1
|
Yu H, Shan C, Li J, Hou X, Yang L. Alkaline absorbents for SO 2 and SO 3 removal: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121532. [PMID: 38986382 DOI: 10.1016/j.jenvman.2024.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Injection of an alkaline absorbent into the flue gas can significantly reduce SO2 and SO3 emissions. The article presents alkaline absorbents employed in industrial processes to remove SO2 and SO3 from flue gases, detailing their characteristics and applications across various process conditions. It summarizes the mechanisms and influencing factors behind SO2 and SO3 removal, outlines the impact of multi-component gases, particularly SO2, on SO3 removal in actual flue gases, and elucidates this competitive phenomenon from a theoretical standpoint. The article compares the application scenarios and efficiencies of alkaline absorbents across different processes, identifies the optimal combinations of various absorbents and processes, and proposes a synergistic approach for the removal of SO2 and SO3. The findings demonstrate that by injecting calcium- or sodium-based absorbents into dry processes, SO2 and SO3 can be removed efficiently and cost-effectively, with process optimization and absorbent modifications further enhancing the SOx removal efficiency. In the future, by blending two or more absorbents and applying them to dry processes, a synergistic removal of SO2 and SO3 can be achieved.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| | - Chuanjia Shan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| | - Jinjin Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China.
| | - Xueyan Hou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| | - Linjun Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Guan K, Xu F, Huang X, Li Y, Guo S, Situ Y, Chen Y, Hu J, Liu Z, Liang H, Zhu X, Wu Y, Qiao Z. Deep learning and big data mining for Metal-Organic frameworks with high performance for simultaneous desulfurization and carbon capture. J Colloid Interface Sci 2024; 662:941-952. [PMID: 38382377 DOI: 10.1016/j.jcis.2024.02.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal-organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
Collapse
Affiliation(s)
- Kexin Guan
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fangyi Xu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoshan Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shuya Guo
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yizhen Situ
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - You Chen
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianming Hu
- College of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
| | - Zili Liu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xin Zhu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; College of Economics and Statistics, Guangzhou University, Guangzhou 510006, China.
| | - Yufang Wu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Kleinbeck S, Wolkoff P. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors. Arch Toxicol 2024; 98:617-662. [PMID: 38243103 PMCID: PMC10861400 DOI: 10.1007/s00204-023-03642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
4
|
Yan K, Wang M, Cheng Y, Zou J, Zhang Y, Hu S, Chen Y, Lv Q, Ying S. An update on the association between ambient short-term air pollution exposure and daily outpatient visits for conjunctivitis: a time-series study in Hangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102790-102802. [PMID: 37672159 DOI: 10.1007/s11356-023-29647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Air pollution is a major public health problem that can lead to conjunctivitis. This study aimed to explore the associations between air pollutants and outpatient visits for conjunctivitis in Hangzhou, China. This study collected data on 50,772 patients with conjunctivitis and the concentrations of six air pollutants from February 1, 2014, to August 31, 2018. A time series analysis using a generalized additive model (GAM) was conducted. We found that the risk of conjunctivitis was related to the air pollutants PM2.5, PM10, SO2, NO2, and O3, which had concentration hysteresis effects. The risk of conjunctivitis increased by 1.009 (95% confidence interval (CI): 1.003, 1.014), 1.011 (95% CI: 1.008, 1.015), 1.238 (95% CI: 1.186, 1.292), 1.028 (95% CI: 1.019, 1.038), and 1.013 (95% CI: 1.008, 1.017) for every 10 µg/m3 increase in PM2.5, PM10, SO2, NO2, and O3 concentrations, respectively. The lag effects of SO2 and NO2 were stronger than those of particulate matter. Females exposed to PM10, PM2.5, SO2, and O3 had a higher risk of conjunctivitis than males, while males exposed to NO2 had a nearly identical risk of conjunctivitis as females. People aged 19-59 were more likely to suffer from conjunctivitis. The risk of conjunctivitis caused by PM10, SO2, and O3 was highest in the transitional season, while the risk caused by NO2 was highest in the winter season. In conclusion, females and middle-aged adults were at higher risk of conjunctivitis. People were more susceptible to conjunctivitis during the transitional season. These findings highlight the importance of atmospheric pollution governance and reference for public health measures.
