1
|
Yan M, Wang H, Wei R, Li W. Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date. Arch Pharm Res 2024; 47:249-271. [PMID: 38147202 DOI: 10.1007/s12272-023-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Hao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Pharmacy Department, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwen Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Royapuram Parthasarathy P, Manikandamathavan VM, Chandronitha C, Vasanthi HR, Mohan VK, Vijayakumar V, Shanmugam R, Sekaran S, Unni Nair B, Chamundeeswari D, Thyagarajan SP. Synthesis, Characterization, and In Vivo Toxicological Evaluation of Copper (II) Oxide Containing Herbometallic Siddha Nanocomplex “Thamira Parpam”. Front Bioeng Biotechnol 2022; 10:849441. [PMID: 35480968 PMCID: PMC9037038 DOI: 10.3389/fbioe.2022.849441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
“Thamira parpam” (TP), a copper-based herbometallic oxide (copper (II) oxide) nanodrug has been used in Siddha medicine for centuries because of its anti-ulcerogenic property. However, the physicochemical properties and in vivo toxicity of TP still remain elusive. Rigorous clinical translation requires deciphering these vital properties. We have synthesized TP following a gold standard protocol in the traditional Siddha methodology. We assessed the size, phase, elemental constituents, and thermal stability of TP by SEM and TEM, XRD, EPR, and EDAX analyses, respectively. The results depicted the conversion of metallic copper into copper (II) oxide in the final stages of TP preparation and exhibited nanodimensions ranging between 10 and 50 nm. The XPS spectra revealed the presence of oxygen-deficient state and a carbonaceous coating was found on the surface of TP using TEM analysis. In vivo safety was studied in rat toxicity models by adopting OECD guidelines. Body weight changes, feed, and water intake were unaltered upon TP administration. Hematological, biochemical profiling, and histopathological findings also suggested its nontoxic nature with no abnormalities in major organs and its functions. Interestingly, we found that the metal toxicity could have been subdued because of the carbonaceous coating around the nanoparticle copper (II) oxide, confirming that the drug is safe at a low dose. Overall, our study has enlightened the safety of TP supporting the use of Siddha formulations.
Collapse
Affiliation(s)
- Parameswari Royapuram Parthasarathy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai, India
- Herbal and Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai, India
| | - Verasundaram M. Manikandamathavan
- Chemical Laboratory, Central Leather Research Institute, Chennai, India
- Department of Chemistry, Thiruvalluvar College, Tamilnadu, India
| | | | - Hannah R. Vasanthi
- Herbal and Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai, India
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Tamil Nadu, India
| | - Vasanth Kumar Mohan
- Herbal and Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai, India
| | | | - Rajeshkumar Shanmugam
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai, India
| | - Saravanan Sekaran
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai, India
| | | | | | - Sadras Panchatcharam Thyagarajan
- Herbal and Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai, India
- Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore, Tamil Nadu, India
- *Correspondence: Sadras Panchatcharam Thyagarajan,
| |
Collapse
|
3
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
4
|
Bjørklund G, Tippairote T, Rahaman MS, Aaseth J. Developmental toxicity of arsenic: a drift from the classical dose-response relationship. Arch Toxicol 2019; 94:67-75. [PMID: 31807801 DOI: 10.1007/s00204-019-02628-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023]
Abstract
Arsenic is a well-known natural environmental contaminant distributed in food, water, air, and soil. The developmental toxicity of arsenic exposure is a significant concern in large parts of the world. Unlike acute toxic exposure, the classical dose-response relationship is not adequate for estimating the possible impact of chronic low-level arsenic exposure. The real-life risk and impact assessments require the consideration of the co-exposure to multiple toxins, individual genetic and nutritional predisposition, and the particularly vulnerable stages of the neurodevelopment. This context shifts the assessment model away from the 'one-exposure-for-one-health-effect.' We underscore the need for a comprehensive risk assessment that takes into account all relevant determinants. We aim to elaborate a model that can serve as a basis for an understanding of complex interacting factors in a long-lasting and ongoing low-level arsenic exposure, to identify, protect, and support the children at risk.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Torsak Tippairote
- BBH Hospital, Bangkok, Thailand.,Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Md Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway.,IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Sánchez-Virosta P, Espín S, Ruiz S, Stauffer J, Kanerva M, García-Fernández AJ, Eeva T. Effects of calcium supplementation on oxidative status and oxidative damage in great tit nestlings inhabiting a metal-polluted area. ENVIRONMENTAL RESEARCH 2019; 171:484-492. [PMID: 30743240 DOI: 10.1016/j.envres.2019.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Calcium has been proposed to diminish metal toxicity by the modulation of the oxidative stress. This study explores the effects of Ca availability and metal exposure on oxidative stress biomarkers in great tit (Parus major) nestlings. Nests were supplemented with Ca (Ca-supplemented group) or not supplemented (Control group) in a metal-polluted and a background zone in SW Finland. Metal concentrations were analyzed from feces. We analyzed antioxidants (tGSH, GSH:GSSG ratio, CAT, GST, GPx, SOD), protein carbonylation and lipid peroxidation in red cells of nestlings. Ca-supplemented and fast-growing nestlings showed higher CAT activity to cope with reactive oxygen species (ROS) generated during intensive growth and metabolism. SOD and GPx (the latter not statistically significant) were more active in the polluted area, possibly reflecting higher ROS production in nestlings from this zone due to the enhanced metal exposure and smaller size. Antioxidant levels changed over the range of metal concentrations depending on the Ca levels in plasma, suggesting that higher Ca levels stimulate antioxidants and mitigate the impacts of metals. Ca supplementation may improve nestling traits and reproductive output when antioxidants are enhanced in a situation of oxidative challenge. Therefore, Ca should be considered in future studies assessing metal exposure and effects on wild birds.
