1
|
Zhang T, Zhou X, Wang L, Li C, Xu Y, Liu Z. Vascular toxicity of benzene series released from decorative materials. Toxicol Ind Health 2025:7482337251340797. [PMID: 40353507 DOI: 10.1177/07482337251340797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The health risks associated with benzene series emissions from decorative materials have become a paramount concern in indoor air quality assessments, particularly given their established link with cardiovascular diseases, such as hypertension and atherosclerosis. Despite epidemiological evidence supporting this correlation, the underlying mechanisms remain under debate. This research comprehensively reviewed contemporary epidemiological studies on the cardiovascular impacts of benzene series emissions. It concentrated on the elucidation of their vascular toxicity, encompassing structural damage to vascular tissues, impaired vasoconstrictive-diastolic function, and abnormal lipid accumulation. By illuminating these research advancements, this study aimed to outline directions for future investigations and furnish insights into mitigating the risk of cardiovascular diseases stemming from benzene-contaminated decorative materials, ultimately contributing to public health protection.
Collapse
Affiliation(s)
- Tanliu Zhang
- Anhui Vocational & Technical College, Hefei, PR China
| | - Xiuhong Zhou
- Center for Biotechnology, Anhui Agricultural University, Hefei, PR China
| | - Limei Wang
- Zhejiang Kangmu Pharmaceutical Co. Ltd, Shaoxing, PR China
| | - Chengwang Li
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, PR China
| | - Yan Xu
- National Key Laboratory for Tea Plant Gemplasm Innovation and Resource Utilization, School of Tea Sciences, Anhui Agricultural University, Hefei, PR China
| | - Zenghui Liu
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, PR China
- Anhui Institute of Qi'men Snake Medicine, Qimen, PR China
| |
Collapse
|
2
|
Yang G, Xu T, Hao D, Zhu R, An J, Chen Y, Xu L, Zhao B, Xie HQ. Dioxin-like effects of an emerging contaminant 1,3,6,8-tetrabromocarbazole on the myogenic differentiation of mouse C2C12 cells. ENVIRONMENTAL RESEARCH 2025; 268:120758. [PMID: 39756783 DOI: 10.1016/j.envres.2025.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
1,3,6,8-Tetrabromocarbazole (1368-BCZ) has been proposed as an emerging environmental contaminant which has aryl hydrocarbon receptor (AhR) activating properties analogous to those of dioxins. Skeletal muscle development is a critical target of dioxin toxicity. However, the impact of 1368-BCZ on muscle development is inadequately understood. The C2C12 mouse myoblast cell is extensively utilized as an in vitro model for studying myogenesis. In the present study, we observed that treatment with 1368-BCZ inhibited myogenic myoblast differentiation in a concentration-dependent manner, without inducing cytotoxicity. Using flow cytometry analysis and a wound healing assay, we found that the cell cycle exit and migratory activity were blocked in 1368-BCZ-treated cells at the early stage of C2C12 differentiation. In line with this alteration, 1368-BCZ significantly upregulated the expression of cell cycle regulators and migration-related genes, whereas it suppressed the expression of myogenic regulatory factors (MRFs) and skeletal muscle myosin isoforms (MYH3 and MYH4), marker genes for myogenesis. Furthermore, treatment with 1368-BCZ activated the AhR signaling pathway, leading to the transcriptional upregulation of AhR-target genes, CYP1A1 and CYP1B1. Silencing AhR mitigated the inhibitory effects of 1368-BCZ on C2C12 differentiation and significantly enhanced the formation of multi-nucleated myotubes through the upregulation of MRFs expression. Taken together, our study suggests that 1368-BCZ exerts an inhibitory effect on myogenesis in C2C12 cells through an AhR-dependent regulatory mechanism, which is highly similar to the observed dioxin effect.
