1
|
Lechtenberg M, Chéneau C, Riquin K, Koenig L, Mota C, Halary F, Dehne EM. A perfused iPSC-derived proximal tubule model for predicting drug-induced kidney injury. Toxicol In Vitro 2025; 105:106038. [PMID: 40020762 DOI: 10.1016/j.tiv.2025.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The kidney is frequently exposed to high levels of drugs and their metabolites, which can injure the kidney and the proximal tubule (PT) in particular. In order to detect nephrotoxicity early during drug development, relevant in vitro models are essential. Here, we introduce a robust and versatile cell culture insert-based iPSC-derived PT model, which can be maintained in a microphysiological system for at least ten days. We demonstrate the model's ability to predict drug-induced PT injury using polymyxin B, cyclosporin A, and cisplatin, and observe that perfusion distinctly impacts our model's response to xenobiotics. We observe that the upregulation of metallothioneins that is described in vivo after treatment with these drugs is reliably detected in dynamic, but not static in vitro PT models. Finally, we use our model to alleviate polymyxin-induced nephrotoxicity by supplementing the antioxidant curcumin. Together, these findings illustrate that our perfused iPSC-derived PT model is versatile and well-suited for in vitro studies investigating nephrotoxicity and its prevention. Reliable and user-friendly in vitro models like this enable the early detection of nephrotoxic potential, thereby minimizing adverse effects and reducing drug attrition.
Collapse
Affiliation(s)
| | - Coraline Chéneau
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Kevin Riquin
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Franck Halary
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | |
Collapse
|
2
|
Miranda-Roblero HO, Saavedra-Salazar LF, Galicia-Moreno M, Arceo-Orozco S, Caloca-Camarena F, Sandoval-Rodriguez A, García-Bañuelos J, Frias-Gonzalez C, Almeida-López M, Martínez-López E, Armendariz-Borunda J, Monroy-Ramirez HC. Pirfenidone Reverts Global DNA Hypomethylation, Promoting DNMT1/UHRF/PCNA Coupling Complex in Experimental Hepatocarcinoma. Cells 2024; 13:1013. [PMID: 38920644 PMCID: PMC11201610 DOI: 10.3390/cells13121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, β-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.
Collapse
MESH Headings
- Animals
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Pyridones/pharmacology
- Rats
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Hep G2 Cells
- Proliferating Cell Nuclear Antigen/metabolism
- Male
- Rats, Inbred F344
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Diethylnitrosamine
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/genetics
Collapse
Affiliation(s)
- Hipolito Otoniel Miranda-Roblero
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Liliana Faridi Saavedra-Salazar
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Scarlet Arceo-Orozco
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Fernando Caloca-Camarena
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Claudia Frias-Gonzalez
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Mónica Almeida-López
- University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Juan Armendariz-Borunda
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45138, Mexico
| | - Hugo Christian Monroy-Ramirez
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| |
Collapse
|
3
|
Li Z, Li N. Epigenetic Modification Drives Acute Kidney Injury-to-Chronic Kidney Disease Progression. Nephron Clin Pract 2021; 145:737-747. [PMID: 34419948 DOI: 10.1159/000517073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical critical disease. Due to its high morbidity, increasing risk of complications, high mortality rate, and high medical costs, it has become a global concern for human health problems. Initially, researchers believed that kidneys have a strong ability to regenerate and repair, but studies over the past 20 years have found that kidneys damaged by AKI are often incomplete or even unable to repair. Even when serum creatinine returns to baseline levels, renal structural damage persists for a long time, leading to the development of chronic kidney disease (CKD). The mechanism of AKI-to-CKD transition has not been fully elucidated. As an important regulator of gene expression, epigenetic modifications, such as histone modification, DNA methylation, and noncoding RNAs, may play an important role in this process. Alterations in epigenetic modification are induced by hypoxia, thus promoting the expression of inflammatory factor-related genes and collagen secretion. This review elaborated the role of epigenetic modifications in AKI-to-CKD progression, the diagnostic value of epigenetic modifications biomarkers in AKI chronic outcome, and the potential role of targeting epigenetic modifications in the prevention and treatment of AKI to CKD, in order to provide ideas for the subsequent establishment of targeted therapeutic strategies to prevent the progression of renal tubular-interstitial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
4
|
Loren P, Saavedra N, Saavedra K, Zambrano T, Moriel P, Salazar LA. Epigenetic Mechanisms Involved in Cisplatin-Induced Nephrotoxicity: An Update. Pharmaceuticals (Basel) 2021; 14:ph14060491. [PMID: 34063951 PMCID: PMC8223972 DOI: 10.3390/ph14060491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is an antineoplastic drug used for the treatment of many solid tumors. Among its various side effects, nephrotoxicity is the most detrimental. In recent years, epigenetic regulation has emerged as a modulatory mechanism of cisplatin-induced nephrotoxicity, involving non-coding RNAs, DNA methylation and histone modifications. These epigenetic marks alter different signaling pathways leading to damage and cell death. In this review, we describe how different epigenetic modifications alter different pathways leading to cell death by apoptosis, autophagy, necroptosis, among others. The study of epigenetic regulation is still under development, and much research remains to fully determine the epigenetic mechanisms underlying cell death, which will allow leading new strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Tomás Zambrano
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, SP, Brazil;
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
5
|
Xia J, Cao W. Epigenetic modifications of Klotho expression in kidney diseases. J Mol Med (Berl) 2021; 99:581-592. [PMID: 33547909 DOI: 10.1007/s00109-021-02044-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Developments of many renal diseases are substantially influenced by epigenetic modifications of numerous genes, mainly mediated by DNA methylations, histone modifications, and microRNA interference; however, not all gene modifications causally affect the disease onset or progression. Klotho is a critical gene whose repressions in various pathological conditions reportedly involve epigenetic regulatory mechanisms. Klotho is almost unexceptionally repressed early after acute or chronic renal injuries and its levels inversely correlated with the disease progression and severity. Moreover, the strategies of Klotho derepression via epigenetic modulations beneficially change the pathological courses both in vitro and in vivo. Hence, Klotho is not only considered a biomarker of the renal disease but also a potential or even an ideal target of therapeutic epigenetic intervention. Here, we summarize and discuss studies that investigate the Klotho repression and intervention in renal diseases from an epigenetic point of view. These information might shed new sights into the effective therapeutic strategies to prevent and treat various renal disorders.