Collapse
Affiliation(s)
- Kaili Yan
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Mingwei Wang
- Affiliated Hospital of Hangzhou Normal University, Zhejiang Province, Hangzhou, China
| | - Yongran Cheng
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Jin Zou
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Yu Zhang
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Shuaiyue Hu
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Yitong Chen
- Savaid Stomatology School, Hangzhou Medical College, Zhejiang Province, Hangzhou, China
| | - Qingqing Lv
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Shibo Ying
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China.
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Cui WL, Wang MH, Yang YH, Ji X, Wang JY. Viscosity & SO 2-sensitive dual colorimetric effect fluorescent sensor enabled imaging detection within plant onion and biological system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122775. [PMID: 37150073 DOI: 10.1016/j.saa.2023.122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
The biological microenvironment includes important parameters such as viscosity, polarity, temperature, oxygen content and pH. In particular, abnormal cell viscosity is associated with the development of major diseases. Sulphur dioxide (SO2) serves not only as an essential atmospheric pollutant but also an influential signalling molecule in biological cells, predisposing individuals to increased respiratory disease. In this work, we designed and synthesized a novel fluorescent probe CouCN-V&S with dual response to micro environmental viscosity and SO2. The probe monitored viscosity and SO2 separately through dual emission channels with a difference of 135 nm. The probe responded sensitively to SO2 (<1s) and exhibited satisfactory immunity to interference and pH stability. The probe was successfully applied to imaging cellular, intra-zebrafish viscosity and SO2 changes. Interestingly, we took onion epidermal cells as model and explored the capability of probe CouCN-V&S to image SO2 in plant cells for the first time.
Collapse
Affiliation(s)
- Wei-Long Cui
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mao-Hua Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yun-Hao Yang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jian-Yong Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
6
|
Preparation and So2 Capture Kinetics Of A Desox Coating For The Desulfurization Of Exhaust Emission. Heliyon 2022; 8:e11463. [DOI: 10.1016/j.heliyon.2022.e11463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
|
7
|
Mechanistic and Experimental Study of the CuxO@C Nanocomposite Derived from Cu3(BTC)2 for SO2 Removal. Catalysts 2022. [DOI: 10.3390/catal12070689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A tunable and efficient strategy was adopted to synthesize highly porous nano-structured CuO−carbonized composites (CuxO@C) using Cu3(BTC)2 as a sacrificial template. The as-synthesized CuO nanocomposites exhibited hollow octahedral structures, a large surface area (89.837 m2 g−1) and a high proportion of Cu2O active sites distributed on a carbon frame. Based on DFT calculations, both the Cu atoms on the surface (CuS) and oxygen vacancy (OV) exhibited strong chemical reactivity. On the perfect CuO (111), the CuS transferred charge to O atoms on the surface and SO2 molecules. A strong adsorption energy (−1.41 eV) indicated the existence of the chemisorption process. On the oxygen-deficient CuO (111), the O2 preferably adsorbed on OV and then formed SO3 by bonding with SO2, followed by the cleavage of the O−O bond. Furthermore, the CuO nanocomposites exhibited an excellent ratio of S/Cu in SO2 removal experiments compared with CuO nanoparticles produced by coprecipitation.
