1
|
Päivärinta-Antikainen S, Huovinen M, Ojala S, Matějová L, Keiski RL, Vähäkangas KH. Leaching of metals from red mud and toxicity in human cells in vitro. CHEMOSPHERE 2023; 332:138807. [PMID: 37121288 DOI: 10.1016/j.chemosphere.2023.138807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Toxicity of red mud, a waste from alumina production, was studied using human breast cancer MCF-7 cells. Culture medium was prepared by mixing water for 3 days with the red mud and removing solid particles afterwards (red mud water). Culture for 48 h of the cells in this medium in neutral pH decreased the cell viability, as analyzed by the MTT-test, and increased the formation of reactive oxygen species. Thus, neutralization does not eliminate the toxicity of red mud. In preliminary experiments, a combined effect of five metals (Cr, Li, V, Al, As) increased the formation of ROS (reactive oxygen species) statistically significantly. Each element separately did not have a similar effect. In environmental applications, red mud is likely to be used after activation. In this work, the red mud was activated using hydrochloric acid to study the physical and chemical properties before and after the treatment. Activation increased the specific surface area of red mud from 16 m2 g-1 to 148 m2 g-1, which is beneficial in many environmental applications such as in the adsorptive removal of pollutants. After activation, leaching of some elements from the red mud decreased (e.g. Al from 38.0 to 0.56 mg L-1, As from 21.0 to 2.1 μg L-1, V from 172.0 to 29.8 μg L-1) while some increased (e.g. Li from 0.04 to 2.81 mg L-1, Cr from 0.35 to 3.23 mg L-1).
Collapse
Affiliation(s)
| | - Marjo Huovinen
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Satu Ojala
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Lenka Matějová
- Institute of Environmental Technology, CEET, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Riitta L Keiski
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Kirsi H Vähäkangas
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Mohammed AM, Huovinen M, Vähäkangas KH. Toxicity of diuron metabolites in human cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103409. [PMID: 32416162 DOI: 10.1016/j.etap.2020.103409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Diuron, a highly used herbicide worldwide, is metabolized into several toxic metabolites. DCA (3,4-dichloroaniline), DCPU [3-(3, 4-dichlorophenyl)urea] and DCPMU [3-(3,4-dichlorophenyl)-1-methyl urea] reduced viability of human placental choriocarcinoma BeWo, human breast adenocarcinoma MCF-7 and human colon adenocarcinoma Caco-2 cells as judged by the MTT assay, where color formation is dependent on functional mitochondria in viable cells. Based on the IC50 values in BeWo cells the order of cytotoxicity was DCA > DCPU > diuron > DCPMU, and in Caco-2 cells DCPMU > DCPU > DCA, diuron. In MCF-7 cells, only DCPU had an IC50 within the range of the concentrations used. In the PI-digitonin viability assay, only the highest concentration (200 μM) of DCPU caused a statistically significant decrease in viability in any cell line. There was no correlation between cytotoxicity and ROS production. This indicates that diuron metabolites are toxic in cells of human origin with mitochondria as the target, but ROS not the likely mechanism.
Collapse
Affiliation(s)
- Ali Mustafa Mohammed
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy/Toxicology, P.O.Box 1627, Kuopio, 70211, Finland
| | - Marjo Huovinen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy/Toxicology, P.O.Box 1627, Kuopio, 70211, Finland.
| | - Kirsi H Vähäkangas
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy/Toxicology, P.O.Box 1627, Kuopio, 70211, Finland
| |
Collapse
|
3
|
Wu S, Wu M, Qi M, Zhong L, Qiu L. Effects of novel brominated flame retardant TBBPA on human airway epithelial cell (A549) in vitro and proteome profiling. ENVIRONMENTAL TOXICOLOGY 2018; 33:1245-1253. [PMID: 30098271 DOI: 10.1002/tox.22632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The cellular toxicity response of human airway epithelial cells (A549) to tetrabromobisphenol (TBBPA) was assessed in vitro. Cell viability, levels of intracellular reactive oxygen species (ROS), lipid peroxidation (MDA), and caspase-3 activity were determined after A549 treated with varying concentrations of TBBPA. A comparative proteomic analysis was performed in cells treated with different concentrations of TBBPA (0, 10, and 40 μg/mL). Two-way anova analysis showed that cell viability was significantly decreased after treatment by TBBPA with a concentration of 16 μg/mL for 48 hr, however, the caspase-3 activities, ROS generation, and MDA content increased. Ultrastructural observation revealed that the cell was morphological damaged after exposure to 64 μg/mL TBBPA, with mitochondria seriously injured and the smooth endoplasmic reticulum dilated. There was a good correlation between ROS generation and mitochondrial dysfunction. Seventeen differentially expressed proteins involved in various biological processes were identified. These findings provide a basis for understanding the mechanisms of cell dysfunction and perturbation of antioxidant status induced by additive flame retardant on airway epithelial cells.