Collapse
Affiliation(s)
- Pablo Sánchez-Virosta
- Department of Biology, University of Turku, 20014 Turku, Finland; Toxicology and Risk Assessment Group, Department of Health Sciences, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain.
| | - Silvia Espín
- Department of Biology, University of Turku, 20014 Turku, Finland; Toxicology and Risk Assessment Group, Department of Health Sciences, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Sandra Ruiz
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Janina Stauffer
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Mirella Kanerva
- Department of Biology, University of Turku, 20014 Turku, Finland; Lab. of Environmental Toxicology, Center for Marine Environmental Studies, Ehime University, 790-8577, Bunkyo-cho 2-5, Matsuyama, Japan
| | - Antonio J García-Fernández
- Toxicology and Risk Assessment Group, Department of Health Sciences, IMIB-Arrixaca, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Tapio Eeva
- Department of Biology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
6
|
Phan NN, Li KL, Lin YC. Arsenic induces cardiac rhythm dysfunction and acylcarnitines metabolism perturbation in rats. Toxicol Mech Methods 2018; 28:423-431. [DOI: 10.1080/15376516.2018.1440679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Nam Nhut Phan
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Kuan-Lun Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
7
|
Kryeziu K, Pirker C, Englinger B, van Schoonhoven S, Spitzwieser M, Mohr T, Körner W, Weinmüllner R, Tav K, Grillari J, Cichna-Markl M, Berger W, Heffeter P. Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells. Oncotarget 2017; 7:27379-93. [PMID: 27036042 PMCID: PMC5053657 DOI: 10.18632/oncotarget.8415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/18/2016] [Indexed: 01/02/2023] Open
Abstract
As an environmental poison, arsenic is responsible for many cancer deaths. Paradoxically, arsenic trioxide (ATO) presents also a powerful therapy used to treat refractory acute promyelocytic leukemia (APL) and is intensively investigated for treatment of other cancer types. Noteworthy, cancer therapy is frequently hampered by drug resistance, which is also often associated with enhancement of tumor aggressiveness. In this study, we analyzed ATO-selected cancer cells (A2780ATO) for the mechanisms underlying their enhanced tumorigenicity and aggressiveness. These cells were characterized by enhanced proliferation and spheroid growth as well as increased tumorigenicity of xenografts in SCID mice. Noteworthy, subsequent studies revealed that overexpression of Met receptor was the underlying oncogenic driver of these effects, as A2780ATO cells were characterized by collateral sensitivity against Met inhibitors. This finding was also confirmed by array comparative genomic hybridization (array CGH) and whole genome gene expression arrays, which revealed that Met overexpression by chronic ATO exposure was based on the transcriptional regulation via activation of AP-1. Finally, it was shown that treatment with the Met inhibitor crizotinib was also effective against A2780ATO cell xenografts in vivo, indicating that targeting of Met presents a promising strategy for the treatment of Met-overexpressing tumors after either arsenic exposure or failure to ATO treatment.
Collapse
Affiliation(s)
- Kushtrim Kryeziu
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Bernhard Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | | | - Thomas Mohr
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Wilfried Körner
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| | - Regina Weinmüllner
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Koray Tav
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | | | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| |
Collapse
|
8
|
Zeng Q, Luo P, Gu J, Liang B, Liu Q, Zhang A. PKC θ-mediated Ca 2+/NF-AT signalling pathway may be involved in T-cell immunosuppression in coal-burning arsenic-poisoned population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:44-50. [PMID: 28823652 DOI: 10.1016/j.etap.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/17/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Arsenic poisoning is a worldwide endemic disease that affects thousands of people. Growing evidence from animal, cell, and human studies indicates that arsenic has deleterious effects on the immune system. The present investigation is a population-based study that observed changes in the proliferation of human T-cells and IL-2 and INF-γ mRNA expression. Our results show that coal-burning arsenic can cause T-cell immunosuppression in the population, and participates in the occurrence and development of arsenic poisoning. In addition, we analyzed the intracellular calcium index, expression of protein kinase C theta (PKC θ) and phosphorylated PKC θ, and the DNA-binding activity of NF-AT in peripheral blood mononuclear cells (PBMCs). Our analysis demonstrates that the PKC θ-mediated Ca2+/NF-AT signalling pathway may be involved in the T-cell immunosuppression of coal-burning arsenic-poisoned population. This study provides important data for a mechanistic understanding of endemic arsenic poisoning.