Collapse
Affiliation(s)
- Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Di Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahui An
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangsheng Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Fu C, Li Y, Xi H, Niu Z, Chen N, Wang R, Yan Y, Gan X, Wang M, Zhang W, Zhang Y, Lv P. Benzo(a)pyrene and cardiovascular diseases: An overview of pre-clinical studies focused on the underlying molecular mechanism. Front Nutr 2022; 9:978475. [PMID: 35990352 PMCID: PMC9386258 DOI: 10.3389/fnut.2022.978475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Benzo(a)pyrene (BaP) is a highly toxic and carcinogenic polycyclic aromatic hydrocarbon (PAH) whose toxicological effects in the vessel-wall cells have been recognized. Many lines of evidence suggest that tobacco smoking and foodborne BaP exposure play a pivotal role in the dysfunctions of vessel-wall cells, such as vascular endothelial cell and vascular smooth muscle cells, which contribute to the formation and worsening of cardiovascular diseases (CVDs). To clarify the underlying molecular mechanism of BaP-evoked CVDs, the present study mainly focused on both cellular and animal reports whose keywords include BaP and atherosclerosis, abdominal aortic aneurysm, hypertension, or myocardial injury. This review demonstrated the aryl hydrocarbon receptor (AhR) and its relative signal transduction pathway exert a dominant role in the oxidative stress, inflammation response, and genetic toxicity of vessel-wall cells. Furthermore, antagonists and synergists of BaP are also discussed to better understand its mechanism of action on toxic pathways.
Collapse
Affiliation(s)
- Chenghao Fu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Hao Xi
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zemiao Niu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Rong Wang
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Eco-Environmental Monitoring Center of Hebei Province, Shijiazhuang, China
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Ju S, Lim L, Ki YJ, Choi DH, Song H. Oxidative stress generated by polycyclic aromatic hydrocarbons from ambient particulate matter enhance vascular smooth muscle cell migration through MMP upregulation and actin reorganization. Part Fibre Toxicol 2022; 19:29. [PMID: 35449013 PMCID: PMC9026692 DOI: 10.1186/s12989-022-00472-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/15/2022] [Indexed: 01/16/2025] Open
Abstract
Background Epidemiological studies have suggested that elevated concentrations of particulate matter (PM) are strongly associated with the incidence of atherosclerosis, however, the underlying cellular and molecular mechanisms of atherosclerosis by PM exposure and the components that are mainly responsible for this adverse effect remain to be established. In this investigation, we evaluated the effects of ambient PM on vascular smooth muscle cell (VSMC) behavior. Furthermore, the effects of polycyclic aromatic hydrocarbons (PAHs), major components of PM, on VSMC migration and the underlying mechanisms were examined. Results VSMC migration was significantly increased by treatment with organic matters extracted from ambient PM. The total amount of PAHs contained in WPM was higher than that in SPM, leading to higher ROS generation and VSMC migration. The increased migration was successfully inhibited by treatment with the anti-oxidant, N-acetyl-cysteine (NAC). The levels of matrix metalloproteinase (MMP) 2 and 9 were significantly increased in ambient PM-treated VSMCs, with MMP9 levels being significantly higher in WPM-treated VSMCs than in those treated with SPM. As expected, migration was significantly increased in all tested PAHs (anthracene, ANT; benz(a)anthracene, BaA) and their oxygenated derivatives (9,10-Anthraquinone, AQ; 7,12-benz(a)anthraquinone, BAQ, respectively). The phosphorylated levels of focal adhesion kinase (FAK) and formation of the focal adhesion complex were significantly increased in ambient PM or PAH-treated VSMCs, and these effects were blocked by administration of NAC or α-NF, an inhibitor of AhR, the receptor that allows PAH uptake. Subsequently, the levels of phosphorylated Src and NRF, the downstream targets of FAK, were altered with a pattern similar to that of p-FAK. Conclusions PAHs, including oxy-PAHs, in ambient PM may have dual effects that lead to an increase in VSMC migration. One is the generation of oxidative stress followed by MMP upregulation, and the other is actin reorganization that results from the activation of the focal adhesion complex.