Collapse
Affiliation(s)
- Shijin Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mei Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mengting Qi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Li Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lequan Qiu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Lochmann TL, Powell KM, Ham J, Floros KV, Heisey DAR, Kurupi RIJ, Calbert ML, Ghotra MS, Greninger P, Dozmorov M, Gowda M, Souers AJ, Reynolds CP, Benes CH, Faber AC. Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma. Sci Transl Med 2018; 10:eaao4680. [PMID: 29769286 PMCID: PMC6200133 DOI: 10.1126/scitranslmed.aao4680] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
High-risk neuroblastoma is often distinguished by amplification of MYCN and loss of differentiation potential. We performed high-throughput drug screening of epigenetic-targeted therapies across a large and diverse tumor cell line panel and uncovered the hypersensitivity of neuroblastoma cells to GSK-J4, a small-molecule dual inhibitor of lysine 27 of histone 3 (H3K27) demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and histone demethylase Jumonji D3 (JMJD3). Mechanistically, GSK-J4 induced neuroblastoma differentiation and endoplasmic reticulum (ER) stress, with accompanying up-regulation of p53 up-regulated modulator of apoptosis (PUMA) and induction of cell death. Retinoic acid (RA)-resistant neuroblastoma cells were sensitive to GSK-J4. In addition, GSK-J4 was effective at blocking the growth of chemorefractory and patient-derived xenograft models of high-risk neuroblastoma in vivo. Furthermore, GSK-J4 and RA combination increased differentiation and ER stress over GSK-J4 effects and limited the growth of neuroblastomas resistant to either drug alone. In MYCN-amplified neuroblastoma, PUMA induction by GSK-J4 sensitized tumors to the B cell lymphoma 2 (BCL-2) inhibitor venetoclax, demonstrating that epigenetic-targeted therapies and BCL-2 homology domain 3 mimetics can be rationally combined to treat this high-risk subset of neuroblastoma. Therefore, H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce robust antineuroblastoma activity.
Collapse
Affiliation(s)
- Timothy L Lochmann
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Krista M Powell
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Jungoh Ham
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Konstantinos V Floros
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Daniel A R Heisey
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Richard I J Kurupi
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Marissa L Calbert
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Maninderjit S Ghotra
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Madhu Gowda
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - C Patrick Reynolds
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Anthony C Faber
- Virginia Commonwealth University Philips Institute, School of Dentistry and Massey Cancer Center, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Toxicity of diuron in human cancer cells. Toxicol In Vitro 2015; 29:1577-86. [DOI: 10.1016/j.tiv.2015.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/26/2022]
|
6
|
Liu L, Wang Y, Shen C, He J, Liu X, Ding Y, Gao R, Chen X. Benzo(a)pyrene inhibits migration and invasion of extravillous trophoblast HTR-8/SVneo cells via activation of the ERK and JNK pathway. J Appl Toxicol 2015; 36:946-55. [PMID: 26359795 DOI: 10.1002/jat.3227] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/02/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Benzo(a)pyrene (BaP) is a persistent organic pollutant (POP) that is a serious threat to human health. Numerous studies have shown that BaP causes adverse effects in pregnancy, but the mechanism remains unclear. The moderate invasion of trophoblast cells into the endometrium is an important factor during successful embryo implantation. The aim of this study was to investigate the effect and mechanism of BaP on the invasion and migration of trophoblast cells. HTR-8/SVneo cells were treated with different concentrations (1, 5, 10, 25, 50 and 100 μM) of BaP. The invasion and migration of HTR-8/SVneo cells were observed after BaP treatment. The protein levels related to migration and invasion was detected by Western blot. The results confirmed that BaP inhibits the migration and invasion of extravillous trophoblast HTR-8/SVneo cells. Further investigations indicated that the protein levels of MMP-2, MMP-9 and E-cadherin in HTR-8/SVneo cells were changed by BaP treatment. Moreover, the data demonstrated that BaP activated the MAPK signaling pathway. Pretreatment with specific inhibitors of MAPK rescued BaP-induced change in the migration and invasion of HTR-8/SVneo cells. Taken together, our results indicated that BaP inhibits invasion and the migration of HTR-8/SVneo cells, which might cause a failure in early pregnancy. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liyuan Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Cha Shen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| |
Collapse
|
7
|
Kondath S, Srinivas Raghavan B, Anantanarayanan R, Rajaram R. Synthesis and characterisation of morin reduced gold nanoparticles and its cytotoxicity in MCF-7 cells. Chem Biol Interact 2014; 224:78-88. [PMID: 25446498 DOI: 10.1016/j.cbi.2014.09.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/09/2014] [Accepted: 09/21/2014] [Indexed: 01/23/2023]
Abstract
There is significant interest in investigating the therapeutic potential of phytochemical reduced and bound gold nanoparticles (AuNPs) as it bridges the gap between nanotechnology and therapy. In the present study, AuNPs prepared using the flavonoid morin (mAuNPs) are characterised and have been studied for their anti-cancer effects. The -OH groups of morin reduce Au(3+) and stabilize Au(0) to form spherical and crystalline mAuNPs. These mAuNPs are biocompatible towards normal human blood cells and breast epithelial cells. Through TEM analysis, we report that they are readily taken up by breast cancer cells (MCF-7) to induce cell death. Apoptosis has also been assessed by other morphological observations and cell viability studies. Flow cytometric studies reveal that the cells undergo a transient phase of apoptosis progressing towards secondary necrosis as the dose and time of mAuNPs treatment increases. The ability of mAuNPs to induce cell death in MCF-7 cells indicates its potential as an anti-cancer agent.
Collapse
Affiliation(s)
- Sindhu Kondath
- Biochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | - Rama Rajaram
- Biochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India.
| |
Collapse
|
8
|
PCB153, TCDD and estradiol compromise the benzo[a]pyrene-induced p53-response via FoxO3a. Chem Biol Interact 2014; 219:159-67. [DOI: 10.1016/j.cbi.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/21/2014] [Accepted: 06/10/2014] [Indexed: 01/08/2023]
|
9
|
Pesonen M, Häkkinen M, Rilla K, Juvonen R, Kuitunen T, Pasanen M, Vähäkangas K. Chloropicrin-induced toxic responses in human lung epithelial cells. Toxicol Lett 2014; 226:236-44. [PMID: 24548678 DOI: 10.1016/j.toxlet.2014.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
Abstract
Chloropicrin is a slowly evaporating toxic irritant that is known to cause damage in the respiratory system. Here we used a lung epithelial cell line (A549) to study the molecular responses underlying chloropicrin toxicity. Glutathione (GSH), synthetic peptide and 2'-deoxyguanosine were used as in vitro trapping agents to identify early markers of chloropicrin toxicity. Microscopy of the cells revealed massive vacuolization by chloropicrin exposure (80-100μM). The number of apoptotic cells increased with the chloropicrin concentration as assessed by flow cytometry. Immunoblotting analysis revealed increases in the amount of four proteins (p53, p21, p27 and phospho-Erk1/2) that are involved in DNA-damage, cell cycle regulation and apoptosis. Chloropicrin evoked a dose-dependent increase in levels of reactive oxygen species within one hour of exposure. The treatment triggered also the formation of disulphide bonds between the model thiol-containing peptides as analysed by LC/MS. Chloropicrin did not form stable adducts with the model peptides or 2'-deoxyguanosine. N-acetyl-cysteine (1mM NAC) fully prevented the vacuoles and chloropicrin-induced cytotoxicity. The results suggest that an oxidative insult, particularly modification of free sulfhydryl groups in proteins is involved in the acute toxicity evoked by chloropicrin in airway epithelial cells. The protective effect of NAC as a potential antidote in chloropicrin intoxication will require further investigation.