Collapse
Affiliation(s)
- Jinkun Xia
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
6
|
She S, Zhao Y, Kang B, Chen C, Chen X, Zhang X, Chen W, Dan S, Wang H, Wang YJ, Zhao J. Combined inhibition of JAK1/2 and DNMT1 by newly identified small-molecule compounds synergistically suppresses the survival and proliferation of cervical cancer cells. Cell Death Dis 2020; 11:724. [PMID: 32895373 PMCID: PMC7476923 DOI: 10.1038/s41419-020-02934-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Despite substantial advances in treating cervical cancer (CC) with surgery, radiation and chemotherapy, patients with advanced CC still have poor prognosis and significantly variable clinical outcomes due to tumor recurrence and metastasis. Therefore, to develop more efficacious and specific treatments for CC remains an unmet clinical need. In this study, by virtual screening the SPECS database, we identified multiple novel JAK inhibitor candidates and validated their antitumor drug efficacies that were particularly high against CC cell lines. AH057, the best JAK inhibitor identified, effectively blocked the JAK/STAT pathways by directly inhibiting JAK1/2 kinase activities, and led to compromised cell proliferation and invasion, increased apoptosis, arrested cell cycles, and impaired tumor progression in vitro and in vivo. Next, by screening the Selleck chemical library, we identified SGI-1027, a DNMT1 inhibitor, as the compound that displayed the highest synergy with AH057. By acting on a same set of downstream effector molecules that are dually controlled by JAK1/2 and DNMT1, the combination of AH057 with SGI-1027 potently and synergistically impaired CC cell propagation via dramatically increasing apoptotic cell death and cell-cycle arrest. These findings establish a preclinical proof of concept for combating CC by dual targeting of JAK1/2 and DNMT1, and provide support for launching a clinical trial to evaluate the efficacy and safety of this drug combination in patients with CC and other malignant tumors.
Collapse
Affiliation(s)
- Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yang Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310029, Hangzhou, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Wenjie Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310029, Hangzhou, China.
| |
Collapse
|
7
|
Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant 2019. [PMID: 29534238 DOI: 10.1093/ndt/gfy009] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Epigenetics refers to heritable changes in gene expression patterns not caused by an altered nucleotide sequence, and includes non-coding RNAs and covalent modifications of DNA and histones. This review focuses on functional evidence for the involvement of DNA and histone epigenetic modifications in the pathogenesis of kidney disease and the potential therapeutic implications. There is evidence of activation of epigenetic regulatory mechanisms in acute kidney injury (AKI), chronic kidney disease (CKD) and the AKI-to-CKD transition of diverse aetiologies, including ischaemia-reperfusion injury, nephrotoxicity, ureteral obstruction, diabetes, glomerulonephritis and polycystic kidney disease. A beneficial in vivo effect over preclinical kidney injury has been reported for drugs that decrease DNA methylation by either inhibiting DNA methylation (e.g. 5-azacytidine and decitabine) or activating DNA demethylation (e.g. hydralazine), decrease histone methylation by inhibiting histone methyltransferases, increase histone acetylation by inhibiting histone deacetylases (HDACs, e.g. valproic acid, vorinostat, entinostat), increase histone crotonylation (crotonate) or interfere with histone modification readers [e.g. inhibits of bromodomain and extra-terminal proteins (BET)]. Most preclinical studies addressed CKD or the AKI-to-CKD transition. Crotonate administration protected from nephrotoxic AKI, but evidence is conflicting on DNA methylation inhibitors for preclinical AKI. Several drugs targeting epigenetic regulators are in clinical development or use, most of them for malignancy. The BET inhibitor apabetalone is in Phase 3 trials for atherosclerosis, kidney function being a secondary endpoint, but nephrotoxicity was reported for DNA and HDAC inhibitors. While research into epigenetic modulators may provide novel therapies for kidney disease, caution should be exercised based on the clinical nephrotoxicity of some drugs.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Olga Ruiz-Andres
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Jonay Poveda
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Lara Valiño-Rivas
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana Belén Sanz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
8
|
Gan F, Zhou X, Zhou Y, Hou L, Chen X, Pan C, Huang K. Nephrotoxicity instead of immunotoxicity of OTA is induced through DNMT1-dependent activation of JAK2/STAT3 signaling pathway by targeting SOCS3. Arch Toxicol 2019; 93:1067-1082. [PMID: 30923867 DOI: 10.1007/s00204-019-02434-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity and immunotoxicity in animals and humans. However, the underlying mechanism and the effects of OTA on DNA damage have not been reported until now. The present study aims to investigate OTA-induced cytotoxicity and DNA damage and the underlying mechanism in PK15 cells and PAMs. The results showed that OTA at 2.0-8.0 µg/mL for 24 h induced cytotoxicity and DNA damage in PK15 cells and PAMs as demonstrated by decreasing cell viabilities and mRNA levels of DNA repair genes (OGG1, NEIL1 and NEIL3), increasing LDH release, Annexin V staining cells, apoptotic nuclei and the accumulation of γ-H2AX foci. OTA at 2.0-8.0 µg/mL increased DNMT1 and SOCS3 mRNA expressions about 2-4 fold in PK15 cells or 1.3-2 fold in PAMs. OTA at 2.0-8.0 µg/mL increased DNMT1, SOCS3, JAK2 and STAT3 protein expressions in PK15 cells or PAMs. DNMT inhibitor (5-Aza-2-dc), promoted SOCS3 expression, inhibited JAK2 and STAT3 expression, alleviated cytotoxicity, apoptosis and DNA damage induced by OTA at 4.0 µg/mL in PK15 cells. While, in PAMs, 5-Aza-2-dc had no effects on SOCS3 expression induced by OTA at 4.0 µg/mL, but inhibited JAK2 and STAT3 expression, and alleviated cytotoxicity, apoptosis and DNA damage induced by OTA. JAK inhibitor (AG490) or STAT3-siRNA alleviated OTA-induced cytotoxicity and DNA damage in PK15 cells or PAMs. Taken together, nephrotoxicity instead of immunotoxicity of OTA is induced by targeting SOCS3 through DNMT1-mediated JAK2/STAT3 signaling pathway. These results provide a scientific and new explanation of the underlying mechanism of OTA-induced nephrotoxicity and immunotoxicity.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xuan Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