Collapse
Affiliation(s)
- Sujin Ju
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Leejin Lim
- Cancer Mutation Research Center, Chosun University, Gwangju, 61452, Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea.
| |
Collapse
|
5
|
Lu YB, Shi C, Yang B, Lu ZF, Wu YL, Zhang RY, He X, Li LM, Hu B, Hu YW, Zheng L, Wang Q. Long noncoding RNA ZNF800 suppresses proliferation and migration of vascular smooth muscle cells by upregulating PTEN and inhibiting AKT/mTOR/HIF-1α signaling. Atherosclerosis 2020; 312:43-53. [PMID: 32971395 DOI: 10.1016/j.atherosclerosis.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs (lncRNAs) have recently been implicated in many biological and disease processes, but the exact mechanism of their involvement in atherosclerosis is unclear. The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) is a major contributor to the development of atherosclerotic lesions. This study aimed to investigate the potential effects of lncRNA ZNF800, a previously uncharacterized lncRNA, on VSMC proliferation and migration. METHODS The expression of lncRNA ZNF800 in atherosclerotic plaque tissues was detected using reverse transcription-quantitative PCR (RT-qPCR), while the role and mechanism of lncRNA ZNF800 in proliferation and migration of VSMCs were investigated by CCK8 assay, transwell assay, scratch wound assay, RT-qPCR and Western blot. RESULTS We found that lncRNA ZNF800 was significantly more abundant in atherosclerotic plaque tissues, and substantially suppressed the proliferation and migration of VSMCs. LncRNA ZNF800 had no effect on phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mRNA expression but dramatically increased the levels of PTEN protein. Enhanced lncRNA ZNF800 expression inhibited the activity of the AKT/mTOR/HIF-1α signaling pathway, downregulated the expression of vascular endothelial growth factor α (VEGF-α) and matrix metalloproteinase 1 (MMP1), and suppressed VSMC proliferation and migration. These inhibitory effects of lncRNA ZNF800 were abolished by knockdown of PTEN. The inhibitory effects of lncRNA ZNF800 on cell proliferation and migration and the expression of VEGF-α and MMP1 were exacerbated by HIF-1α knockdown in VSMCs. CONCLUSIONS These findings demonstrated that lncRNA ZNF800 suppressed VSMC proliferation and migration by interacting with PTEN through a mechanism involving AKT/mTOR/HIF-1α signaling. Therefore, it may play a key atheroprotective role and represent a potential therapeutic target for atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Yuan-Bin Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Shi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Yang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Feng Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Lin Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ru-Yi Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Min Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bing Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China.
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
7
|
Aryl Hydrocarbon Receptor: A New Player of Pathogenesis and Therapy in Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6058784. [PMID: 29984241 PMCID: PMC6015699 DOI: 10.1155/2018/6058784] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a DNA binding protein that acts as a nuclear receptor mediating xenobiotic metabolism and environmental responses. Owing to the evolutionary conservation of this gene and its widespread expression in the immune and circulatory systems, AhR has for many years been almost exclusively studied by the pharmacological/toxicological field for its role in contaminant toxicity. More recently, the functions of AhR in environmental adaption have been examined in the context of the occurrence, development, and therapy of cardiovascular diseases. Increasing evidence suggests that AhR is involved in maintaining homeostasis or in triggering pathogenesis by modulating the biological responses of critical cell types in the cardiovascular system. Here, we describe the structure, distribution, and ligands of AhR and the AhR signaling pathway and review the impact of AhR on cardiovascular physiology. We also discuss the potential contribution of AhR as a new potential factor in the targeted treatment of cardiovascular diseases.