Collapse
|
8
|
Li X, Han J, Liu Y, Dou Z, Zhang TA. Summary of research progress on industrial flue gas desulfurization technology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119849] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Damyar N, Mansouri F, Khavanin A, Jafari AJ, Asilian H, Mirzaei R. Improving the performance of double-expansion chamber muffler using dielectric beads; optimization using factorial design. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1979-1985. [PMID: 34900319 PMCID: PMC8617134 DOI: 10.1007/s40201-021-00749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/17/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE Noise pollution is a common health hazard worldwide which is emitted along with chemical air pollutants, simultaneously from many sources. Some studies have been conducted to control these pollutants, simultaneously with promising results being achieved. Dielectric beads have been used in air pollution control technologies, successfully and probable effectiveness of them in noise reduction can be promising in dual use of them in the exhausts emitting noise and air pollution, simultaneously. METHODS In order to investigate the effectiveness of dielectric beads in noise reduction, two types of them; namely glass and ceramic beads, were placed separately inside the connecting tube of a double-expansion chamber muffler. Then the transmission loss (TL) of muffler was examined using impedance tube. A factorial design was used to evaluate and optimize the effect of noise related parameters on TL of such a system. RESULTS Results show that the presence of dielectric beads has significant effect on TL of muffler. The maximum TL was obtained as 74.76 dB for muffler with ceramic beads, under the optimal condition of 5250 Hz and 120 dB. Measurement of TL and sound absorption coefficient (SAC) of glass and ceramic beads showed that the noise reduction in muffler with ceramic and glass beads is probably due to SAC in ceramic beads and noise reflections in glass beads, respectively. CONCLUSION These results promise the dual use of dielectric beads in the exhausts emitting noise and air pollution simultaneously.
Collapse
Affiliation(s)
- Niloofar Damyar
- Department of Occupational Health Engineering, Faculty of Health, Semnan University of Medical Sciences, Semnan, Iran
- Tarbiat Modares University, Tehran, Iran
| | - Fariba Mansouri
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hasan Asilian
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ramazan Mirzaei
- Department of Occupational Health Engineering, School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Zhou M, Ou H, Li S, Qin X, Fang Y, Lee S, Wang X, Ho W. Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102376. [PMID: 34693667 PMCID: PMC8693081 DOI: 10.1002/advs.202102376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Indexed: 05/19/2023]
Abstract
The techniques for the production of the environment have received attention because of the increasing air pollution, which results in a negative impact on the living environment of mankind. Over the decades, burgeoning interest in polymeric carbon nitride (PCN) based photocatalysts for heterogeneous catalysis of air pollutants has been witnessed, which is improved by harvesting visible light, layered/defective structures, functional groups, suitable/adjustable band positions, and existing Lewis basic sites. PCN-based photocatalytic air purification can reduce the negative impacts of the emission of air pollutants and convert the undesirable and harmful materials into value-added or nontoxic, or low-toxic chemicals. However, based on previous reports, the systematic summary and analysis of PCN-based photocatalysts in the catalytic elimination of air pollutants have not been reported. The research progress of functional PCN-based composite materials as photocatalysts for the removal of air pollutants is reviewed here. The working mechanisms of each enhancement modification are elucidated and discussed on structures (nanostructure, molecular structue, and composite) regarding their effects on light-absorption/utilization, reactant adsorption, intermediate/product desorption, charge kinetics, and reactive oxygen species production. Perspectives related to further challenges and directions as well as design strategies of PCN-based photocatalysts in the heterogeneous catalysis of air pollutants are also provided.
Collapse
Affiliation(s)
- Min Zhou
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Honghui Ou
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Shanrong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Xing Qin
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Shun‐cheng Lee
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Wingkei Ho
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| |
Collapse
|
11
|
Mu X, Zhu J, Yan L, Tang N. A ratiometric fluorescent probe for the rapid and specific detection of HSO 3 - in water samples. LUMINESCENCE 2021; 36:923-927. [PMID: 33458934 DOI: 10.1002/bio.4016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Hydrosulphite (HSO3 - ), as a common and important chemical reagent, is widely used in everyday life, however excessive use and abuse of HSO3 - can cause potential harmful effects on the environment and in biological health. In this paper, we describe the design and preparation of a colorimetric and ratiometric fluorescence probe for the visual detection of HSO3 - (excitation wavelengths were, respectively, 336 nm and 520 nm). This method showed some advantages including simple preparation, high selectivity, fast response, and significant colour and fluorescence ratio (F450 /F594 ) changes in the presence of HSO3 - . In addition, this probe was used successfully for the detection of HSO3 - in real water samples and showed a good recovery rate range.