9
|
|
10
|
Zhang L, Zhu X, Wu S, Chen Y, Tan S, Liu Y, Jiang W, Huang J. Fabrication and evaluation of a γ-PGA-based self-assembly transferrin receptor-targeting anticancer drug carrier. Int J Nanomedicine 2018; 13:7873-7889. [PMID: 30538465 PMCID: PMC6255109 DOI: 10.2147/ijn.s181121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background cis-Dichlorodiamineplatinum (CDDP) was one of the most common used drugs in clinic for cancer treatment. However, CDDP caused a variety of side effects. The abundant carboxyl groups on the surface of poly glutamic acid (PGA) could be modified with various kinds of targeted ligands. PGA delivery system loaded CDDP for cancer therapies possesses potential to overcome the side effects. Materials and methods In this study, we constructed a safe and efficient anticancer drug delivery system PGA–Asp–maleimide–cisplatin–peptide complex (PAMCP), which was loaded with CDDP and conjugated with the transferrin receptor (TFR)-targeting peptide through a maleimide functional linker. The size of PAMCP was identified by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Fluorescence microscopy and flow cytometry methods were used to detect the cell targeting ability in vitro. The MTT assay was used to detect targeted toxicity in vitro. The in vivo acute toxicity was tested in Kun Ming (KM) mice. The tumor suppression activity and drug distribution was analyzed in nude mice bearing with HeLa tumor cells. Results The nano-size was 110±28 nm detected with TEM and 89±18 nm detected with DLS, respectively. Fluorescence microscopy and flow cytometry methods indicated that PAMCP possessed excellent cell targeting ability in vitro. The MTT assay suggested that PAMCP was excellent for targeted toxicity. The acute in vivo toxicity study revealed that the body mass index and serum index in the PAMCP-treated group were superior to those in the CDDP-treated group (P<0.001), and no obvious differences were detected on comparing with the PBS- or PGA–Asp–maleimide–P8 (PAMP)-treated groups. PAMCP reduced the toxicity of CDDP, suppressed tumor cell growth, and achieved efficient anti-tumor effects in vivo. After PAMCP treatment, the toxicity of CDDP was reduced and tumor growth was more remarkably inhibited compared with the free CDDP treatment group (P<0.01). Much stronger (5–10 folds) fluorescence intensity in tumor tissue was detected compared with the irrelevant-peptide group for drug distribution analysis detected with the frozen section approach. Conclusion Our data highlighted that PAMCP reduced the side effects of CDDP and exhibited stronger anti-tumor effects. Therefore, PAMCP presented the potential to be a safe and effective anticancer pharmaceutical formulation for future clinical applications.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| | - Xiaoyu Zhu
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| | - Shijia Wu
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| | - Yazhou Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| | - Shiming Tan
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| | - Yingjie Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| | - Wenzheng Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| | - Jing Huang
- School of Life Sciences, East China Normal University, Shanghai 200241, China, ;
| |
Collapse
|
11
|
Li X, Zhang H, Chan L, Liu C, Chen T. Nutritionally Available Selenocysteine Derivative Antagonizes Cisplatin-Induced Toxicity in Renal Epithelial Cells through Inhibition of Reactive Oxygen Species-Mediated Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5860-5870. [PMID: 29779385 DOI: 10.1021/acs.jafc.8b01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Discovery of nutritionally available agents that could antagonize cisplatin-induced nephrotoxicity is of great significance and clinical application potential. 3,3'-Diselenodipropionic acid (DSePA) is a seleno-amino acid derivative that exhibits strong antioxidant activity. Therefore, this study aimed to examine the protective effects of DSePA on cisplatin-induced renal epithelial cells damage as well as the molecular mechanisms. The results revealed that DSePA effectively inhibited cell apoptosis induced by cisplatin through suppressing the caspase activation and poly(ADP-ribose) polymerase cleavage. In addition, DSePA blocked the cisplatin-induced mitochondrial dysfunction, as evidenced by the loss of mitochondrial membrane potential and reduction of mitochondrial mass. The results of western blot analysis showed that DSePA reversed the expression level of Bcl-2 family proteins altered by cisplatin. The cisplatin-activated AKT pathway was also modulated by DSePA. Moreover, these results indicate that DSePA could protect HK-2 cells from cisplatin-induced toxicity in renal epithelial cells by inhibiting intracellular reactive oxygen species-mediated apoptosis while showing an unobvious effect on its anticancer efficacy. Taken together, this study demonstrates that selenocysteine could be further developed as novel nutritionally available agents to antagonize cisplatin-induced nephrotoxicity during cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Tianfeng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , People's Republic of China
| |
Collapse
|
12
|
Kumar P, Barua CC, Sulakhiya K, Sharma RK. Curcumin Ameliorates Cisplatin-Induced Nephrotoxicity and Potentiates Its Anticancer Activity in SD Rats: Potential Role of Curcumin in Breast Cancer Chemotherapy. Front Pharmacol 2017; 8:132. [PMID: 28420987 PMCID: PMC5378776 DOI: 10.3389/fphar.2017.00132] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Breast malignant neoplastic disease is one of the most complex diseases, as it is a multifactorial disease in which virtually all the targets are instantly or indirectly inter-reliant on each other. Cisplatin (CIS), an inorganic antineoplastic agent is widely utilized in the treatment of various solid tumors including breast cancer. Despite everything, its clinical use is limited, due to ototoxicity, peripheral neuropathy, and nephrotoxicity. The present work was directed to assess the combined result of curcumin (CUR) and CIS in 7, 12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in rats and the prevention of nephrotoxicity induced by the latter. CIS-induced nephrotoxicity was assessed by change in body weight, kidney weight, altered levels of BUN, creatinine, TNF-α, IL-6, IL-8, IL-10, and histopathology of the kidney. Anticancer activity was assessed by measurement of tumor weight, tumor volume, % tumor inhibition, levels of PPAR-γ, and BDNF in mammary tumors and histopathology of mammary tumors. CUR pre-treatment mitigated nephrotoxicity by reducing the inflammatory markers (TNF-α, IL-6, and IL-8; p < 0.001). Further, it reduced mammary cancer via increasing the expression of PPAR-γ (p < 0.001) and decreasing the expression of BDNF (p < 0.001) in mammary tumors. It also reduced tumor volume, further postulating that CUR might adjunct the anticancer activity of the CIS. To the best of our knowledge, this is the first report, which showed that CUR ameliorated CIS-induced nephrotoxicity and improved its anticancer activity in DMBA induced breast cancer in female Sprague-Dawley rats.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, GMCHGuwahati, India