Collapse
|
8
|
Poormasjedi-Meibod MS, Salimi Elizei S, Leung V, Baradar Jalili R, Ko F, Ghahary A. Kynurenine Modulates MMP-1 and Type-I Collagen Expression Via Aryl Hydrocarbon Receptor Activation in Dermal Fibroblasts. J Cell Physiol 2016; 231:2749-60. [PMID: 26992058 DOI: 10.1002/jcp.25383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/15/2016] [Indexed: 01/13/2023]
Abstract
Dermal fibrosis is characterized by a high deposition of extracellular matrix (ECM) and tissue cellularity. Unfortunately all means of treating this condition are unsatisfactory. We have previously reported the anti-fibrotic effects of Kynurenine (Kyn), a tryptophan metabolite, in fibrotic rabbit ear model. Here, we report the mechanism by which Kyn modulates the expression of key ECM components in dermal fibroblasts. The results showed that Kyn activates aryl hydrocarbon receptor (AHR) nuclear translocation and up-regulates cytochrome-P450 (CYP1A-1) expression, the AHR target gene. A specific AHR antagonist, 6,2',4'-trimethoxyflavone, inhibited the Kyn-dependent modulation of CYP1A-1, MMP-1, and type-I collagen expression. Establishing the anti-fibrogenic effect of Kyn and its mechanism of action, we then developed nano-fibrous Kyn slow-releasing dressings and examined their anti-fibrotic efficacy in vitro and in a rat model. Our results showed the feasibility of incorporating Kyn into PVA/PLGA nanofibers, prolonging the Kyn release up to 4 days tested. Application of medicated-dressings significantly improved the dermal fibrosis indicated by MMP-1 induction, alpha-smooth muscle actin and type-I collagen suppression, and reduced tissue cellularity, T-cells and myofibroblasts. This study clarifies the mechanism by which Kyn modulates ECM expression and reports the development of a new slow-releasing anti-fibrogenic dressing. J. Cell. Physiol. 231: 2749-2760, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Sanam Salimi Elizei
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victor Leung
- Department of Materials Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Baradar Jalili
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank Ko
- Department of Materials Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Pernomian L, da Silva CHTP. Current basis for discovery and development of aryl hydrocarbon receptor antagonists for experimental and therapeutic use in atherosclerosis. Eur J Pharmacol 2015; 764:118-123. [PMID: 26142084 DOI: 10.1016/j.ejphar.2015.06.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
The important role played by aryl hydrocarbon receptor activation in the pathophysiology of atherosclerosis induced by cigarette smoke exposure has spurred the clinical interest in the development of aryl hydrocarbon receptor antagonists with atheroprotective efficacy. A few aryl hydrocarbon receptor antagonists were developed but the lack of structural information regarding the receptor ligand binding domain resulted in several limitations in the pharmacological properties of these compounds including partial agonism, allosterism, non-selectivity, cytotoxicity and susceptibility to bioactivation. These limitations make the progress of preclinical and clinical assays with the available aryl hydrocarbon receptor antagonists difficult. There is a great interest in developing pure, competitive, selective, nontoxic and resistant to bioactivation aryl hydrocarbon receptor antagonists. Current technology permits the development of pharmacologically ideal antagonists based on the chemical features of the aryl hydrocarbon receptor ligand binding domain. According to these characteristics, chlorinated derivatives of trans-stilbene meta-substituted with electrophilic aromatic directing groups would be effective prototypes for pure, competitive, selective, nontoxic and resistant to bioactivation antagonists for such receptor.
Collapse
Affiliation(s)
- Larissa Pernomian
- Computational Laboratory of Pharmaceutical Chemistry, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health 2015; 218:293-312. [DOI: 10.1016/j.ijheh.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
|
11
|
Effects of exposure to benzo[a]pyrene on metastasis of breast cancer are mediated through ROS-ERK-MMP9 axis signaling. Toxicol Lett 2015; 234:201-10. [DOI: 10.1016/j.toxlet.2015.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 11/17/2022]
|
12
|
Sallée M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel) 2014; 6:934-49. [PMID: 24599232 PMCID: PMC3968369 DOI: 10.3390/toxins6030934] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have a higher risk of cardiovascular diseases and suffer from accelerated atherosclerosis. CKD patients are permanently exposed to uremic toxins, making them good candidates as pathogenic agents. We focus here on uremic toxins from tryptophan metabolism because of their potential involvement in cardiovascular toxicity: indolic uremic toxins (indoxyl sulfate, indole-3 acetic acid, and indoxyl-β-d-glucuronide) and uremic toxins from the kynurenine pathway (kynurenine, kynurenic acid, anthranilic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, and quinolinic acid). Uremic toxins derived from tryptophan are endogenous ligands of the transcription factor aryl hydrocarbon receptor (AhR). AhR, also known as the dioxin receptor, interacts with various regulatory and signaling proteins, including protein kinases and phosphatases, and Nuclear Factor-Kappa-B. AhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin and some polychlorinated biphenyls is associated with an increase in cardiovascular disease in humans and in mice. In addition, this AhR activation mediates cardiotoxicity, vascular inflammation, and a procoagulant and prooxidant phenotype of vascular cells. Uremic toxins derived from tryptophan have prooxidant, proinflammatory, procoagulant, and pro-apoptotic effects on cells involved in the cardiovascular system, and some of them are related with cardiovascular complications in CKD. We discuss here how the cardiovascular effects of these uremic toxins could be mediated by AhR activation, in a “dioxin-like” effect.
