1
|
Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine Toxicity: The Possible Role of Natural Products for Effective Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2278. [PMID: 37375903 DOI: 10.3390/plants12122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Sara Al-Qasmi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raju Sugavasi
- Department of Anatomy, Fathima Institute of Medical Sciences, Kadapa 516003, India
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
2
|
Huang Y, Lai L, Huang W, Zhou H, Li J, Liu C, Lai B, Li N. Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: Role of sulfur vacancy, degradation pathways and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128899. [PMID: 35468392 DOI: 10.1016/j.jhazmat.2022.128899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, natural molybdenite (MoS2) was applied to activate peroxymonosulfate (PMS) for the removal of atrazine (ATZ) and its degradation mechanism was investigated. Molybdenite exhibits superior catalytic performance. The best condition for atrazine degradation efficiency (>99%) was obtained with molybdenite concentration of 0.4 g/L, PMS concentration of 0.1 mM, and ATZ concentration of 12 μM within 10 min under experimental conditions. Electron paramagnetic resonance (EPR) test and chemical probe test further proved that HO• and SO4•- played important roles in the molybdenite/PMS system, and SO4•- was dominant. Meanwhile, Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) tests showed that sulfur vacancies and edge sulfur played important roles in the system. Edge sulfur was conducive to Mo4+ exposure, while sulfur vacancy facilitated electron transfer and reduced Mo6+ back to Mo4+. Combined with DFT calculation, the role of sulfur in the degradation process was verified. Besides, five ATZ degradation pathways were proposed. Finally, the degradation ability of the molybdenite/PMS system for different pollutants and in actual water bodies was also explored. This work provided ideas for exploring the degradation of organic contaminants by natural minerals.
Collapse
Affiliation(s)
- Yanchun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Leiduo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Weifang Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongyu Zhou
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
3
|
Goodson WH, Lowe L, Gilbertson M, Carpenter DO. Testing the low dose mixtures hypothesis from the Halifax project. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:333-357. [PMID: 32833669 DOI: 10.1515/reveh-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
In 2013, 60 scientists, representing a larger group of 174 scientists from 26 nations, met in Halifax, Nova Scotia to consider whether - using published research - it was logical to anticipate that a mixture of chemicals, each thought to be non-carcinogenic, might act together in that mixture as a virtual carcinogen. The group identified 89 such chemicals, each one affecting one or more Hallmark(s) - collectively covering all Hallmarks of Cancer - confirming the possibility that a chemical mixture could induce all the Hallmarks and function as a virtual carcinogen, thereby supporting the concern that chemical safety research that does not evaluate mixtures, is incomplete. Based on these observations, the Halifax Project developed the Low-Dose Carcinogenesis Hypothesis which posits "…that low-dose exposures to [mixtures of] disruptive chemicals that are not individually carcinogenic may be capable of instigating and/or enabling carcinogenesis." Although testing all possible combinations of over 80,000 chemicals of commerce would be impractical, prudence requires designing a methodology to test whether low-dose chemical mixtures might be carcinogenic. As an initial step toward testing this hypothesis, we conducted a mini review of published empirical observations of biological exposures to chemical mixtures to assess what empirical data exists on which to base future research. We reviewed studies on chemical mixtures with the criteria that the studies reported both different concentrations of chemicals and mixtures composed of different chemicals. We found a paucity of research on this important question. The majority of studies reported hormone related processes and used chemical concentrations selected to facilitate studying how mixtures behave in experiments that were often removed from clinical relevance, i.e., chemicals were not studied at human-relevant concentrations. New research programs must be envisioned to enable study of how mixtures of small doses of chemicals affect human health, starting, when at all possible, from non-malignant specimens when studies are done in vitro. This research should use human relevant concentrations of chemicals, expand research beyond the historic focus on endocrine endpoints and endocrine related cancers, and specifically seek effects that arise uniquely from exposure to chemical mixtures at human-relevant concentrations.