Collapse
Affiliation(s)
- Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Junying Gu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Bing Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
9
|
Li SW, He Y, Zhao HJ, Wang Y, Liu JJ, Shao YZ, Li JL, Sun X, Zhang LN, Xing MW. Assessment of 28 trace elements and 17 amino acid levels in muscular tissues of broiler chicken (Gallus gallus) suffering from arsenic trioxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:430-437. [PMID: 28666216 DOI: 10.1016/j.ecoenv.2017.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
The contents of 28 trace elements, 17 amino acid were evaluated in muscular tissues (wings, crureus and pectoralis) of chickens in response to arsenic trioxide (As2O3). A total of 200 one-day-old male Hy-line chickens were fed either a commercial diet (C-group) or an As2O3 supplement diet containing 7.5mg/kg (L-group), 15mg/kg (M-group) or 30mg/kg (H-group) As2O3 for 90 days. The elements content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Under As2O3 exposure, the concentration of As were elevated 8.87-15.76 fold, 7.93-15.63 fold and 5.94-12.45 fold in wings, crureus and pectoralis compared to the corresponding C-group, respectively. 19 element levels (lithium (Li), magnesium (Mg), aluminum (Al), silicon (Si), kalium (K), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), selenium (Se), strontium (Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), mercury (Hg) and lead (Pb), 9 element levels (K, Co, Ni, Cu, As, Se, Sr, Sn, Ba and Hg) and 4 element levels (Mn, cobalt (Co), As, Sr and Ba) were significantly increased (P < 0.05) in wing, crureus and pectoralis, respectively. 2 element levels (sodium (Na) and zinc (Zn)), 5 element levels (Li, Na, Si, titanium (Ti and Cr), 13 element levels (Li, Na, Mg, K, V, Cr, iron (Fe), Cu, Zn, Mo, Sn, Hg and Pb) were significantly decreased (P < 0.05) in wing muscle, crureus and pectoralis, respectively. Additionally, in crureus and pectoralis, the content of total amino acids (TAA) was no significant alterations in L and M-group and then increased approximately 10.2% and 7.6% in H-group, respectively (P < 0.05). In wings, the level of total amino acids increased approximately 10% in L-group, whereas it showed unchanged in M and H-group compared to the corresponding C-group. We also observed that significantly increased levels of proline, cysteine, aspartic acid, methionine along with decrease in the tyrosine levels in muscular tissues compared to the corresponding C-group. In conclusion, the residual of As in the muscular tissues of chickens were dose-dependent and disrupts trace element homeostasis, amino acids level in muscular tissues of chickens under As2O3 exposure. Additionally, the response (trace elements and amino acids) were different in wing, thigh and pectoral of chick under As2O3 exposure. This study provided references for further study of heavy metal poisoning and may be helpful to understanding the toxicological mechanism of As2O3 exposure in muscular tissues of chickens.
Collapse
Affiliation(s)
- Si-Wen Li
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ying He
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Hong-Jing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Juan-Juan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yi-Zhi Shao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jing-Lun Li
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xiao Sun
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Li-Na Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Ming-Wei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| |
Collapse
|
10
|
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma. Oncotarget 2017; 8:22876-22893. [PMID: 28206967 PMCID: PMC5410270 DOI: 10.18632/oncotarget.15283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1−10 μM) or TOPO (0.1 nM−1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.
Collapse
|
11
|
Hu L, Sun J, Li H, Wang L, Wei Y, Wang Y, Zhu Y, Huo H, Tan Y. Differential mechanistic investigation of protective effects from imperatorin and sec-O-glucosylhamaudol against arsenic trioxide-induced cytotoxicity in vitro. Toxicol In Vitro 2016; 37:97-105. [PMID: 27608960 DOI: 10.1016/j.tiv.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/07/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE The clinical use of arsenic trioxide (As2O3) for treating acute promyelocytic leukemia (APL) is limited due to its severe cardiotoxicity. The possible mechanisms of As2O3-induced cardiotoxicity include DNA fragmentation, reactive oxygen species (ROS) generation, cardiac ion channel changes and apoptosis. The present study is designed to investigate the protective effects of imperatorin and sec-O-glucosylhamaudol and to explore their mechanistic involvement in As2O3-induced cytotoxicity. EXPERIMENTAL METHODS Cell viability assay, Lactate dehydrogenase (LDH) release, Acridine orange/ethidium bromide (AO/EB) double staining, Caspase-3 activity assay, ROS generation, cellular calcium levels, mRNA expression levels by qRT-PCR and protein expression levels by Western blotting were measured in H9c2 cells in combination with As2O3 and imperatorin or sec-O-glucosylhamaudol. KEY RESULTS We observed that H9c2 cells treated with imperatorin or sec-O-glucosylhamaudol were more resistant to As2O3-induced cell death. Both imperatorin and sec-O-glucosylhamaudol reduced H9c2 cell apoptosis, but both imperatorin and sec-O-glucosylhamaudol had no effects on Caspase-3 activity and intracellular calcium accumulation. Furthermore, imperatorin was capable of suppressing ROS generation, while sec-O-glucosylhamaudol did not show this effect. Moreover, imperatorin and sec-O-glucosylhamaudol triggered Nrf2 activation, which resulted in upregulation of downstream phase II metabolic enzymes and antioxidant protein/enzyme, probably offering cellular protection to As2O3-induced cardiotoxicity via the Nrf2 signal pathway. CONCLUSIONS AND IMPLICATIONS Imperatorin and sec-O-glucosylhamaudol can ameliorate As2O3-induced cytotoxicity and apoptosis in H9c2 cells, the mechanisms probably related to antioxidation. As2O3 in combination with imperatorin or sec-O-glucosylhamaudol could be considered as a novel strategy to expand the clinical application of As2O3.