| | - Chandana C. Barua
- Department of Pharmacology and Toxicology, College of Veterinary ScienceGuwahati, India
| | - Kunjbihari Sulakhiya
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, GMCHGuwahati, India
| | | |
Collapse
|
13
|
Kumar P, Sulakhiya K, Barua CC, Mundhe N. TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol Cell Biochem 2017; 431:113-122. [PMID: 28258441 DOI: 10.1007/s11010-017-2981-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022]
Abstract
Cisplatin is a regularly employed effective chemotherapeutic agent for the treatment of many types of cancer. The main drawback of cisplatin treatment is kidney toxicity which affects 25-35% of treated patients. Many mechanisms are believed to be involved in this kidney damage, but inflammation plays a significant role in this event. Curcumin is a polyphenol and has antioxidant and anti-inflammatory effects. The purpose of this study was to determine the protective effects of curcumin on cisplatin-induced nephrotoxicity. Female rats were randomly divided into 5 groups: control, curcumin, cisplatin, curcumin plus cisplatin (pre-treatment group) and cisplatin plus curcumin (post-treatment group). Rats were given cisplatin (7.5 mg/kg body weight) with or without curcumin treatment (120 mg/kg body weight). Blood urea nitrogen (BUN), creatinine, albumin, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10 expressions and histological changes were determined on the 5th day after cisplatin injection. Acute kidney damage was evident by increased BUN and creatinine levels. In addition, cisplatin showed a marked pro-inflammatory response as revealed by a significant increase in the tissue levels of TNF-α, IL-6, IL-8 and decrease in the IL-10 level. Pre-treatment of curcumin reduced cisplatin-induced nephrotoxicity which was clearly evident from the reduced BUN, creatinine, TNF-α, IL-6 and IL-8 levels and increased albumin and IL-10 levels. Additionally, these findings were also supported by histopathology of the kidneys. In contrast, post-treatment of curcumin failed to cut down the expression of inflammatory markers substantially and also neglected to increase the expression of IL-10. The disparity in the action of curcumin after pre- and post-treatment with cisplatin-induced nephrotoxicity was due to the inability of post-treatment to reduce TNF-α & IL-6, besides to show a concurrent rise in IL-10 expression in renal tissues.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India.
- Department of Pharmacology, Pandit Jawahar Lal Nehru Government Medical College Chamba, Chamba, 176324, Himachal Pradesh, India.
| | - Kunjbihari Sulakhiya
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Chandana C Barua
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781032, India
| | - Nitin Mundhe
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| |
Collapse
|
14
|
Pawlak A, Ziolo E, Fiedorowicz A, Fidyt K, Strzadala L, Kalas W. Long-lasting reduction in clonogenic potential of colorectal cancer cells by sequential treatments with 5-azanucleosides and topoisomerase inhibitors. BMC Cancer 2016; 16:893. [PMID: 27852227 PMCID: PMC5112712 DOI: 10.1186/s12885-016-2925-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background The currently approved therapies fail in a substantial number of colorectal cancer (CRC) patients due to the molecular heterogeneity of CRC, hence new efficient drug combinations are urgently needed. Emerging data indicate that 5-azanucleosides are able to sensitize cancer cells to the standard chemotherapeutic agents and contribute to overcoming intrinsic or acquired chemoresistance. Methods CRC cells with different genetic backgrounds (HCT116, DLD-1, HT-29) were sequentially treated with 5-azanucleosides and topoisomerase inhibitors. The combined effects of these two drug classes on cell viability, apoptosis, signaling pathways, and colony formation were investigated. Results Here, we demonstrate that pretreatment with DNA demethylating agents, 5-aza-2′-deoxycytidine and 5-azacytidine, sensitizes CRC cells to topoisomerase inhibitors (irinotecan, etoposide, doxorubicin, mitoxantrone), reducing cell viability and clonogenicity and increasing programmed cell death more effectively than individual compounds at the same or even higher concentrations. 5-Azanucleosides did not cause considerable immediate toxic effects as evaluated by analysis of cell viability, apoptosis, DNA damage (γH2A.X), and endoplasmic reticulum (ER) stress (CHOP). However, 5-azanucleosides exerted long-lasting effects, reducing cell viability, changing cell morphology, and affecting phosphoinositide 3-kinase (PI3-kinase)/Akt signaling pathway. We found that a single exposure to 5-azanucleosides is sufficient to induce long-lasting sensitization to topoisomerase inhibitors. The combinatorial, but not separate, treatment with low doses of 5-aza-2′-deoxycytidine (0.1 μM) and etoposide (0.5 μM) caused a long-lasting (almost 70 days) reduction in clonogenic/replating ability of DLD-1 cells. Conclusions These results suggest that sequential treatments with DNA demethylating agents and topoisomerase inhibitors may exert clinically relevant anticancer effects. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2925-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Pawlak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Ewa Ziolo
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Anna Fiedorowicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Klaudyna Fidyt
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Leon Strzadala
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Wojciech Kalas
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. .,Jan Dlugosz University in Czestochowa, Waszyngtona 4/8, 42-200, Czestochowa, Poland.