Collapse
Affiliation(s)
- William H Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, CA, 94115, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, NS, B2N 1X5, Canada
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
4
|
Fraser D, Mouton A, Serieys LEK, Cole S, Carver S, Vandewoude S, Lappin M, Riley SP, Wayne R. Genome‐wide expression reveals multiple systemic effects associated with detection of anticoagulant poisons in bobcats (
Lynx rufus
). Mol Ecol 2018; 27:1170-1187. [DOI: 10.1111/mec.14531] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Devaughn Fraser
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Laurel E. K. Serieys
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
- Institute for Communities and Wildlife in Africa Biological Sciences University of Cape Town Cape Town South Africa
- Environmental Studies Department University of California Santa Cruz CA USA
| | - Steve Cole
- Department of Medicine University of California Los Angeles CA USA
| | - Scott Carver
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Sue Vandewoude
- Department of Microbiology, Immunology and Pathology Colorado State University Fort Collins CO USA
| | - Michael Lappin
- Department of Clinical Sciences Colorado State University Fort Collins CO USA
| | - Seth P.D. Riley
- National Park Service Santa Monica Mountains National Recreation Area Thousand Oaks CA USA
| | - Robert Wayne
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| |
Collapse
|
5
|
Zsarnovszky A, Kiss D, Jocsak G, Nemeth G, Toth I, Horvath TL. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Front Neuroendocrinol 2018; 48:23-36. [PMID: 28987779 DOI: 10.1016/j.yfrne.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - David Kiss
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gergely Jocsak
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gabor Nemeth
- Department of Obstetrics and Gynecology, University of Szeged, School of Medicine, Szeged, Hungary
| | - Istvan Toth
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Tamas L Horvath
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Departments of Anatomy and Histology, University of Veterinary Medicine, Budapest 1078, Hungary.
| |
Collapse
|
6
|
Zhu J, Wang J, Chen X, Tsompana M, Gaile D, Buck M, Ren X. A time-series analysis of altered histone H3 acetylation and gene expression during the course of MMAIII-induced malignant transformation of urinary bladder cells. Carcinogenesis 2017; 38:378-390. [PMID: 28182198 DOI: 10.1093/carcin/bgx011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
Our previous studies have shown that chronic exposure to low doses of monomethylarsonous acid (MMAIII) causes global histone acetylation dysregulation in urothelial cells (UROtsa cells) during the course of malignant transformation. To reveal the relationship between altered histone acetylation patterns and aberrant gene expression, more specifically, the carcinogenic relevance of these alterations, we performed a time-course analysis of the binding patterns of histone 3 lysine 18 acetylation (H3K18ac) across the genome and generated global gene-expression profiles from this UROtsa cell malignant transformation model. We showed that H3K18ac, one of the most significantly upregulated histone acetylation sites following MMAIII exposure, was enriched at gene promoter-specific regions across the genome and that MMAIII-induced upregulation of H3K18ac led to an altered binding pattern in a large number of genes that was most significant during the critical window for MMAIII-induced UROtsa cells' malignant transformation. Some genes identified as having a differential binding pattern with H3K18ac, acted as upstream regulators of critical gene networks with known functions in tumor development and progression. The altered H3K18ac binding patterns not only led to changes in expression of these directly affected upstream regulators but also resulted in gene-expression changes in their regulated networks. Collectively, our data suggest that MMAIII-induced alteration of histone acetylation patterns in UROtsa cells led to a time- and malignant stage-dependent aberrant gene-expression pattern, and that some gene regulatory networks were altered in accordance with their roles in carcinogenesis, probably contributing to MMAIII-induced urothelial cell malignant transformation and carcinogenesis.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Epidemiology and Environmental Health
| | | | - Xushen Chen
- Department of Epidemiology and Environmental Health
| | | | | | | | - Xuefeng Ren
- Department of Epidemiology and Environmental Health.,Department of Pharmacology and Toxicology, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
7
|
Zhao X, Zhang C, Wang S, Song C, Li X. Theoretical and experimental study on the degradation mechanism of atrazine in Fenton oxidation treatment. RSC Adv 2017. [DOI: 10.1039/c6ra26918d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water can act as a catalyst to reduce the reaction barrier dramatically.
