophyisistoxin-1 (DTX-1), YTXs do not cause either diarrhea or inhibition of protein phosphatases. In spite of the increasing number of molecular studies focused on the toxicity of YTX, the precise mechanism of action is currently unknown. Since the discovery of YTX, almost forty new analogues isolated from both mussels and dinoflagellates have been characterized by NMR or LC-MS/MS techniques. These studies indicate a wide variability in the profile and the relative abundance of YTXs in both, bivalves and dinoflagellates. This review covers current knowledge on the origin, producer organisms and vectors, chemical structures, metabolism, biosynthetic origin, toxicological properties, potential risks to human health and advances in detection methods of YTXs.
Collapse
|
34
|
|
35
|
Abstract
Autophagy is attracting growing interest, especially in relation to increasing evidence of the importance of autophagic processes in animal development, as well as in human cancer progression. In holometabolous insects (i.e., that undergo four distinct life cycle stages, including embryo, larva, pupa and imago), such as flies, butterflies, bees and beetles, autophagy has been found to play a fundamental role in metamorphosis, and given the high degree of conservation of the genes and the basic mechanisms of autophagy, attention to these relatively simple models has increased significantly. Together with Drosophila, Lepidoptera larvae are among the most common invertebrate models in studies concerning the protective action of starvation-induced autophagy or the possible role of autophagy as a programmed cell death process. In this chapter, we provide experimental methods developed for, or applicable to, the study of the autophagic process in the IPLB-LdFB cell line derived from the fat body of the caterpillar of the gypsy moth, Lymantria dispar.
Collapse
|
36
|
Blanco J, Mariño C, Martín H, Acosta CP. Anatomical distribution of diarrhetic shellfish poisoning (DSP) toxins in the mussel Mytilus galloprovincialis. Toxicon 2007; 50:1011-8. [DOI: 10.1016/j.toxicon.2007.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 09/04/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
|