| |
Collapse
|
15
|
Scholpa NE, Kolli RT, Moore M, Arnold RD, Glenn TC, Cummings BS. Nephrotoxicity of epigenetic inhibitors used for the treatment of cancer. Chem Biol Interact 2016; 258:21-9. [PMID: 27543423 PMCID: PMC5045804 DOI: 10.1016/j.cbi.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/21/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
This study determined the anti-neoplastic activity and nephrotoxicity of epigenetic inhibitors in vitro. The therapeutic efficacy of epigenetic inhibitors was determined in human prostate cancer cells (PC-3 and LNCaP) using the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) and the histone deacetylase inhibitor trichostatin A (TSA). Cells were also treated with carbamazepine (CBZ), an anti-convulsant with histone deacetylase inhibitor-like properties. 5-Aza, TSA or CBZ alone did not decrease MTT staining in PC-3 or LNCaP cells after 48 h. In contrast, docetaxel, a frontline chemotherapeutic induced concentration-dependent decreases in MTT staining. Pretreatment with 5-Aza or TSA increased docetaxel-induced cytotoxicity in LNCaP cells, but not PC-3 cells. TSA pretreatment also increased cisplatin-induced toxicity in LNCaP cells. Carfilzomib (CFZ), a protease inhibitor approved for the treatment of multiple myeloma had minimal effect on LNCaP cell viability, but reduced MTT staining 50% in PC-3 cells compared to control, and pretreatment with 5-Aza further enhanced toxicity. Treatment of normal rat kidney (NRK) and human embryonic kidney 293 (HEK293) cells with the same concentrations of epigenetic inhibitors used in prostate cancer cells significantly decreased MTT staining in all cell lines after 48 h. Interestingly, we found that the toxicity of epigenetic inhibitors to kidney cells was dependent on both the compound and the stage of cell growth. The effect of 5-Aza and TSA on DNA methyltransferase and histone deacetylase activity, respectively, was confirmed by assessing the methylation and acetylation of the CDK inhibitor p21. Collectively, these data show that combinatorial treatment with epigenetic inhibitors alters the efficacy of chemotherapeutics in cancer cells in a compound- and cell-specific manner; however, this treatment also has the potential to induce nephrotoxic cell injury.
Collapse
Affiliation(s)
- N E Scholpa
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - R T Kolli
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - M Moore
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - R D Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - T C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - B S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Mundhe NA, Kumar P, Ahmed S, Jamdade V, Mundhe S, Lahkar M. Nordihydroguaiaretic acid ameliorates cisplatin induced nephrotoxicity and potentiates its anti-tumor activity in DMBA induced breast cancer in female Sprague–Dawley rats. Int Immunopharmacol 2015; 28:634-42. [DOI: 10.1016/j.intimp.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 01/01/2023]
|
17
|
la Rosa AHD, Acker M, Swain S, Manoharan M. The role of epigenetics in kidney malignancies. Cent European J Urol 2015; 68:157-64. [PMID: 26251734 PMCID: PMC4526599 DOI: 10.5173/ceju.2015.453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/03/2015] [Accepted: 02/20/2015] [Indexed: 01/18/2023] Open
Abstract
Introduction Renal cell carcinomas (RCC) are collectively the third most common type of genitourinary neoplasms, surpassed only by prostate and bladder cancer. Cure rates for renal cell carcinoma are related to tumor grade and stage; therefore, diagnostic methods for early detection and new therapeutic modalities are of paramount importance. Epigenetics can be defined as inherited modifications in gene expression that are not encoded in the DNA sequence itself. Epigenetics may play an important role in the pursuit of early diagnosis, accurate prognostication and identification of new therapeutic targets. Material and methods We used PubMed to conduct a comprehensive search of the English medical literature using search terms including epigenetics, DNA methylation, histone modification, microRNA regulation (miRNA) and RCC. In this review, we discuss the potential application of epigenetics in the diagnosis, prognosis and treatment of kidney cancer. Results During the last decade, many different types of epigenetic alterations of DNA have been found to be associated with malignant renal tumors. This has led to the research of the diagnostic and prognostic implications of these changes in renal malignancies as well as to the development of novel drugs to target these changes, with the aim of achieving a survival benefit. Conclusions Epigenetics has become a promising field in cancer research. The potential to achieve early detection and accurate prognostication in kidney cancer might be feasible through the application of epigenetics. The possibility to reverse these epigenetic changes with new therapeutic agents motivates researchers to continue pursuing better treatment options for kidney cancer and other malignancies.
