1
|
Liang K, Yang L, Kang J, Liu B, Zhang D, Wang L, Wang W, Wang Q. Improving treatment for Parkinson's disease: Harnessing photothermal and phagocytosis-driven delivery of levodopa nanocarriers across the blood-brain barrier. Asian J Pharm Sci 2024; 19:100963. [PMID: 39640059 PMCID: PMC11616058 DOI: 10.1016/j.ajps.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 12/07/2024] Open
Abstract
Parkinson's disease (PD) poses a significant therapeutic challenge, mainly due to the limited ability of drugs to cross the blood-brain barrier (BBB) without undergoing metabolic transformations. Levodopa, a key component of dopamine replacement therapy, effectively enhances dopaminergic activity. However, it encounters obstacles from peripheral decarboxylase, hindering its passage through the BBB. Furthermore, levodopa metabolism generates reactive oxygen species (ROS), exacerbating neuronal damage. Systemic pulsatile dosing further disrupts natural physiological buffering mechanisms. In this investigation, we devised a ROS-responsive levodopa prodrug system capable of releasing the drug and reducing ROS levels in the central nervous system. The prodrug was incorporated within second near-infrared region (NIR-II) gold nanorods (AuNRs) and utilized angiopep-2 (ANG) for targeted delivery across the BBB. The processes of tight junction opening and endocytosis facilitated improved levodopa transport. ROS scavenging helped alleviate neuronal oxidative stress, leading to enhanced behavioral outcomes and reduced oxidative stress levels in a mouse model of PD. Following treatment, the PD mouse model exhibited enhanced flexibility, balance, and spontaneous exploratory activity. This approach successfully alleviated the motor impairments associated with the disease model. Consequently, our strategy, utilizing NIR-II AuNRs and ANG-mediated BBB penetration, coupled with the responsive release of levodopa, offers a promising approach for dopamine supplementation and microenvironmental regulation. This system holds substantial potential as an efficient platform for delivering neuroprotective drugs and advancing PD therapy.
Collapse
Affiliation(s)
- Kaili Liang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiawei Kang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ding Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liyan Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells 2024; 13:260. [PMID: 38334652 PMCID: PMC10854731 DOI: 10.3390/cells13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
The blood-brain barrier (BBB) is a remarkable and intricate barrier that controls the exchange of molecules between the bloodstream and the brain. Its role in maintaining the stability of the central nervous system cannot be overstated. Over the years, advancements in neuroscience and technology have enabled us to delve into the cellular and molecular components of the BBB, as well as its regulation. Yet, there is a scarcity of comprehensive reviews that follow a logical framework of structure-function-regulation, particularly focusing on the nuances of BBB regulation under both normal and pathological conditions. This review sets out to address this gap by taking a historical perspective on the discovery of the BBB and highlighting the major observations that led to its recognition as a distinct brain barrier. It explores the intricate cellular elements contributing to the formation of the BBB, including endothelial cells, pericytes, astrocytes, and neurons, emphasizing their collective role in upholding the integrity and functionality of the BBB. Furthermore, the review delves into the dynamic regulation of the BBB in physiological states, encompassing neural, humoral, and auto-regulatory mechanisms. By shedding light on these regulatory processes, a deeper understanding of the BBB's response to various physiological cues emerges. This review also investigates the disruption of the BBB integrity under diverse pathological conditions, such as ischemia, infection, and toxin exposure. It elucidates the underlying mechanisms that contribute to BBB dysfunction and explores potential therapeutic strategies that aim to restore the BBB integrity and function. Overall, this recapitulation provides valuable insights into the structure, functions, and regulation of the BBB. By integrating historical perspectives, cellular elements, regulatory mechanisms, and pathological implications, this review contributes to a more comprehensive understanding of the BBB and paves the way for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Botao Zhou
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| | - Haixiao Feng
- Gies College of Business, University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA;
| | - Chuoying Luo
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Boren Bai
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA;
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
3
|
Qin T, Liu L, Wang X, Guo L, Lin J, Du J, Xue Y, Lai P, Jing Y, Ding G. Combined effects of EMP and RF field on emotional behavior in mice. Front Public Health 2023; 11:1087161. [PMID: 37006533 PMCID: PMC10061096 DOI: 10.3389/fpubh.2023.1087161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundRecently, concerns about the combined effects of electromagnetic field (EMF) in daily living and occupational environment are rapidly growing.MethodsIn this study, we investigated the combined effects of 1-week exposure to electromagnetic pulse (EMP) at 650 kV/m for 1,000 pulses and 4.9 GHz radiofrequency (RF) at 50 W/m2 for 1 h/d in male mice. Open field test, tail suspension test and Y-maze were applied to evaluate anxiety, depression-like behaviors and spatial memory ability, respectively.ResultsIt was found that compared with Sham group, combined exposure to EMP and RF induced anxiety-like behavior, increased the level of serum S100B and decreased the level of serum 5-HT. The results of quantitative proteomic and KEGG analysis showed that the differentially expressed proteins in hippocampus were enriched in Glutamatergic and GABAergic synapse after combined exposure group, which were verified by western blot. In addition, an obvious histological alteration and autophagy-associated cell death were observed in amygdala instead of hippocampus after combined exposure to EMP and 4.9 GHz RF.ConclusionCombined exposure to EMP and 4.9 GHz RF could induce emotional behavior alteration, which might be associated with Glutamatergic and GABAergic synapse system of hippocampus and autophagy in amygdala.