Collapse
Affiliation(s)
- Maija Pesonen
- Research and Development Department, Centre for Military Medicine, Finnish Defence Forces, Helsinki, Finland; Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, Finland.
| | - Merja Häkkinen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Risto Juvonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, Finland
| | - Tapio Kuitunen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, Finland
| | - Markku Pasanen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Yu G, Jiang L, Xu Y, Guo H, Liu H, Zhang Y, Yang H, Yuan C, Ma J. Silencing prion protein in MDA-MB-435 breast cancer cells leads to pleiotropic cellular responses to cytotoxic stimuli. PLoS One 2012; 7:e48146. [PMID: 23133614 PMCID: PMC3487893 DOI: 10.1371/journal.pone.0048146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/20/2012] [Indexed: 01/18/2023] Open
Abstract
Prion protein (PrP) is well studied for its pathogenic role in prion disease, but its potential contribution to other pathological processes is less understood. PrP is expressed in a variety of cancers and at least in pancreatic and breast cancers, its expression appears to be associated with poor prognosis. To understand the role of PrP in breast cancer cells, we knocked down PrP expression in MDA-MB-435 breast cancer cells with small interfering RNA and subjected these cells to a series of analyses. We found that PrP knockdown in these cells does not affect cell proliferation or colony formation, but significantly influences the cellular response to cytotoxic stimuli. Compared to control cells, PrP knockdown cells exhibited an increased susceptibility to serum deprivation induced apoptosis, no change to staurosporine- or paclitaxel-induced cell deaths, and a reduced susceptibility to chemotherapy drug doxorubicin-induced cell death. To understand the mechanism of unexpected role of PrP in exacerbating doxorubicin-induced cytotoxicity, we analyzed cell death related Bcl-2 family proteins. We found that PrP knockdown alters the expression of several Bcl-2 family proteins, correlating with increased resistance to doxorubicin-induced cytotoxicity. Moreover, the enhanced doxorubicin resistance is independent of DNA damage related p53 pathway, but at least partially through the ERK1/2 pathway. Together, our study revealed that silencing PrP in MDA-MB-435 breast cancer cells results in very different responses to various cytotoxic stimuli and ERK1/2 signaling pathway is involved in PrP silencing caused resistance to doxorubicin.
Collapse
Affiliation(s)
- Guohua Yu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- * E-mail: (GY); (LJ); (JM)
| | - Liming Jiang
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- * E-mail: (GY); (LJ); (JM)
| | - Yuanyuan Xu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Hongwei Guo
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Huiyan Liu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Yi Zhang
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Huaiyi Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chonggang Yuan
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Jiyan Ma
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (GY); (LJ); (JM)
| |
Collapse
|
11
|
Nkrumah-Elie YM, Reuben JS, Hudson AM, Taka E, Badisa R, Ardley T, Israel B, Sadrud-Din SY, Oriaku ET, Darling-Reed SF. The attenuation of early benzo(a)pyrene-induced carcinogenic insults by diallyl disulfide (DADS) in MCF-10A cells. Nutr Cancer 2012; 64:1112-21. [PMID: 23006051 PMCID: PMC3559020 DOI: 10.1080/01635581.2012.712738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Diallyl disulfide (DADS), a garlic organosulfur compound, has been researched as a cancer prevention agent; however, the role of DADS in the suppression of cancer initiation in nonneoplastic cells has not been elucidated. To evaluate DADS inhibition of early carcinogenic events, MCF-10A cells were pretreated (PreTx) with DADS followed by the ubiquitous carcinogen benzo(a)pyrene (BaP), or cotreated (CoTx) with DADS and BaP for up to 24 h. The cells were evaluated for changes in cell viability/proliferation, cell cycle, induction of peroxide formation, and DNA damage. BaP induced a statistically significant increase in cell proliferation at 6 h, which was attenuated with DADS CoTx. PreTx with 6 and 60 μM of DADS inhibited BaP-induced G2/M arrest by 68% and 78%, respectively. DADS, regardless of concentration or method, inhibited BaP-induced extracellular aqueous peroxide formation within 24 h. DADS attenuated BaP-induced DNA single-strand breaks at all time points through both DADS Pre- and CoTx, with significant inhibition for all treatments sustained after 6 h. DADS was effective in inhibiting BaP-induced cell proliferation, cell cycle transitions, reactive oxygen species, and DNA damage in a normal cell line, and thus may inhibit environmentally induced breast cancer initiation.