Collapse
Affiliation(s)
| | - Matthew Acker
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjaya Swain
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Murugesan Manoharan
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Novohradsky V, Zerzankova L, Stepankova J, Vrana O, Raveendran R, Gibson D, Kasparkova J, Brabec V. New insights into the molecular and epigenetic effects of antitumor Pt(IV)-valproic acid conjugates in human ovarian cancer cells. Biochem Pharmacol 2015; 95:133-44. [PMID: 25888926 DOI: 10.1016/j.bcp.2015.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/03/2015] [Indexed: 11/20/2022]
Abstract
Substitutionally inert Pt(IV) prodrugs, combining bioactive axial ligands with Pt(IV) derivatives of antitumor Pt(II) compounds, represent a new generation of anticancer drugs. The rationale behind these prodrugs is to release, by reductive elimination inside the cancer cell, an active Pt(II) drug which binds nuclear DNA as well as bioactive ligands that may potentiate toxic effects of the Pt(II) drugs by an independent pathway. Platinum prodrugs, such as Pt(IV) derivatives of cisplatin containing axial valproic acid (VPA) ligands, destroy cancer cells with greater efficacy than conventional cisplatin. These axial ligands were chosen because VPA inhibits histone deacetylase (HDAC) activity, thereby decondensing chromatin and subsequently increasing the accessibility of DNA within chromatin to DNA-binding agents. We examined the mechanism of cytotoxic activity of Pt(IV) derivatives of cisplatin with VPA axial ligands. Particular attention was paid to the role of the VPA ligand in these Pt(IV) prodrugs in the mechanism underlying their toxic effects in human ovarian tumor cells. We demonstrate that (i) treatment of the cells with these prodrugs resulted in enhanced histone H3 acetylation and decondensation of heterochromatin markedly more effectively than free VPA; (ii) of the total Pt inside the cells, a considerably higher fraction of Pt from the Pt(IV)-VPA conjugates is bound to DNA than from the conjugates with biologically inactive ligands. The results indicate that the enhanced cytotoxicity of the Pt(IV)-VPA conjugates is a consequence of several processes involving enhanced cellular accumulation, downregulation of HDACs and yet other biochemical processes (not involving HDACs) which may potentiate antitumor effects.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Lenka Zerzankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Stepankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Raji Raveendran
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| |
Collapse
|
19
|
Füller M, Klein M, Schmidt E, Rohde C, Göllner S, Schulze I, Qianli J, Berdel WE, Edemir B, Müller-Tidow C, Tschanter P. 5-azacytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation. Int J Oncol 2014; 46:1192-204. [PMID: 25501798 DOI: 10.3892/ijo.2014.2792] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/12/2014] [Indexed: 11/06/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitory drugs such as 5-azacytidine induce DNA hypomethylation by inhibiting DNA methyltransferases. While clinically effective, DNMT inhibitors are not curative. A combination with cytotoxic drugs might be beneficial, but this is largely unexplored. In the present study, we analyzed potential synergisms between cytotoxic drugs and 5-azacytidine in acute myeloid leukemia (AML) and non-small cell lung cancer (NSCLC) cells. Lung cancer and leukemia cell lines were exposed to low doses of 5-azacytidine with varying doses of cytarabine or etoposide for AML cells (U937 and HL60) as well as cisplatin or gemcitabine for NSCLC cells (A549 and HTB56) for 48 h. Drug interaction and potential synergism was analyzed according to the Chou-Talalay algorithm. Further analyses were based on soft agar colony formation assays, active caspase-3 staining and BrdU incorporation flow cytometry. To identify effects on DNA methylation patterns, we performed genome wide DNA methylation analysis using 450K bead arrays. Azacytidine at low doses was synergistic with cytotoxic drugs in NSCLC and in AML cell lines. Simultaneous exposure to 5-azacytidine with cytotoxic drugs showed strong synergistic activity. In colony formation assays these synergisms were repeatedly verified for 5-azacytidine (25 nM) with low doses of anticancer agents. 5-azacytidine neither affected the cell cycle nor increased apoptosis. 450K methylation bead arrays revealed 1,046 CpG sites in AML and 1,778 CpG sites in NSCLC cells with significant DNA hypomethylation (24-h exposure) to 5-azacytidine combined with the cytotoxic drugs. These CpG-sites were observed in the candidate tumor-suppressor genes MGMT and THRB. Additional incubation time after 24-h treatment led to a 4.1-fold increase of significant hypomethylated CpG-sites in NSCLC cells. These results suggest that the addition of DNA demethylating agents to cytotoxic anticancer drugs exhibits synergistic activity in AML and NSCLC. Dysregulation of an equilibrium of DNA methylation in cancer cells might increase the susceptibility for cytotoxic drugs.
Collapse
Affiliation(s)
- Mathias Füller
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Miriam Klein
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Eva Schmidt
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Christian Rohde
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Stefanie Göllner
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Isabell Schulze
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Jiang Qianli
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Bayram Edemir
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Carsten Müller-Tidow
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Petra Tschanter
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| |
Collapse
|
20
|
Scholpa NE, Zhang X, Kolli RT, Cummings BS. Epigenetic changes in p21 expression in renal cells after exposure to bromate. Toxicol Sci 2014; 141:432-40. [PMID: 25015661 DOI: 10.1093/toxsci/kfu138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study tested the hypothesis that bromate (KBrO3)-induced renal cell death is mediated by epigenetic mechanisms. Global DNA methylation, as assessed by 5-methylcytosine staining, was not changed in normal rat kidney cells treated with acute cytotoxic doses of KBrO3 (100 and 200 ppm), as compared with controls. However, KBrO3 treatment did increase p38, p53 and histone 2AX (H2AX) phosphorylation, and p21 expression. Treatment of cells with inhibitors of DNA methyltransferase (5-azacytidine or 5-Aza) and histone deacetylase (trichostatin A or TSA) in addition to KBrO3 increased cytotoxicity, as compared with cells exposed to KBrO3 alone. 5-Aza and TSA co-treatment did not alter p38 or p53 phosphorylation, but slightly decreased H2AX phosphorylation and significantly decreased p21 expression. We also assessed epigenetic changes in cells treated under sub-chronic conditions with environmentally relevant concentrations of KBrO3. Under these conditions (0-10ppm KBrO3 for up to 18 days), we detected no increases in cell death or DNA damage. In contrast, slight alterations were detected in the phosphorylation of H2AX, p38, and p53. Sub-chronic low-dose KBrO3 treatment also induced a biphasic response in p21 expression, with lower concentrations increasing expression, but higher concentrations decreasing expression. Methylation-specific PCR demonstrated that sub-chronic KBrO3 treatment altered the methylation of cytosine bases in the p21 gene, as compared with controls, correlating to alterations in p21 protein expression. Collectively, these data show the novel finding that KBrO3-induced renal cell death is altered by inhibitors of epigenetic modifying enzymes and that KBrO3 itself induces epigenetic changes in the p21 gene.