Collapse
Affiliation(s)
- Marion Sallée
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Laetitia Dou
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Claire Cerini
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Stéphane Poitevin
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Philippe Brunet
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Stéphane Burtey
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| |
Collapse
|
13
|
Clock upregulates intercellular adhesion molecule-1 expression and promotes mononuclear cells adhesion to endothelial cells. Biochem Biophys Res Commun 2013; 443:586-91. [PMID: 24333415 DOI: 10.1016/j.bbrc.2013.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022]
Abstract
Clock is a basic helix-loop-helix (bHLH) transcription factor that plays important role in circadian rhythms of various physiological functions. Previous study showed that the expression of intercellular adhesion molecule-1 (ICAM-1) was reduced in the liver tissues of Clock mutant mice. However, how Clock regulates ICAM-1 expression and whether Clock affects cell adhesion function remain unknown. In the present study, we found that exogenous expression of Clock upregulated the gene expressions of ICAM-1 and other adhesion-related genes including VCAM1 and CCL-2, and increased the transcriptional activity of ICAM-1 in mouse brain microvascular endothelial cell lines. In contrast, loss of Clock decreased these gene expressions and ICAM-1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assay revealed that Clock binds to the E-box-like enhancer of ICAM-1 gene. ICAM-1 gene showed rhythmic expression in endothelial cells after serum shock in vitro, suggesting ICAM-1 may be a Clock-controlled gene. Clock regulates the adhesion of mononuclear cells to endothelial cells via ICAM-1. Together, our findings show that Clock is a positive regulator of ICAM-1, and promotes the adhesion of mononuclear cells to endothelial cells.
Collapse
|
14
|
Wu Y, Zhang X, Kang X, Li N, Wang R, Hu T, Xiang M, Wang X, Yuan W, Chen A, Meng D, Chen S. Oxidative stress inhibits adhesion and transendothelial migration, and induces apoptosis and senescence of induced pluripotent stem cells. Clin Exp Pharmacol Physiol 2013; 40:626-34. [DOI: 10.1111/1440-1681.12141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 06/07/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yi Wu
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
- Department of Physiology; Ningxia Medical College; Yinchuan Ningxia China
| | - Xueqing Zhang
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| | - Xueling Kang
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| | - Ning Li
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| | - Rong Wang
- Department of Physiology; Ningxia Medical College; Yinchuan Ningxia China
| | - Tiantian Hu
- Department of Physiology; Ningxia Medical College; Yinchuan Ningxia China
| | - Meng Xiang
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| | - Wenjun Yuan
- Department of Physiology; Ningxia Medical College; Yinchuan Ningxia China
| | - Alex Chen
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| | - Dan Meng
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology; Fudan University Shanghai Medical College; Shanghai China
| |
Collapse
|
15
|
Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells. Cell Biol Toxicol 2013; 29:303-19. [DOI: 10.1007/s10565-013-9254-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
|
16
|
Pontillo CA, Rojas P, Chiappini F, Sequeira G, Cocca C, Crocci M, Colombo L, Lanari C, Kleiman de Pisarev D, Randi A. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models. Toxicol Appl Pharmacol 2013; 268:331-42. [PMID: 23462309 DOI: 10.1016/j.taap.2013.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/29/2022]
Abstract
Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30mg/kg b.w.) on tumor growth, MMP2 and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression.
Collapse
Affiliation(s)
- Carolina Andrea Pontillo
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Meng D, Mei A, Liu J, Kang X, Shi X, Qian R, Chen S. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro. PLoS One 2012; 7:e48393. [PMID: 23144758 PMCID: PMC3483150 DOI: 10.1371/journal.pone.0048393] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/25/2012] [Indexed: 11/24/2022] Open
Abstract
Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS) have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4) in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs). Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.