Collapse
Affiliation(s)
- Xue Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- P. R. China
| | - Chenxi Zhang
- Department of Resources and Environment
- Binzhou University
- Binzhou 256600
- P. R. China
| | - Shuguang Wang
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Chao Song
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Xiang Li
- Department of Environmental Science & Engineering
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
8
|
Comparison of Individual and Combined Effects of Four Endocrine Disruptors on Estrogen Receptor Beta Transcription in Cerebellar Cell Culture: The Modulatory Role of Estradiol and Triiodo-Thyronine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060619. [PMID: 27338438 PMCID: PMC4924076 DOI: 10.3390/ijerph13060619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/31/2023]
Abstract
Background: Humans and animals are continuously exposed to a number of environmental substances that act as endocrine disruptors (EDs). While a growing body of evidence is available to prove their adverse health effects, very little is known about the consequences of simultaneous exposure to a combination of such chemicals; Methods: Here, we used an in vitro model to demonstrate how exposure to bisphenol A, zearalenone, arsenic, and 4-methylbenzylidene camphor, alone or in combination, affect estrogen receptor β (ERβ) mRNA expression in primary cerebellar cell cultures. Additionally, we also show the modulatory role of intrinsic biological factors, such as estradiol (E2), triiodo-thyronine (T3), and glial cells, as potential effect modulators; Results: Results show a wide diversity in ED effects on ERβ mRNA expression, and that the magnitude of these ED effects highly depends on the presence or absence of E2, T3, and glial cells; Conclusion: The observed potency of the EDs to influence ERβ mRNA expression, and the modulatory role of E2, T3, and the glia suggests that environmental ED effects may be masked as long as the hormonal milieu is physiological, but may tend to turn additive or superadditive in case of hormone deficiency.
Collapse
|
9
|
Arsenic Exposure and Immunotoxicity: a Review Including the Possible Influence of Age and Sex. Curr Environ Health Rep 2016; 3:1-12. [DOI: 10.1007/s40572-016-0082-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Bardullas U, Giordano M, Rodríguez VM. Atrazine is primarily responsible for the toxicity of long-term exposure to a combination of atrazine and inorganic arsenic in the nigrostriatal system of the albino rat. Neurotoxicol Teratol 2013; 40:59-66. [PMID: 24161463 DOI: 10.1016/j.ntt.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022]
Abstract
Chronic and simultaneous exposure to a variety of chemicals present in the environment is an unavoidable fact. However, given the complexity of studying chemical mixtures, most toxicological studies have focused on the effects of short-term exposure to single substances. The aim of this study was to evaluate the effects on the nigrostriatal system of the chronic, simultaneous exposure to two widely distributed substances that have been identified as potential dopaminergic system toxicants, inorganic arsenic (iAs) and atrazine (ATR). Six groups of rats were treated daily for one year with atrazine (10mg ATR/kg), inorganic arsenic (0.5 or 50mgiAs/L of drinking water), or a combination of ATR+0.5mgiAs/L or ATR+50mgiAs/L. The 50mgiAs/L group showed locomotor hypoactivity, while all treatments decreased motor coordination in contrast no effects of treatment were found on the place and response learning tasks. Regarding markers for liver and muscle damage, there were no differences between groups in creatine kinase (CK) or aspartate transaminase (AST) activities, while decreases in lactate dehydrogenase (LDH) levels were found in some exposed groups. The striatal DA content was significantly reduced in ATR, 0.5mgiAs/L, ATR+0.5mgiAs/L, and ATR+50mgiAs/L groups, in comparison to the control group. The number of mesencephalic tyrosine hydroxylase positive cells decreased in the ATR and ATR+0.5mgiAs/L groups compared to the control. In contrast, immunoreactivity to cytochrome oxidase was reduced compared to the control in all treated groups, except for the group treated with 0.5iAsmg alone. Our results indicate that ATR has deleterious effects on dopaminergic neurons and that the combination of ATR and iAs does not exacerbate these effects.