Collapse
Affiliation(s)
- Yasmeen M. Nkrumah-Elie
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, R110, Tallahassee, Florida 32307
| | - Jayne S. Reuben
- Department of Biomedical Sciences, University of South Carolina School of Medicine-Greenville, 701 Grove Road, HAS Building, MIPH, Greenville, SC 29605
| | - Alicia M. Hudson
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, R110, Tallahassee, Florida 32307
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, Room 300, Tallahassee, Florida 32307
| | - Ramesh Badisa
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, Room 300, Tallahassee, Florida 32307
| | - Tiffany Ardley
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, Room 300, Tallahassee, Florida 32307
| | - Bridg’ette Israel
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, Room 300, Tallahassee, Florida 32307
| | - Sakeenah Y. Sadrud-Din
- College of Health Professions, South University – Montgomery, AL, 5355 Vaughn Road, Montgomery, Alabama 36116-1120
| | - Ebenezer T. Oriaku
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, Room 300, Tallahassee, Florida 32307
| | - Selina F. Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, 1415 S. Dr. Martin Luther King Jr., Blvd, Room 300, Tallahassee, Florida 32307, 1-850-412-5078 (office) 1-850-561-2786 (lab), 1-850-599-3347 (fax)
| |
Collapse
|
12
|
Nkrumah-Elie YM, Reuben JS, Hudson A, Taka E, Badisa R, Ardley T, Israel B, Sadrud-Din SY, Oriaku E, Darling-Reed SF. Diallyl trisulfide as an inhibitor of benzo(a)pyrene-induced precancerous carcinogenesis in MCF-10A cells. Food Chem Toxicol 2012; 50:2524-30. [PMID: 22525868 DOI: 10.1016/j.fct.2012.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/25/2012] [Accepted: 04/06/2012] [Indexed: 11/27/2022]
Abstract
Diallyl trisulfide (DATS) is a garlic organosulfide that is toxic to cancer cells, however, little is known about its effect in the initiation phase of carcinogenesis. We sought to determine whether DATS could inhibit the carcinogen, benzo(a)pyrene (BaP), from inducing precancerous activity, in vitro. MCF-10A cells were either pre-treated (PreTx) or concurrently treated (CoTx) with 1 μM BaP, and 6 or 60 μM DATS for up to 24h. The DATS 6 and 60 μM CoTx inhibited BaP-induced cell proliferation by an average of 71.1% and 120.8%, respectively, at 6h. The 60 μM DATS pretreatment decreased BaP-induced G2/M cell cycle transition by 127%, and reduced the increase in cells in the S-phase by 42%; whereas 60 μM DATS CoTx induced a 177% increase in cells in G1. DATS effectively inhibited (P<0.001) BaP-induced peroxide formation by at least 54%, which may have prevented the formation of BaP-induced DNA strand breaks. In this study, we reveal mechanisms involved in DATS inhibition of BaP-induced carcinogenesis, including inhibition of cell proliferation, regulation of cell cycle, attenuation of ROS formation, and inhibition of DNA damage. At the doses evaluated, DATS appears to be an effective attenuator of BaP-induced breast carcinogenesis, in vitro.
Collapse
Affiliation(s)
- Yasmeen M Nkrumah-Elie
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Basic Pharmaceutical Sciences Division, Tallahassee, FL 32307, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jiang Y, Zhou X, Chen X, Yang G, Wang Q, Rao K, Xiong W, Yuan J. Benzo(a)pyrene-induced mitochondrial dysfunction and cell death in p53-null Hep3B cells. Mutat Res 2011; 726:75-83. [PMID: 21911080 DOI: 10.1016/j.mrgentox.2011.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/20/2011] [Accepted: 08/26/2011] [Indexed: 11/26/2022]
Abstract
Benzo(a)pyrene (BaP) has been shown to induce apoptosis and necrosis in various cell types. However, the effect of BaP on mitochondria function and p73, and their possible roles in BaP-induced cell death have not been well studied. This study focused on mitochondria-mediated cell death and the occurrence of p73 protein accumulation in BaP-treated human hepatoma Hep3B (p53-null) cells. We found that BaP (8, 16, 32 and 64μM) induced early necrosis at 12h and delayed apoptosis at 24h. BaP dramatically induced ethoxyresorufin-O-deethylase activity and led to significant increase in oxidative stress at early time points (6 and 12h). Necrotic cell death was concurrent with loss of mitochondrial membrane potential, decrease in the ATP level and activities of Na(+)/K(+)-ATPase and Ca(2+)/Mg(2+)-ATPase. However, these changes were reversed in the process of apoptosis. In addition, after BaP treatment, c-Jun N-terminal kinase (JNK) and Bax were activated during apoptosis and no change in p73 protein level was observed. These results revealed that the cells with mitochondria dysfunction and ATP depletion underwent necrosis at early time point and apoptosis afterward when they recovered from mitochondrial dysfunction and ATP depletion. Activation of JNK and Bax possibly contributed to BaP-induced apoptosis.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Huovinen M, Loikkanen J, Myllynen P, Vähäkangas KH. Characterization of human breast cancer cell lines for the studies on p53 in chemical carcinogenesis. Toxicol In Vitro 2011; 25:1007-17. [DOI: 10.1016/j.tiv.2011.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/17/2011] [Accepted: 03/25/2011] [Indexed: 01/08/2023]
|
15
|
Oya E, Ovrevik J, Arlt VM, Nagy E, Phillips DH, Holme JA. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis. Mutagenesis 2011; 26:697-708. [PMID: 21715570 DOI: 10.1093/mutage/ger035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.