Collapse
Affiliation(s)
- Dan Meng
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Son YO, Wang L, Poyil P, Budhraja A, Hitron JA, Zhang Z, Lee JC, Shi X. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 2012; 264:153-60. [PMID: 22884995 PMCID: PMC3462234 DOI: 10.1016/j.taap.2012.07.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/21/2012] [Accepted: 07/28/2012] [Indexed: 01/31/2023]
Abstract
Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process.
Collapse
Affiliation(s)
- Young-Ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Lei Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Pratheeshkumar Poyil
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Amit Budhraja
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - J. Andrew Hitron
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
- School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, South Korea
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Hori K, Koori K, Yamamoto N, Teramatsu Y, Akamine A. Alternation of extracellular matrix remodeling and apoptosis by activation of the aryl hydrocarbon receptor pathway in human periodontal ligament cells. J Cell Biochem 2012; 113:3093-103. [DOI: 10.1002/jcb.24186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Liao PL, Li CH, Chang CY, Lu SR, Lin CH, Tse LS, Cheng YW. Anti-ageing effects of alpha-naphthoflavone on normal and UVB-irradiated human skin fibroblasts. Exp Dermatol 2012; 21:546-8. [DOI: 10.1111/j.1600-0625.2012.01517.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Po-Lin Liao
- School of Pharmacy; College of Pharmacy; Taipei Medical University; Taipei; Taiwan
| | - Ching-Hao Li
- Institute of Toxicology; College of Medicine; National Taiwan University; Taipei; Taiwan
| | - Cheng-Yi Chang
- School of Pharmacy; College of Pharmacy; Taipei Medical University; Taipei; Taiwan
| | - Siang-Rong Lu
- School of Pharmacy; College of Pharmacy; Taipei Medical University; Taipei; Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy; College of Pharmacy; Taipei Medical University; Taipei; Taiwan
| | - Ling-Shan Tse
- School of Pharmacy; College of Pharmacy; Taipei Medical University; Taipei; Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy; College of Pharmacy; Taipei Medical University; Taipei; Taiwan
| |
Collapse
|
21
|
Meng D, Wang X, Chang Q, Hitron A, Zhang Z, Xu M, Chen G, Luo J, Jiang B, Fang J, Shi X. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism. Toxicol Appl Pharmacol 2010; 244:291-9. [PMID: 20083128 DOI: 10.1016/j.taap.2010.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/08/2010] [Indexed: 12/21/2022]
Abstract
Angiogenesis and vessel remodeling are fundamental to the pathogenesis of a number of diseases caused by environmental arsenic exposure, including tumorigenesis and cardiovascular diseases. Arsenic (AsIII) has been shown to stimulate angiogenesis and vascular remodeling in vivo. However, the exact molecular mechanisms accounting for arsenic-induced angiogenesis are not clear. The present study investigates the role of heme oxygenase-1 (HO-1) in sodium arsenite-mediated angiogenesis in vitro. Transwell assay, three-dimensional Matrigel assay, RT-PCR, ELISA and immunoblotting were used to determine cell migration, vascular tube formation, mRNA and protein expression. Chromatin immunoprecipitation and luciferase assay were applied to examine the DNA binding with protein and HO-1 transcriptional activity. Here, we report that low concentrations of arsenite (0.1-1 muM) stimulated cell migration and vascular tube formation in human microvascular endothelial cells (HMVEC). Arsenite induced HO-1 mRNA and protein expression. Knock down of HO-1 expression decreased arsenite-induced VEGF expression, cell migration, and tube formation. We showed that arsenite promoted dissociation of Bach1 (a transcriptional repressor) from the HO-1 enhancers and increased Nrf2 binding to these elements. Site directed mutagenesis assay identified that Bach1 cysteine residues 557 and 574 were essential for the induction of HO-1 gene in response to arsenite. These findings demonstrate a role for HO-1 in arsenite-mediated angiogenesis in vitro.
Collapse
Affiliation(s)
- Dan Meng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai, 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|