Collapse
Affiliation(s)
- Ulises Bardullas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, México
| | | | | |
Collapse
|
11
|
Ramos-Monroy O, Ruiz-Ordaz N, Galíndez-Mayer J, Juárez-Ramirez C, Nava-Arenas I, Ordaz-Guillén Y. Operational Stability to Changes in Composition of Herbicide Mixtures Fed to a Laboratory-Scale Biobarrier. Appl Biochem Biotechnol 2013; 169:1418-30. [DOI: 10.1007/s12010-012-0082-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 12/27/2012] [Indexed: 11/24/2022]
|
12
|
de la Casa-Resino I, Valdehita A, Soler F, Navas JM, Pérez-López M. Endocrine disruption caused by oral administration of atrazine in European quail (Coturnix coturnix coturnix). Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:159-65. [PMID: 22871608 DOI: 10.1016/j.cbpc.2012.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 01/10/2023]
Abstract
The widely used herbicide atrazine (ATZ) has been reported to exhibit reproductive toxicity in rats, fish and amphibians, with an avian LD(50) of 5000 mg/kg. In the present work, ATZ was administered as a single oral dose of 25 or 100 mg/kg to female European quail (Coturnix coturnix coturnix) at days 0, 5 and 10 of the experiment, being the animals sampled at days 15, 30 and 45. ATZ significantly increased the expression of hepatic estrogen receptor α (ERα) at both doses at day 30. An important increase was also observed in plasma 17β-estradiol (E2) concentrations. ATZ at 100 mg/kg increased the circulating concentration of vitellogenin (Vtg), but this effect was not related with an increase in hepatic Vtg mRNA levels. ATZ had no effect on the hepatic expression of both cytochrome P450 1A4 (CYP1A4) or the related biotransformation activity ethoxyresorufin-O-deethylase (EROD). These results led to the conclusion that ATZ provokes an estrogenic effect in sexually mature females of European quail. Further studies are necessary to establish the effect on sexual development or reproduction of female and male birds in the wild.
Collapse
|
13
|
Li C, Gao N, Wang L, Shen Y. Hydrogen peroxide-assisted low pressure UV photodegradation of atrazine in aqueous solution. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/00207233.2012.674780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Gender-linked haematopoietic and metabolic disturbances induced by a pesticide mixture administered at low dose to mice. Toxicology 2010; 267:80-90. [DOI: 10.1016/j.tox.2009.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 01/16/2023]
|
15
|
Chen C, Yang S, Guo Y, Sun C, Gu C, Xu B. Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:675-684. [PMID: 19665291 DOI: 10.1016/j.jhazmat.2009.07.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 05/28/2023]
Abstract
The ultraviolet (UV) photolysis of atrazine in aqueous solution was investigated at wavelength of 254 nm in this study. This paper was mainly focused on the identification of atrazine degradation intermediates by HPLC-MS/MS and its degradation mechanisms. The photodegradation products included the following seven classes: dechloro-hydroxylated products, chloro-dealkylated products, dechloro-dealkylated products, alkylic-oxidated products, delamination-hydroxylated products, olefinic products, and dechloro-hydrogenated products which were never reported in direct photolytic process, 4-isopropylamino-6-ethylamino-s-triazine (IEST), 4,6-dihydroxy-s-triazine (OOST). The main degradation products were 2-hydroxy-4-acetamido-6-ethylamino-s-triazine (OIET), 2-chloro-4-isopropyl-amino-6-methylamino-s-triazine (CIMT), 2-chloro-4,6-divinylamino-s-triazine (CVVT), 2-chloro-4-ethylamino-6-amino-s-triazine(CEAT), 2-methoxy-4-isopropyl-amino-6-methylamino-s-triazine (OIMT), 2-hydroxy-4-acetamindo-6-ethylamino-s-triazine (ODET), etc. Finally, the possible degradation mechanism was also proposed here.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Arsenic induces telomerase expression and maintains telomere length in human cord blood cells. Toxicology 2009; 260:132-41. [DOI: 10.1016/j.tox.2009.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 12/22/2022]
|