Collapse
Affiliation(s)
- Liufang Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jianhui Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongmei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lifang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuna Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yaying Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hairu Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuqing Tan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Tsai ML, Yen CC, Lu FJ, Ting HC, Chang HR. Environmentally relevant concentration of arsenic trioxide and humic acid promoted tumor progression of human cervical cancer cells: In vivo and in vitro studies. ENVIRONMENTAL TOXICOLOGY 2016; 31:1121-1132. [PMID: 25728215 DOI: 10.1002/tox.22121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
In a previous study, treatment at higher concentrations of arsenic trioxide or co-exposure to arsenic trioxide and humic acid was found to be inhibited cell growth of cervical cancer cells (SiHa cells) by reactive oxygen species generation. However, treatment at lower concentrations slightly increased cell viability. Here, we investigate the enhancement of progression effects of environmentally relevant concentration of humic acid and arsenic trioxide in SiHa cell lines in vitro and in vivo by measuring cell proliferation, migration, invasion, and the carcinogenesis-related protein (MMP-2, MMP-9, and VEGF-A) expressions. SiHa cells treated with low concentrations of humic acid and arsenic trioxide alone or in co-exposure significantly increased reactive oxygen species, glutathione levels, cell proliferation, scratch wound-healing activities, migration abilities, and MMP-2 expression as compared to the untreated control. In vivo the tumor volume of either single drug (humic acid or arsenic trioxide) or combined drug-treated group was significantly larger than that of the control for an additional 45 days after tumor cell injection on the back of NOD/SCID mice. Levels of MMP-2, MMP-9, and VEGF-A, also significantly increased compared to the control. Histopathologic effects of all tumor cells appeared round in cell shape with high mitosis, focal hyperkeratosis and epidermal hyperplasia in the skin, and some tumor growth in the muscle were observed. Our results may indicate that exposure to low concentrations of arsenic trioxide and humic acid is associated with the progression of cervical cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1121-1132, 2016.
Collapse
Affiliation(s)
- Min-Ling Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Hung-Chih Ting
- Department of Early Childhood Educare, TransWorld University, Yun-lin, 640, Taiwan
| | - Horng-Rong Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| |
Collapse
|
13
|
The Coadministration of N-Acetylcysteine Ameliorates the Effects of Arsenic Trioxide on the Male Mouse Genital System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4257498. [PMID: 26839632 PMCID: PMC4709715 DOI: 10.1155/2016/4257498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Arsenic trioxide (As2O3) has shown effectiveness in treatment of leukemia but is also associated with reproductive toxicity. Since remediation with N-acetylcysteine (NAC) may mitigate the adverse effects caused by exposure, we assessed the effects of As2O3 and its potential reversibility after exposure cessation or coadministration of NAC. Animals received 0.3 or 3.0 mg/Kg/day of As2O3 subcutaneously and 40 mM of NAC in tap water. As2O3 treatment impaired spermatogenesis and sperm motility and decreased seminal vesicle weight and testosterone serum levels; after suspension of treatment, these parameters remained altered. When NAC was administered, animals showed improvement in sperm parameters and seminal vesicle weight. In vitro epididymal contractility was increased in As2O3-treated animals. We concluded that As2O3 is toxic to the male mouse genital system by compromising sperm quality and quantity; these effects persisted even after suspension of the treatment. However, the coadministration of NAC ameliorates the harmful effects of the drug on the male genital system.
Collapse
|
14
|
Chilakapati J, Wallace K, Hernandez-Zavala A, Moore T, Ren H, Kitchin KT. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure. Dose Response 2015; 13:1559325815592392. [PMID: 26674514 PMCID: PMC4674186 DOI: 10.1177/1559325815592392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.
Collapse
Affiliation(s)
| | - Kathleen Wallace
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Araceli Hernandez-Zavala
- Sección de Investigación y Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Tanya Moore
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Hongzu Ren
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Kirk T. Kitchin
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
15
|
Cobbina SJ, Chen Y, Zhou Z, Wu X, Feng W, Wang W, Li Q, Zhao T, Mao G, Wu X, Yang L. Interaction of four low dose toxic metals with essential metals in brain, liver and kidneys of mice on sub-chronic exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:280-291. [PMID: 25531266 DOI: 10.1016/j.etap.2014.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
This study reports on interactions between low dose toxic and essential metals. Low dose Pb (0.01mg/L), Hg (0.001mg/L), Cd (0.005mg/L) and As (0.01mg/L) were administered singly to four groups of 3-week old mice for 120 days. Pb exposure increased brain Mg and Cu by 55.5% and 266%, respectively. Increased brain Mg resulted from metabolic activity of brain to combat insults, whiles Cu overload was due to alteration and dysfunction of CTR1 and ATP7A molecules. Reduction of liver Ca by 56.0% and 31.6% (on exposure to As and Cd, respectively) resulted from inhibition of Ca-dependent ATPase in nuclei and endoplasmic reticulum through binding with thiol groups. Decreased kidney Mg, Ca and Fe was due to uptake of complexes of As and Cd with thiol groups from proximal tubular lumen. At considerably low doses, the study establishes that, toxic metals disturb the homeostasis of essential metals.
Collapse
Affiliation(s)
- Samuel Jerry Cobbina
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Qian Li
- School of Pharmacy, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Kulshrestha A, Jarouliya U, Prasad GBKS, Flora SJS, Bisen PS. Arsenic-induced abnormalities in glucose metabolism: Biochemical basis and potential therapeutic and nutritional interventions. World J Transl Med 2014; 3:96-111. [DOI: 10.5528/wjtm.v3.i2.96] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/21/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
Health hazards due to the consumption of heavy metals such as arsenic have become a worldwide problem. Metabolism of arsenic produces various intermediates which are more toxic and cause toxicity. Arsenic exposure results in impairment of glucose metabolism, insulin secretion in pancreatic β-cells, altered gene expressions and signal transduction, and affects insulin-stimulated glucose uptake in adipocytes or skeletal muscle cells. Arsenic toxicity causes abnormalities in glucose metabolism through an increase in oxidative stress. Arsenic interferes with the sulfhydryl groups and phosphate groups present in various enzymes involved in glucose metabolism including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, and contributes to their impairment. Arsenic inhibits glucose transporters present in the cell membrane, alters expression of genes involved in glucose metabolism, transcription factors and inflammatory cytokines which stimulate oxidative stress. Some theories suggest that arsenic exposure under diabetic conditions inhibits hyperglycemia. However, the exact mechanism behind the behavior of arsenic as an antagonist or synergist on glucose homeostasis and insulin secretion is not yet fully understood. The present review delineates the relationship between arsenic and the biochemical basis of its relationship to glucose metabolism. This review also addresses potential therapeutic and nutritional interventions for attenuating arsenic toxicity. Several other potential nutritional supplements are highlighted in the review that could be used to combat arsenic toxicity.