Collapse
Affiliation(s)
- N E Scholpa
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, 30602, Georgia
| | - X Zhang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, 30602, Georgia
| | - R T Kolli
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, 30602, Georgia
| | - B S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, 30602, Georgia
| |
Collapse
|
21
|
Stewart DJ, Nunez MI, Jelinek J, Hong D, Gupta S, Issa JP, Wistuba II, Kurzrock R. Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors. Clin Epigenetics 2014; 6:2. [PMID: 24401732 PMCID: PMC3895853 DOI: 10.1186/1868-7083-6-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/13/2013] [Indexed: 12/30/2022] Open
Abstract
Background In 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed. Results Pre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = −0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = −0.45, P = 0.19). Conclusions In conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation.
Collapse
Affiliation(s)
- David J Stewart
- Head, Division of Medical Oncology, The Ottawa Hospital/University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8 L6, Canada
| | - Maria I Nunez
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA 19410, USA
| | - David Hong
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sanjay Gupta
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA 19410, USA
| | - Ignacio I Wistuba
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Razelle Kurzrock
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Kumar P, Prashanth KS, Gaikwad AB, Vij M, Barua CC, Bezbaruah B. Disparity in actions of rosiglitazone against cisplatin-induced nephrotoxicity in female Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:883-890. [PMID: 24001946 DOI: 10.1016/j.etap.2013.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Cisplatin is one of the most common chemotherapeutic drugs used against various solid, tumours. Despite of its therapeutic benefits, its use in clinical practice is often limited because of dose, related toxicity. The nephrotoxic potential of cisplatin has been ascribed to its accumulation in the, renal tubular cells generating reactive oxygen species (ROS), activation of Bax, increased secretion of, TNFα and activation of certain inflammatory mediators like cytokines. The present investigation was, undertaken with an objective to study the effect of rosiglitazone against cisplatin induced, nephrotoxicity. Pretreatment of rosiglitazone prevents cisplatin induced nephrotoxicity which was, clearly evident from the renal biochemical parameters like reduced BUN, creatinine and TNFα levels, and increased albumin levels, which was also supported by histopathological studies of the kidneys. In contrast, posttreatment of rosiglitazone was not able to protect the renal damage in cisplatin induced, renal toxicity. These results showed the variation of pre & posttreatment effects of rosiglitazone, against the cisplatin induced nephrotoxicity.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, GMCH, Bhangagarh, Guwahati, Assam, India.
| | | | | | | | | | | |
Collapse
|
23
|
Zhang F, Wu J, Lu M, Wang H, Feng H. 5-Azacytidine inhibits proliferation and induces apoptosis of mouse bone marrow-derived mesenchymal stem cells. TOXIN REV 2013. [DOI: 10.3109/15569543.2013.846382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Hong J, Li D, Wands J, Souza R, Cao W. Role of NADPH oxidase NOX5-S, NF-κB, and DNMT1 in acid-induced p16 hypermethylation in Barrett's cells. Am J Physiol Cell Physiol 2013; 305:C1069-79. [PMID: 24025864 DOI: 10.1152/ajpcell.00080.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inactivation of tumor suppressor genes via promoter hypermethylation may play an important role in the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). We have previously shown that acid-induced p16 gene promoter hypermethylation may depend on activation of NADPH oxidase NOX5-S in BAR-T cells and OE33 EA cells. DNA methyltransferase 1 (DNMT1) is known to participate in maintaining established patterns of DNA methylation in dividing cells and may play an important role in the development of cancer. Therefore, we examined whether DNMT1 is involved in acid-induced p16 gene promoter hypermethylation in BAR-T cells. We found that the acid significantly increased p16 gene promoter methylation, decreased p16 mRNA, and increased cell proliferation, effects that may depend on activation of DNMT1 in BAR-T cells. DNMT1 is overexpressed in EA cells FLO and OE33 and EA tissues. Acid treatment upregulated DNMT1 mRNA expression and increased DNMT1 promoter activity. Acid-induced increases in DNMT1 mRNA expression and promoter activity were significantly decreased by knockdown of NOX5-S and NF-κB1 p50. Conversely, overexpression of NOX5-S, p50, or p65 significantly increased DNMT1 promoter activity. Knockdown of NOX5-S significantly decreased the acid-induced increase in luciferase activity in cells transfected with pNFκB-Luc. An NF-κB binding element GGGGTATCCC was identified in the DNMT1 gene promoter. We conclude that the acid-induced increase in p16 gene promoter methylation, downregulation of p16 mRNA, and increase in cell proliferation may depend on activation of DNMT1 in BAR-T cells. Acid-induced DNMT1 expression may depend on sequential activation of NOX5-S and NF-κB1 p50.