Collapse
Affiliation(s)
- Xinyue Mu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Jinbiao Zhu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Ningli Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
12
|
Efficient catalyst development for deep aerobic photocatalytic oxidative desulfurization: recent advances, confines, and outlooks. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2021. [DOI: 10.1080/01614940.2020.1864859] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Li X, Chen L, Osaka Y, He Z, Deng L, Huang H. Preparation and desulfurization performance of various MnOx materials for ship exhaust emissions control. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Michellier C, Katoto PDMC, Dramaix M, Nemery B, Kervyn F. Respiratory health and eruptions of the Nyiragongo and Nyamulagira volcanoes in the Democratic Republic of Congo: a time-series analysis. Environ Health 2020; 19:62. [PMID: 32503565 PMCID: PMC7275486 DOI: 10.1186/s12940-020-00615-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/21/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Nyamulagira and Nyiragongo are active volcanoes situated close to Goma (North Kivu, Democratic Republic of Congo). These volcanoes are among the most prolific sources of volcanic SO2 pollution on earth. OBJECTIVE We investigated the possible spatiotemporal relationships between volcanic degassing represented by eruptive emissions of SO2 that occurred between 2000 and 2010, and the incidence of acute respiratory symptoms (ARS) in populations living in areas up to more than 100 km from the volcanoes. METHODOLOGY The total flux of SO2 emitted during eruptions since 2000 and the average spatial distribution of the volcanic plume (2004-2008) were based on publicly available remote sensing data. The monthly numbers of adults and children reporting acute respiratory symptoms were extracted from health data collected routinely by selected local health centres and hospitals between 2000 and 2010. The monthly numbers of persons with ARS recorded during or after eruptions were compared with those recorded before eruptions, using negative binomial regression models allowing the calculation of incidence rate ratios (IRR) and their 95% confidence intervals. We first compared years with and without eruptions and then considered shorter time-windows (months). RESULTS In the investigated area, ARS were the second most frequent cause of medical visits (12.2%, n = 3.2 million cases), after malaria (32.3%, n = 8.4 million cases). SO2 emissions gradually increased 30 to 50 times in 2010 compared to 2002. Taking 1999 as a reference, the IRR for ARS increased three-fold between 2000 [0.9 (0.8, 1.1)] and 2009 [2.8 (2.2, 3.7)]. Although the incidence of ARS appeared to increase after some eruptions, especially in areas close (< 26 km) to the volcanoes, we did not find a consistent temporal association between the yearly incidence of ARS and volcanic eruptions when considering the entire observation period. When we analysed shorter time-windows (6 months in the year preceding an eruption), we observed increased ARS incidences in eruptive months, except in 2010. IRRs were increased for centres situated close to volcanoes (< 26 km) in 2001 and 2002. CONCLUSION ARS incident cases increased over the years in populations living around the Nyamulagira and Nyiragongo volcanoes, but we found no consistent evidence for an association between the yearly incidence of ARS and volcanic eruptions or the intensity of SO2 emissions, possibly because of interference with man-made events, including massive population displacements caused by insecurity in the area. Nevertheless, some evidence was found for increased incidence of ARS following eruptions, especially in areas close to volcanoes. Assessing personal, ground level exposure to SO2 and particulates with adequate controlling for confounding, such as viral and other infections, could clarify the contribution, if any, of volcanic emissions of SO2 to the high burden of respiratory diseases in this region.
Collapse
Affiliation(s)
- Caroline Michellier
- Natural hazards service, Department of Earth Sciences, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium.