Collapse
|
17
|
The novel regulations of MEF2A, CAMKK2, CALM3, and TNNI3 in ventricular hypertrophy induced by arsenic exposure in rats. Toxicology 2014; 324:123-35. [PMID: 25089838 DOI: 10.1016/j.tox.2014.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 11/21/2022]
Abstract
Arsenic is a ubiquitous toxic compound that exists naturally in many sources such as soil, groundwater, and food; in which vast majority forms are arsenite (As(3+)) or arsenate (As(5+)). The mechanism of arsenic detoxification in humans still remains obscured. Epidemiologic studies documented that arsenic pollution caused black foot disease, cardiovascular diseases (hypertension, hypotension, cardiomyopathy), bladder cancer and skin cancer in many countries in which Taiwan is considered as high arsenic exposure country for long time ago. However, the effects of arsenic to cardiac functions still lacked of investigation while some studies mainly focus on inflammatory and cancer mechanisms. In the present study, we found cardiac hypertrophy signaling may be the most significant pathway for up regulated genes in arsenic exposed patients via bioinformatics approach. To verify our bioinformatics prediction, arsenic was fed orally to rats at different concentration based on previous studies in Taiwan. Using hemodynamic method as the main tool to measure the changes in blood pressure, left ventricular pressure and left ventricular contractility index, the findings suggest that highly exposure to arsenic lead to hypertension; elevated left ventricular diastolic pressure and alteration in cardiac contractility which are supposed to be the interaction between arsenic and cardiac nerves activity via the changing in calcium homeostasis. Collectively, based on our real-time PCR and western blot data strongly suggest that calcium homeostasis may also go through MEF2A, TNNI3, CAMKK2, CALM3 and cardiac hypertrophy relative signaling pathway.
Collapse
|
18
|
Saint-Jacques N, Parker L, Brown P, Dummer TJB. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health 2014; 13:44. [PMID: 24889821 PMCID: PMC4088919 DOI: 10.1186/1476-069x-13-44] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. METHODS Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. RESULTS Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. CONCLUSION Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.
Collapse
Affiliation(s)
- Nathalie Saint-Jacques
- Cancer Care Nova Scotia, Surveillance and Epidemiology Unit, Room 560 Bethune Building, 1276 South Street, Halifax B3H 2Y9, Nova Scotia, Canada
- Interdisciplinary PhD program, Dalhousie University, 6299 South Street, Room 314, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Louise Parker
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Patrick Brown
- Population Studies and Surveillance, Cancer Care Ontario, 620 University Ave, Toronto M5G 2 L7 Ontario, Canada
| | - Trevor JB Dummer
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
19
|
Al-Taweel N, Varghese E, Florea AM, Büsselberg D. Cisplatin (CDDP) triggers cell death of MCF-7 cells following disruption of intracellular calcium ([Ca 2+] i) homeostasis. J Toxicol Sci 2014; 39:765-74. [DOI: 10.2131/jts.39.765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich-Heine University Düsseldorf
| | | |
Collapse
|
20
|
Florea AM, Büsselberg D. The two opposite facets of arsenic: toxic and anticancer drug. ACTA ACUST UNITED AC 2013. [DOI: 10.5339/jlghs.2013.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Arsenic compounds have been known and used for centuries but their effects in living organisms still represent a large unknown. Arsenic compounds have paradoxical effects: they are threatening to human health, especially upon long-term exposure that can induce the development of cancer; however, they are used as drugs against cancer. This review focuses on the effects shown by clinically and environmentally relevant arsenic compounds in living organisms with a focus on the calcium–apoptosis link.