Collapse
Affiliation(s)
- Jie Hong
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | | | |
Collapse
|
25
|
Brabec V, Griffith DM, Kisova A, Kostrhunova H, Zerzankova L, Marmion CJ, Kasparkova J. Valuable insight into the anticancer activity of the platinum-histone deacetylase inhibitor conjugate, cis-[Pt(NH3)2malSAHA-2H)]. Mol Pharm 2012; 9:1990-9. [PMID: 22591133 DOI: 10.1021/mp300038f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
cis-[Pt(II)(NH3)2(malSAHA-2H)], a cisplatin adduct conjugated to a potent histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA), was previously developed as a potential anticancer agent. This Pt-HDACi conjugate was demonstrated to have comparable cytotoxicity to cisplatin against A2780 ovarian cancer cells but significantly reduced cytotoxicity against a representative normal cell line, NHDF. Thus, with a view to (i) understanding more deeply the effects that may play an important role in the biological (pharmacological) properties of this new conjugate against cancer cells and (ii) developing the next generation of Pt-HDACi conjugates, the cytotoxicity, DNA binding, cellular accumulation and HDAC inhibitory activity of cis-[Pt(II)(NH3)2(malSAHA-2H)] were investigated and are reported herein. cis-[Pt(II)(NH3)2(malSAHA-2H)] was found to have marginally lower cytotoxicity against a panel of cancer cell lines as compared to cisplatin and SAHA. cis-[Pt(II)(NH3)2(malSAHA-2H)] was also found to accumulate better in cancer cells but bind DNA less readily as compared to cisplatin. DNA binding experiments indicated that cis-[Pt(II)(NH3)2(malSAHA-2H)] bound DNA more effectively in cellulo as compared to in cell-free media. Activation of the Pt-HDACi conjugate was therefore investigated. The binding of cis-[Pt(II)(NH3)2(malSAHA-2H)] to DNA was found to be enhanced by the presence of thiol-containing molecules such as glutathione and thiourea, and activation occurred in cytosolic but not nuclear extract of human cancer cells. The activity of cis-[Pt(NH3)2(malSAHA-2H)] as a HDAC inhibitor was also examined; the conjugate exhibited no inhibition of HDAC activity in CH1 cells. In light of these results, novel Pt-HDACi conjugates are currently being developed, with particular emphasis, through subtle structural modifications, on enhancing the rate of DNA binding and enhancing HDAC inhibitory activity.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Colorectal cancer (CRC) develops through a multistep process that results from the progressive accumulation of mutations and epigenetic alterations in tumor suppressor genes and oncogenes. Epigenetic modifications, that have a fundamental role in the regulation of gene expression, involve DNA methylation, specific histone modifications and non-coding RNAs (ncRNAs) interventions. Many genes have been until now studied to detect their methylation status during CRC carcinogenesis; and the functions of many of these genes in cancer initiation and progression are being clarified. Less is known about the patterns of histone modification alterations in CRC. Epigenetic deregulation of the ncRNAs or the genes involved in their biogenesis have been described in tumor progression and some examples of dysregulated microRNA were found also in CRC cells. Diet has an important role in the etiology of colon cancer. Folate is involved via 5-methyltetrahydrofolate in the conversion of homocysteine to methionine, which is then used to form the main DNA methylating agent S-adenosylmethionine. However, the role of folate in protecting from or in promoting CRC, depending on conditions, is still debated. The study of epigenetic marks to better characterize CRC and to identify new tools for diagnosis and prognosis as well as for therapeutic interventions is extremely promising.
Collapse
Affiliation(s)
- F Migheli
- Department of Surgery Department of Human and Environmental Sciences, University of Pisa, Via S. Giuseppe 22, Pisa, Italy
| | | |
Collapse
|
27
|
Wang Y, Liu C, Guo QL, Yan JQ, Zhu XY, Huang CS, Zou WY. Intrathecal 5-azacytidine inhibits global DNA methylation and methyl- CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Res 2011; 1418:64-9. [DOI: 10.1016/j.brainres.2011.08.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
|
28
|
Gravina GL, Festuccia C, Marampon F, Popov VM, Pestell RG, Zani BM, Tombolini V. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer 2010; 9:305. [PMID: 21108789 PMCID: PMC3001713 DOI: 10.1186/1476-4598-9-305] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
Epigenetic modifications play a key role in the patho-physiology of many tumors and the current use of agents targeting epigenetic changes has become a topic of intense interest in cancer research. DNA methyltransferase (DNMT) inhibitors represent a promising class of epigenetic modulators. Research performed yielded promising anti-tumorigenic activity for these agents in vitro and in vivo against a variety of hematologic and solid tumors. These epigenetic modulators cause cell cycle and growth arrest, differentiation and apoptosis. Rationale for combining these agents with cytotoxic therapy or radiation is straightforward since the use of DNMT inhibitor offers greatly improved access for cytotoxic agents or radiation for targeting DNA-protein complex. The positive results obtained with these combined approaches in preclinical cancer models demonstrate the potential impact DNMT inhibitors may have in treatments of different cancer types. Therefore, as the emerging interest in use of DNMT inhibitors as a potential chemo- or radiation sensitizers is constantly increasing, further clinical investigations are inevitable in order to finalize and confirm the consistency of current observations.The present article will provide a brief review of the biological significance and rationale for the clinical potential of DNMT inhibitors in combination with other chemotherapeutics or ionizing radiation. The molecular basis and mechanisms of action for these combined treatments will be discussed herein.
Collapse
Affiliation(s)
- Giovanni L Gravina
- Department of Experimental Medicine, Division of Radiation Oncology, S, Salvatore Hospital, L'Aquila, University of L'Aquila, Medical School, L'Aquila 67100, Italy.
| | | | | | | | | | | | | |
Collapse
|