| | - Patrick de Marie Chimusa Katoto
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Internal Medicine, Faculty of Medicine, Catholic University of Bukavu, Bugabo 2, Av. de la Mission, Commune de Kadutu, Bukavu, Democratic Republic of Congo
| | - Michèle Dramaix
- Research Centre of Epidemiology, Biostatistics and Clinical Research, School of Public Health, Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070, Brussels, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - François Kervyn
- Natural hazards service, Department of Earth Sciences, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium
| |
Collapse
|
15
|
Kleinbeck S, Schäper M, Pacharra M, Lehmann ML, Golka K, Blaszkewicz M, Brüning T, van Thriel C. A short-term inhalation study to assess the reversibility of sensory irritation in human volunteers. Arch Toxicol 2020; 94:1687-1701. [PMID: 32185413 PMCID: PMC7261732 DOI: 10.1007/s00204-020-02703-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Sensory irritation is an acute adverse effect caused by chemicals that stimulate chemoreceptors of the upper respiratory tract or the mucous membranes of the outer eye. The avoidance of this end point is of uttermost importance in regulatory toxicology. In this study, repeated exposures to ethyl acrylate were analyzed to investigate possible carryover effects from day to day for different markers of sensory irritation. Thirty healthy subjects were exposed for 4 h on five subsequent days to ethyl acrylate at concentrations permitted by the German occupational exposure limit at the time of study. Ratings of eye irritation as well as eye blinking frequencies indicate the elicitation of sensory irritation. These markers of sensory irritation showed a distinct time course on every single day. However, cumulative carryover effects could not be identified across the week for any marker. The rhinological and biochemical markers could not reveal hints for more pronounced sensory irritation. Neither increased markers of neurogenic inflammation nor markers of immune response could be identified. Furthermore, the performance on neurobehavioral tests was not affected by ethyl acrylate and despite the strong odor of ethyl acrylate the participants improved their performances from day to day. While the affected physiological marker, the increased eye blinking frequency stays roughly on the same level across the week, subjective markers like perception of eye irritation decrease slightly from day to day though the temporal pattern of, i.e., eye irritation perception stays the same on each day. A hypothetical model of eye irritation time course derived from PK/PD modeling of the rabbit eye could explain the within-day time course of eye irritation ratings repeatedly found in this study more precisely.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Michael Schäper
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Marlene Pacharra
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,MSH Medical School Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Marie Louise Lehmann
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus Golka
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Meinolf Blaszkewicz
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Thomas Brüning
- Research Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle de la Camp-Platz 1, 44789, Bochum, Germany
| | - Christoph van Thriel
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
16
|
Rosenkranz D, Bünger J, Hoffmeyer F, Monsé C, van Kampen V, Raulf M, Brüning T, Sucker K. How Healthy Is Healthy? Comparison Between Self-Reported Symptoms and Clinical Outcomes in Connection with the Enrollment of Volunteers for Human Exposure Studies on Sensory Irritation Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1271:49-59. [DOI: 10.1007/5584_2019_472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Deng Z, Li F, Zhao G, Yang W, Hu Y. A mitochondrion-targeted dual-site fluorescent probe for the discriminative detection of SO32− and HSO3− in living HepG-2 cells. RSC Adv 2020; 10:26349-26357. [PMID: 35519787 PMCID: PMC9055423 DOI: 10.1039/d0ra01233e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/28/2020] [Indexed: 12/30/2022] Open
Abstract
Sulfur dioxide, known as an environmental pollutant, produced during industrial productions is also a common food additive that is permitted worldwide. In living organisms, sulfur dioxide forms hydrates of sulfite (SO2·H2O), bisulfite (HSO3−) and sulfite (SO32−) under physiological pH conditions; these three exist in a dynamic balance and play a role in maintaining redox balance, further participating in a wide range of physiological and pathological processes. On the basis of the differences in nucleophilicity between SO32− and HSO3−, for the first time, we built a mitochondrion-targeted dual-site fluorescent probe (Mito-CDTH-CHO) based on benzopyran for the highly specific detection of SO32− and HSO3− with two diverse emission channels. Mito-CDTH-CHO can discriminatively respond to the levels of HSO3− and SO32−. Besides, its advantages of low cytotoxicity, superior biocompatibility and excellent mitochondrial enrichment ability contribute to the detection and observation of the distribution of sulfur dioxide derivatives in living organisms as well as allowing further studies on the physiological functions of sulfur dioxide. Rational design and sensing mechanism of a dual-site fluorescence probe for HSO3− and SO32−.![]()
Collapse
Affiliation(s)
- Zhenmei Deng
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Fangzhao Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Guomin Zhao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wenge Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
18
|
Abstract
An association between airway dysfunction and airborne pollutant inhalation exists. Volatilized airborne fluorocarbons in ski wax rooms, particulate matter, and trichloromines in indoor environments are suspect to high prevalence of exercise-induced bronchoconstriction and new-onset asthma in athletes competing in cross-country skiing, ice rink sports, and swimming. Ozone is implicated in acute decreases in lung function and the development of new-onset asthma from exposure during exercise. Mechanisms and genetic links are proposed for pollution-related new-onset asthma. Oxidative stress from airborne pollutant inhalation is a common thread to progression of airway damage. Key pollutants and mechanisms for each are discussed.