Collapse
Affiliation(s)
- Ana-Maria Florea
- 1Universität Trier, Fachbereich VI Umwelttoxikologie, Universitätsring 15 54296 Trier, Germany
| | - Dietrich Büsselberg
- 2Weill Cornell Medical College in Qatar, Qatar Foundation – Education City, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
21
|
Koller VJ, Zlabinger GJ, Auwärter V, Fuchs S, Knasmueller S. Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB₁. Arch Toxicol 2013; 87:1287-97. [PMID: 23494106 DOI: 10.1007/s00204-013-1029-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/25/2013] [Indexed: 11/28/2022]
Abstract
Products containing synthetic cannabinoids are consumed as a surrogate for marihuana due to their non-detectability with commonly used drug tests and their strong cannabimimetic effects. Because data concerning their toxicological properties are scarce, the cytotoxic, genotoxic, immunomodulatory, and hormonal activities of four naphthoylindole compounds (JWH-018, JWH-073, JWH-122 and JWH-210) and of one benzoylindole (AM-694) were studied in human cell lines and primary cells; tetrahydrocannabinol was included as the classical non-endogenous cannabinoid receptor ligand. All compounds induced damage to the cell membranes of buccal (TR146) and breast (MCF-7) derived cells at concentrations of ≥75-100 μM. No cytotoxic responses were seen in other assays which reflect mitochondrial damage, protein synthesis, and lysosomal activities. JWH-073 and JWH-122 induced DNA migration in buccal and liver cells (HepG2) in single cell gel electrophoresis assays, while JWH-210 was only in the latter cell line active. No estrogenic activities were detected in bone marrow cells (U2-OS), but all compounds caused anti-estrogenic effects at levels between 2.1 and 23.0 μM. Furthermore, no impact on cytokine release (i.e., on IL-10, IL-6, IL-12/23p40 and TNFα levels) was seen in LPS-stimulated human PBMCs, except with JWH-210 and JWH-122 which caused a decrease of TNFα and IL-12/23p40. All toxic effects were observed with concentrations higher than those expected in body fluids of users. Since genotoxic effects are in general linear over a wide concentration range and the exposure levels may be higher in epithelial cells than [corrected] in serum, further experimental work is required to find out if DNA damage takes place in drug users.
Collapse
Affiliation(s)
- Verena J Koller
- Department of Internal Medicine 1, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
22
|
The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling. Blood 2012; 120:847-57. [DOI: 10.1182/blood-2011-10-388496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arsenic in the form of arsenic trioxide (ATO) is used as a therapeutic drug for treatment of acute promyelocytic leukemia (APL). The mechanism by which this agent cures this disease was previously shown to involve direct interactions between ATO and the promyelocytic leukemia protein (PML), as well as accelerated degradation of the APL-associated fusion oncoprotein PML/retinoic acid receptor α (RARA). Here we investigated the fate of PML-generated nuclear structures called PML bodies in ATO-treated cells. We found that ATO inhibits formation of progeny PML bodies while it stabilizes cytoplasmic precursor compartments, referred to as cytoplasmic assemblies of PML and nucleoporins (CyPNs), after cell division. This block in PML body recycling is readily detected at pharmacologic relevant ATO concentrations (0.02-0.5μM) that do not cause detectable cell-cycle defects, and it does not require modification of PML by SUMOylation. In addition, PML and PML/RARA carrying mutations previously identified in ATO-resistant APL patients are impeded in their ability to become sequestered within CyPNs. Thus, ATO may inhibit nuclear activities of PML and PML/RARA in postmitotic cells through CyPN-dependent cytoplasmic sequestration.
Collapse
|
23
|
Hu YC, Cheng HL, Hsieh BS, Huang LW, Huang TC, Chang KL. Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 2012; 50:1406-15. [PMID: 22465848 DOI: 10.1016/j.bone.2012.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/07/2012] [Accepted: 03/10/2012] [Indexed: 11/25/2022]
Abstract
Arsenic trioxide (ATO) is widely used in tumor treatment, but excessive arsenic exposure can have adverse health effects. This study was to examine the association between ATO treatment and bone remodeling. The effects of ATO on osteoblast function were investigated in primary cell cultures and in an in vivo study in rats. Sprague-Dawley rats (n=30) were randomly assigned to 3 groups which were injected intraperitoneally with saline or 5 or 10 mg/kg of ATO for 4 weeks. In cell culture, ATO decreased osteoblast mineralization by decreasing alkaline phosphatase (ALP) expression and this effect was prevented by co-addition of inorganic phosphate (Pi). Moreover, levels of mRNAs for the transcription factors runt-related transcription factor 2 (Runx2) and osterix, the osteoblast osteogenic gene osteocalcin, and the adherence molecule vascular cell adhesion molecule-1 (VCAM-1) were decreased by ATO. Levels of mRNAs for the cytokine IL-6 were also decreased, whereas GM-CSF mRNA levels were increased. Similar effects of ATO on osteoblasts were seen in in vivo experiments in the rat. Moreover, decreases of bone turnover markers of osteocalcin, Procollagen type I N-terminal propeptide (PINP), and C-terminal cross-linked telopeptide (CTX) as well as bone mineral density (BMD) and trabecular bone volume of femur were observed in ATO-treated rats. These results suggest that ATO interferes with bone remodeling mostly through changes in osteoblast differentiation and function.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | |
Collapse
|
24
|
Metals and breast cancer: risk factors or healing agents? J Toxicol 2011; 2011:159619. [PMID: 21804822 PMCID: PMC3143443 DOI: 10.1155/2011/159619] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/24/2011] [Indexed: 12/18/2022] Open
Abstract
Metals and metal compounds are part of our environment. Several metals are essential for physiological functions (e.g., zinc or magnesium); while the beneficial effects of others are uncertain (e.g., manganese), some metals are proven to be toxic (e.g., mercury, lead). Additionally there are organic metal compounds; some of them are extremely toxic (e.g., trimethyltin, methylmercury), but there is very little knowledge available how they are handled by organisms. Scientific evidence indicates that long-term exposure to (some) metallic compounds induces different forms of cancer, including breast cancer. On the other side, several metal compounds have clinical use in treating life-threatening diseases such as cancer. In this paper we discuss the recent literature that shows a correlation between metal exposure and breast cancer.