Collapse
Affiliation(s)
- Elisabeth Oya
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
16
|
Yang G, Jiang Y, Rao K, Chen X, Wang Q, Liu A, Xiong W, Yuan J. Mitochondrial dysfunction and transactivation of p53-dependent apoptotic genes in BaP-treated human fetal lung fibroblasts. Hum Exp Toxicol 2011; 30:1904-13. [DOI: 10.1177/0960327111401637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzo(a)pyrene (BaP) has been shown to be an inducer of apoptosis. However, mechanisms involved in BaP-induced mitochondrial dysfunction are not well-known. In this study, human fetal lung fibroblasts cells were treated with BaP (8, 16, 32, 64 and 128 μM) for 4 and 12 h. Cell viability, intracellular level of reactive oxygen species (ROS), total antioxidant capacity (T-AOC), mitochondrial membrane potential (Δ Ψm) and cytochrome c release were determined. Changes in transcriptional levels of p53-dependent apoptotic genes ( p53, APAF1, CASPASE3, CASPASE9, NOXA and PUMA) were measured. At time point of 4 h, BaP induced the intracellular ROS generation in 64 ( p < .05) and 128 μM BaP groups ( p < .01) but decreased the T-AOC activities in 32, 64 ( p < .05 for both) and 128 μM BaP groups ( p < .01). At time point of 12 h, Δ Ψm significantly decreased in ≥32 μM BaP groups ( p < .05 for all). Amount of mitochondrial cytochrome c significantly increased in 128 μM BaP group ( p < .01). Transcriptional levels of CASPASE3, CASPASE9, APAF1 and PUMA were up-regulated in all BaP groups ( p < .05 for all) and in ≥32 μM groups for NOXA ( p < .05). But only in 16 μM BaP group a relatively little expression of p53 mRNA was observed ( p < .05). The results indicate that in the earlier period BaP promoted the generation of excessive ROS and subsequently the mitochondrial depolarization, whereas transactivations of the p53-dependent apoptotic genes were significantly induced at the later period.
Collapse
Affiliation(s)
- Guangtao Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaimin Rao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Gomes NP, Espinosa JM. Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-Cohesin binding. Genes Dev 2010; 24:1022-34. [PMID: 20478995 PMCID: PMC2867207 DOI: 10.1101/gad.1881010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 03/16/2010] [Indexed: 12/13/2022]
Abstract
The p53 transcriptional program orchestrates alternative responses to stress, including cell cycle arrest and apoptosis, but the mechanism of cell fate choice upon p53 activation is not fully understood. Here we report that PUMA (p53 up-regulated modulator of apoptosis), a key mediator of p53-dependent cell death, is regulated by a noncanonical, gene-specific mechanism. Using chromatin immunoprecipitation assays, we found that the first half of the PUMA locus (approximately 6 kb) is constitutively occupied by RNA polymerase II and general transcription factors regardless of p53 activity. Using various RNA analyses, we found that this region is constitutively transcribed to generate a long unprocessed RNA with no known coding capacity. This permissive intragenic domain is constrained by sharp chromatin boundaries, as illustrated by histone marks of active transcription (histone H3 Lys9 trimethylation [H3K4me3] and H3K9 acetylation [H3K9Ac]) that precipitously transition into repressive marks (H3K9me3). Interestingly, the insulator protein CTCF (CCCTC-binding factor) and the Cohesin complex occupy these intragenic chromatin boundaries. CTCF knockdown leads to increased basal expression of PUMA concomitant with a reduction in chromatin boundary signatures. Importantly, derepression of PUMA upon CTCF depletion occurs without p53 activation or activation of other p53 target genes. Therefore, CTCF plays a pivotal role in dampening the p53 apoptotic response by acting as a gene-specific repressor.
Collapse
Affiliation(s)
- Nathan P. Gomes
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Joaquín M. Espinosa
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|