Collapse
|
19
|
Liu K, Chen Y, Sun H, Wang S, Kong F. Construction of a novel near-infrared fluorescent probe with multiple fluorescence emission and its application for SO 2 derivative detection in cells and living zebrafish. J Mater Chem B 2018; 6:7060-7065. [PMID: 32254589 DOI: 10.1039/c8tb02030b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sulfur dioxide (SO2) in biological systems is an important gaseous signal molecule and plays important roles in physiological activities. It can be endogenously produced by enzymes in mitochondria during oxidation of sulphur-containing molecules. Thus, the development of probes for sulfur dioxide detection in biological environment is necessary. Here, a new near-infrared fluorescent probe (Rh-TPA) with multiple fluorescence emission was constructed and applied for SO2 derivative detection. Rh-TPA was constructed via conjugation of a rhodamine analogue with a triphenylamine group. Rh-TPA exhibited a major emission peak at 740 nm and a shoulder peak at 810 nm. After interacting with SO2 derivatives, the conjugated system dissociated into two smaller chromophores with two emission peaks (520 nm and 570 nm) in the visible region. The probe showed negligible cytotoxicity, as demonstrated by the MTT results. Biological imaging application experiments indicated that the probe can be used to image SO2 derivatives in HeLa cells and living zebrafish.
Collapse
Affiliation(s)
- Keyin Liu
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Nielsen GD, Wolkoff P. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: A systematic approach. Regul Toxicol Pharmacol 2017; 90:308-317. [DOI: 10.1016/j.yrtph.2017.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
|
21
|
Prediction of human sensory irritation due to ethyl acrylate: the appropriateness of time-weighted average concentration × time models for varying concentrations. Arch Toxicol 2017; 91:3051-3064. [DOI: 10.1007/s00204-017-1934-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
22
|
Liu SK, Cai S, Chen Y, Xiao B, Chen P, Xiang XD. The effect of pollutional haze on pulmonary function. J Thorac Dis 2016; 8:E41-56. [PMID: 26904252 DOI: 10.3978/j.issn.2072-1439.2016.01.18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Detrimental health effects of atmospheric exposure to ambient particulate matter (PM) have been investigated in numerous studies. Exposure to pollutional haze, the carrier of air pollutants such as PM and nitrogen dioxide (NO2) has been linked to lung and cardiovascular disease, resulting increases in both hospital admissions and mortality. This review focuses on the constituents of pollutional haze and its effects on pulmonary function. The article presents the available information and seeks to correlate pollutional haze and pulmonary function.
Collapse
Affiliation(s)
- Shao-Kun Liu
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shan Cai
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yan Chen
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bing Xiao
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ping Chen
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xu-Dong Xiang
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
23
|
Wei S, He H, Cheng Y, Yang C, Zeng G, Qiu L. Performances, kinetics and mechanisms of catalytic oxidative desulfurization from oils. RSC Adv 2016. [DOI: 10.1039/c6ra22358c] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultra-deep desulfurization technologies are critical for cleaner oils and consequent better air quality.