Collapse
|
25
|
Smallwood HS, Lopez-Ferrer D, Eberlein PE, Watson DJ, Squier TC. Calmodulin mediates DNA repair pathways involving H2AX in response to low-dose radiation exposure of RAW 264.7 macrophages. Chem Res Toxicol 2010; 22:460-70. [PMID: 19193191 DOI: 10.1021/tx800236r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance tumor metastasis. In this respect, we have identified a dose-dependent increase in the abundance (i.e., expression level) of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. At low doses of irradiation there are minimal changes in the abundance of other cellular proteins detected using mass spectrometry, indicating that increases in CaM levels are part of a specific radiation-dependent cellular response. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose radiation exposures. Following macrophage irradiation, increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX foci, associated with DNA repair, with no change in the extent of double-stranded DNA damage. In comparison, when nuclear factor kappaB (NFkappaB)-dependent pathways are inhibited, through the expression of a dominant-negative IkappaB construct, there is no significant increase in phosphorylated histone H2AX foci upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX-mediated DNA repair pathways is not the result of nonspecific NFkappaB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation by enhancing macrophage radioresistance through processes that include the up-regulation of DNA repair pathways involving histone H2AX phosphorylation.
Collapse
|
26
|
Cai BZ, Meng FY, Zhu SL, Zhao J, Liu JQ, Liu CJ, Chen N, Ye ML, Li ZY, Ai J, Lu YJ, Yang BF. Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calcium signal and caspase-3 pathways. Toxicol Lett 2010; 193:173-8. [PMID: 20079407 DOI: 10.1016/j.toxlet.2010.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 12/08/2009] [Accepted: 01/06/2010] [Indexed: 01/09/2023]
Abstract
It was previously reported that excessive arsenic trioxide would produce cardiovascular toxicity. Bone marrow mesenchymal stem cells (BMSCs) have been shown to play a supporting role in cardiovascular functions. The increasing apoptosis of BMSCs commonly would promote the development of cardiovascular diseases. Thus we hypothesize that arsenic trioxide caused apoptosis in BMSCs, which provided a better understanding of arsenic toxicity in hearts. The present study was designed to investigate the proapoptotic effects of arsenic trioxide on BMSCs and explore the mechanism underlying arsenic trioxide-induced BMSCs apoptosis. We demonstrate that arsenic trioxide significantly inhibited survival ratios of BMSCs in a concentration-dependent and time-dependent manner. The Annexin V/PI staining and terminal deoxynucleotidyl transferasemediated dUTP nick-end labelling (TUNEL) assay also showed that arsenic trioxide markedly induced the apoptosis of BMSCs. The caspase-3 activity was obviously enhanced in the presence of arsenic trioxide in a concentration-dependent manner in BMSCs. Additionally, arsenic trioxide caused the increase of intracellular free calcium ([Ca(2+)](i)) in rat BMSCs. BAPTA pretreatment may attenuate the apoptosis of BMSCs induced by arsenic trioxide. Taken together, arsenic trioxide could inhibit the proliferation and induce the apoptosis of BMSCs by modulating intracellular [Ca(2+)](i), and activating the caspase-3 activity.
Collapse
Affiliation(s)
- Ben-Zhi Cai
- Department of Pharmacology, Harbin Medical University, Baojian Road 157, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bailey K, Xia Y, Ward WO, Knapp G, Mo J, Mumford JL, Owen RD, Thai SF. Global Gene Expression Profiling of Hyperkeratotic Skin Lesions from Inner Mongolians Chronically Exposed to Arsenic. Toxicol Pathol 2009; 37:849-59. [DOI: 10.1177/0192623309351725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The skin is an organ that is highly sensitive to chronic arsenic (As) exposure. Skin lesions such as hyperkeratoses (HKs) are common early manifestations of arsenicosis in humans. HKs can be precursor lesions of nonmelanoma skin cancers (NMSCs), but the driving forces behind their formation and how they may ultimately progress to NMSCs are unknown. The goal of this study was to examine the global gene expression profiles of As-related HKs in an effort to better understand gene expression changes that are potentially associated with early stages of As carcinogenesis. HK biopsies were removed from individuals living in an arsenicosis-endemic region in Inner Mongolia who had been exposed to high As levels in their drinking water for >20 years. Gene expression profiling was performed on RNA isolated from 7 individuals in this group and from 4 lesion-free skin samples from healthy individuals. Consistent with the pathological characteristics of the HK lesions, major functional categories and known canonical pathways represented by altered transcripts include those involved in development, differentiation, apoptosis, proliferation, and stress response. The results of this study may help define a signature profile of gene expression changes associated with long-term As exposure in the skin.
Collapse
Affiliation(s)
- Kathryn Bailey
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Yajuan Xia
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| | - William O. Ward
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Geremy Knapp
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jinyao Mo
- National Research Council, Washington, D.C., USA
| | - Judy L. Mumford
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Russell D. Owen
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Sheau-Fung Thai
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
28
|
Ragnvaldsson D, Lättström A, Tesfalidet S, Lövgren L, Tysklind M, Leffler P. Arsenic chemical species-dependent genotoxic potential in water extracts from two CCA-contaminated soils measured by DNA-repair deficient CHO-cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:4253-4260. [PMID: 19361837 DOI: 10.1016/j.scitotenv.2009.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 02/04/2009] [Accepted: 02/26/2009] [Indexed: 05/27/2023]
Abstract
Two soils with similar contamination levels from wood preservatives containing Chromium (Cr), Copper (Cu) and Arsenic (As) (CCA), were assessed for their general toxicity and genotoxicity. A set of water-based extraction methods, including pressurized liquid extraction (PLE), and batch leaching in milli-Q water and a weak CaCl(2)-solution, was used to produce soil extracts containing available fractions of contaminants. In addition, to obtain indications of the contaminants' bioavailability and toxic potential the genotoxicity of the extracts was estimated by testing their ability to inhibit the growth of wildtype Chinese hamster ovary cells (CHO-cells) and three genetically modified phenotypes that are deficient in different DNA-repair mechanisms. Total extractable arsenic concentrations in the extracts were comparable between the sites. However, the genotoxic potential was clearly higher in soil R extracts. The differences in genotoxic responses were related to differences in inorganic arsenic speciation. The ratio of trivalent arsenic (As(III)) to pentavalent arsenic (As(V)) was higher in all soil extracts from soil R, regardless of the leaching method used. The results of the various combinations of soil extraction techniques and assays using the CHO-cell lines reflected important differences in arsenic speciation in the two soils and possible synergistic effects in CCA-related exposure. They also indicate that speciation and combinatory effects are factors that should be taken into account when assessing risks at former wood impregnation sites contaminated by CCA-agents.
Collapse
Affiliation(s)
- Daniel Ragnvaldsson
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
29
|
Florea AM, Büsselberg D. Anti-cancer drugs interfere with intracellular calcium signaling. Neurotoxicology 2009; 30:803-10. [PMID: 19465052 DOI: 10.1016/j.neuro.2009.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/26/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
(Neuro-)toxicity of metal and metal compounds is frequently highlighted. While specific metals or metal compounds are essential for cellular function, other metals are toxic and/or carcinogens. Metals can trigger accidental cell death in the form of necrosis, or activate programmed cell death in the form of apoptosis. The aim of anti-cancer therapy is induction of apoptosis in tumor cells. Therefore, there is an interesting twist in the toxicity of metals and metal compounds (e.g., arsenic trioxide, cisplatin); since they have a higher specificity to induce apoptosis in cancer cells (possibly due to the high turnover in these cells) they are used to cure some forms of cancer. A body of evidence suggests that second messengers, such as modulations in the intracellular calcium concentration, could be involved in metals induced toxicity as well as in the beneficial effects shown by anti-cancer drugs. Here we review the influence on calcium homeostasis induced by some metallic compounds: cisplatin, arsenic trioxide and trimethyltin chloride.
Collapse
Affiliation(s)
- Ana-Maria Florea
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | |
Collapse
|
30
|
Reaction of the catalytic cysteine of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa with arsenite-BAL and phenylarsine oxide. Chem Biol Interact 2009; 178:64-9. [DOI: 10.1016/j.cbi.2008.10.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 11/23/2022]
|
31
|
Yang S, Xie Y, Yang W, Zheng R, Stevens F, Korkmaz E, Weiss AS, Ringer SP, Braet F. In vitro studies of cells grown on the superconductor PrO(x)FeAs. Micron 2009; 40:476-9. [PMID: 19179084 DOI: 10.1016/j.micron.2008.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/10/2008] [Accepted: 12/13/2008] [Indexed: 10/21/2022]
Abstract
The recent discovery of arsenic-based high temperature superconductors has reignited interest in the study of superconductor: biological interfaces. However, the new superconductor materials involve the chemistry of arsenic and their toxicity remains unclear [Hand, E., 2008. Nature 452 (24), 922]. In this study the possible adverse effects of this new family of superconductors on cells have been examined. Cell culture studies in conjunction with microscopy and viability assays were employed to examine the influence of arsenic-based superconductor PrO(x)FeAs (x=0.75) material in vitro. Imaging data revealed that cells were well adhered and spread on the surface of the superconductor. Furthermore, cytotoxicity studies showed that cells were unaffected during the time-course of the experiments, providing support for the biocompatibility aspects of PrO(x)FeAs-based superconductor material.
Collapse
Affiliation(s)
- Shaoguang Yang
- National Laboratory of Microstructures, Nanjing University, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Raghu KG, Cherian OL. Characterization of cytotoxicity induced by arsenic trioxide (a potent anti-APL drug) in rat cardiac myocytes. J Trace Elem Med Biol 2009; 23:61-8. [PMID: 19203718 DOI: 10.1016/j.jtemb.2008.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 09/28/2008] [Accepted: 10/15/2008] [Indexed: 01/20/2023]
Abstract
Arsenic, a known environmental toxicant, is ubiquitously present in the environment. Arsenic trioxide (ATO), an anti-acute promyelocytic leukemia (APL) drug, is associated with cardiac toxicity. It is reported to induce cardiac arrhythmia via altering various ion channels involved in the repolarization phase of cardiac action potential. The exact molecular mechanism of cardiovascular adverse effect due to ATO exposure has not been fully elucidated except for alteration on ion channels. To evaluate the cytotoxic effect of ATO on cardiac myocytes, primary culture of myocytes was treated with different doses (30, 60 and 90 microM) of ATO for various periods (24, 48 and 72 h). Cardiac toxicity was assessed by monitoring cell viability, mitochondrial and deoxyribonucleic acid (DNA) integrity, reactive oxygen species (ROS) generation, calcium overload and apoptosis. ATO exposure caused alteration in mitochondrial integrity, generation of ROS, calcium overload and apoptosis in cardiac cells in dose- and duration-dependent manner. There was no DNA fragmentation. Hence our results show that ATO causes apoptosis in cardiomyocytes by generation of ROS and the induction of calcium overload.
Collapse
Affiliation(s)
- K G Raghu
- Pharmacology Division, Central Drug Research Institute, Lucknow, Uttar Pradesh 226001, India.
| | | |
Collapse
|