Collapse
Affiliation(s)
- Sainan Wei
- College of Environmental Science and Engineering
- Hunan University
- Changsha
- P. R. China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Huijun He
- College of Environmental Science and Engineering
- Hunan University
- Changsha
- P. R. China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Yan Cheng
- College of Environmental Science and Engineering
- Guilin University of Technology
- Guilin
- P. R. China
| | - Chunping Yang
- College of Environmental Science and Engineering
- Hunan University
- Changsha
- P. R. China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha
- P. R. China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Lu Qiu
- College of Environmental Science and Engineering
- Hunan University
- Changsha
- P. R. China
- Key Laboratory of Environmental Biology and Pollution Control
| |
Collapse
|
24
|
Mueller JU, Bruckner T, Triebig G. Exposure study to examine chemosensory effects of formaldehyde on hyposensitive and hypersensitive males. Int Arch Occup Environ Health 2012; 86:107-17. [PMID: 22371090 DOI: 10.1007/s00420-012-0745-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 01/27/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Main objective of this study was to examine the chemosensory effects of formaldehyde on hyposensitive and hypersensitive males at concentrations relevant to the workplace. Attention focused on objective effects on and subjective symptoms of the mucous membranes of the eyes, the nose, the upper respiratory tract and olfactory function. METHODS Forty-one male volunteers were exposed for 5 days (4 h per day) in a randomised schedule to the control condition (0 ppm) and to formaldehyde concentrations of 0.5 and 0.7 ppm and to 0.3 ppm with peak exposures of 0.6 ppm, and to 0.4 ppm with peak exposures of 0.8 ppm, respectively. Peak exposures were carried out four times a day over a 15-min period of time. Subjective pain perception induced by nasal application of carbon dioxide served as indicator for sensitivity to sensory nasal irritation. The following parameters were examined before and after exposure: subjective rating of symptoms and complaints (Swedish Performance Evaluation System), conjunctival redness, eye-blinking frequency, self-reported tear film break-up time and nasal flow rates. In addition, the influence of personality factors on the volunteer's subjective scoring was examined (Positive And Negative Affect Schedule). RESULTS Formaldehyde exposures to 0.7 ppm for 4 h and to 0.4 ppm for 4 h with peaks of 0.8 ppm for 15 min caused no significant sensory irritation of the measured conjunctival and nasal parameters. No differences between hypo- and hypersensitive subjects were seen. Nevertheless, statistically significant differences were noted for olfactory symptoms, especially for the 'perception of impure air'. These subjective complaints were more pronounced in hypersensitive subjects. CONCLUSIONS Formaldehyde concentrations of 0.7 ppm for 4 h and of 0.4 ppm for 4 h with peaks of 0.8 ppm for 15 min did not cause adverse effects related to irritation, and no differences between hypo- and hypersensitive subjects were observed.
Collapse
Affiliation(s)
- Joerg U Mueller
- Institute and Outpatient Clinic for Occupational and Social Medicine, University of Heidelberg, Vossstrasse 2, 69115 Heidelberg, Germany
| | | | | |
Collapse
|
25
|
Monsé C, Sucker K, van Thriel C, Broding HC, Jettkant B, Berresheim H, Wiethege T, Käfferlein H, Merget R, Bünger J, Brüning T. Considerations for the design and technical setup of a human whole-body exposure chamber. Inhal Toxicol 2012; 24:99-108. [DOI: 10.3109/08958378.2011.640362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Kirsten Sucker
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Christoph van Thriel
- Leibnitz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße,
Dortmund, Germany
| | - Horst Christoph Broding
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Birger Jettkant
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Hans Berresheim
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Thorsten Wiethege
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Heiko Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Rolf Merget
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA),
Bürkle-de-la-Camp-Platz, Bochum, Germany
| |
Collapse
|
26
|
Abstract
Methyl formate (MF) is a volatile solvent with several industrial applications. The acute airway effects of MF were evaluated in a mouse bioassay, allowing the assessment of sensory irritation of the upper airways, airflow limitation of the conducting airways and deep lung (pulmonary) irritation. MF was studied at vapour concentrations of 202–1,168 ppm. Sensory irritation was the only effect observed, which developed slowly over the 30-min exposure period. The potency at steady state was at least 10-fold higher than expected from a hypothetically similar, but non-reactive compound. Methyl formate may be hydrolysed in vivo to formic acid, a potent sensory irritant, and methanol, a low-potent sensory irritant. Hydrolysis may be catalysed by carboxyesterases, and therefore, the role of the esterases was studied using the esterase inhibitor tri-ortho-cresyl phosphate (TOCP). TOCP pre-treatment reduced the irritation response of MF, suggesting that carboxyesterase-mediated hydrolysis plays a role in the irritative effect. However, even after administration of TOCP, MF was considerably more irritating than expected from a quantitative structure–activity relationship (QSAR) model. The slope of the concentration–effect relationship for formic acid was lower than that for the MF in the low-dose range, suggesting that different receptor activation mechanisms may occur, which may include an effect of MF itself, in addition to an effect of formic acid and potentially an effect from formaldehyde.
Collapse
|