Collapse
Affiliation(s)
- Tongzhou Qin
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Liyuan Liu
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Xing Wang
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Jiajin Lin
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Junze Du
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
| | - Yizhe Xue
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Panpan Lai
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yuntao Jing
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
- *Correspondence: Guirong Ding
| |
Collapse
|
4
|
Hao Y, Liu W, Xu Z, Jin X, Ye Y, Yu C, Hu C, Zuo H, Li Y. High-Power Electromagnetic Pulse Exposure of Healthy Mice: Assessment of Effects on Mice Cognitions, Neuronal Activities, and Hippocampal Structures. Front Cell Neurosci 2022; 16:898164. [PMID: 35966202 PMCID: PMC9374008 DOI: 10.3389/fncel.2022.898164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Electromagnetic pulse (EMP) is a high-energy pulse with an extremely rapid rise time and a broad bandwidth. The brain is a target organ sensitive to electromagnetic radiation (EMR), the biological effects and related mechanisms of EMPs on the brain remain unclear. The objectives of the study were to assess the effects of EMP exposure on mouse cognitions, and the neuronal calcium activities in vivo under different cases of real-time exposure and post exposure. EMP-treated animal model was established by exposing male adult C57BL/6N mice to 300 kV/m EMPs. First, the effects of EMPs on the cognitions, including the spatial learning and memory, avoidance learning and memory, novelty-seeking behavior, and anxiety, were assessed by multiple behavioral experiments. Then, the changes in the neuronal activities of the hippocampal CA1 area in vivo were detected by fiber photometry in both cases of during real-time EMP radiation and post-exposure. Finally, the structures of neurons in hippocampi were observed by optical microscope and transmission electron microscope. We found that EMPs under this condition caused a decline in the spatial learning and memory ability in mice, but no effects on the avoidance learning and memory, novelty-seeking behavior, and anxiety. The neuron activities of hippocampal CA1 were disturbed by EMP exposure, which were inhibited during EMP exposure, but activated immediately after exposure end. Additionally, the CA1 neuron activities, when mice entered the central area in an Open field (OF) test or explored the novelty in a Novel object exploration (NOE) test, were inhibited on day 1 and day 7 after radiation. Besides, damaged structures in hippocampal neurons were observed after EMP radiation. In conclusion, EMP radiation impaired the spatial learning and memory ability and disturbed the neuronal activities in hippocampal CA1 in mice.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weiqi Liu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Life Science Department, Foshan University, Foshan, China
| | - Zhengtao Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Life Science Department, Foshan University, Foshan, China
| | - Xing Jin
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yumeng Ye
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Yu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Cuicui Hu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Academy of Life Sciences, Anhui Medical University, Hefei, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Yang Li ; Hongyan Zuo
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Academy of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yang Li ; Hongyan Zuo
| |
Collapse
|
5
|
Lorenzo MF, Campelo SN, Arroyo JP, Aycock KN, Hinckley J, Arena CB, Rossmeisl JH, Davalos RV. An Investigation for Large Volume, Focal Blood-Brain Barrier Disruption with High-Frequency Pulsed Electric Fields. Pharmaceuticals (Basel) 2021; 14:1333. [PMID: 34959733 PMCID: PMC8715747 DOI: 10.3390/ph14121333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
The treatment of CNS disorders suffers from the inability to deliver large therapeutic agents to the brain parenchyma due to protection from the blood-brain barrier (BBB). Herein, we investigated high-frequency pulsed electric field (HF-PEF) therapy of various pulse widths and interphase delays for BBB disruption while selectively minimizing cell ablation. Eighteen male Fisher rats underwent craniectomy procedures and two blunt-tipped electrodes were advanced into the brain for pulsing. BBB disruption was verified with contrast T1W MRI and pathologically with Evans blue dye. High-frequency irreversible electroporation cell death of healthy rodent astrocytes was investigated in vitro using a collagen hydrogel tissue mimic. Numerical analysis was conducted to determine the electric fields in which BBB disruption and cell ablation occur. Differences between the BBB disruption and ablation thresholds for each waveform are as follows: 2-2-2 μs (1028 V/cm), 5-2-5 μs (721 V/cm), 10-1-10 μs (547 V/cm), 2-5-2 μs (1043 V/cm), and 5-5-5 μs (751 V/cm). These data suggest that HF-PEFs can be fine-tuned to modulate the extent of cell death while maximizing peri-ablative BBB disruption. Furthermore, numerical modeling elucidated the diffuse field gradients of a single-needle grounding pad configuration to favor large-volume BBB disruption, while the monopolar probe configuration is more amenable to ablation and reversible electroporation effects.
Collapse
Affiliation(s)
- Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Kenneth N. Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| |
Collapse
|
6
|
Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Holley J, Sridharan V, Boerma M, Tackett AJ, Willey JS, Pecaut MJ, Delp MD. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model. FASEB J 2020; 34:15516-15530. [PMID: 32981077 PMCID: PMC8191453 DOI: 10.1096/fj.202001754r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Many factors contribute to the health risks encountered by astronauts on missions outside Earth's atmosphere. Spaceflight-induced potential adverse neurovascular damage and late neurodegeneration are a chief concern. The goal of the present study was to characterize the effects of spaceflight on oxidative damage in the mouse brain and its impact on blood-brain barrier (BBB) integrity. Ten-week-old male C57BL/6 mice were launched to the International Space Station (ISS) for 35 days as part of Space-X 12 mission. Ground control (GC) mice were maintained on Earth in flight hardware cages. Within 38 ± 4 hours after returning from the ISS, mice were euthanized and brain tissues were collected for analysis. Quantitative assessment of brain tissue demonstrated that spaceflight caused an up to 2.2-fold increase in apoptosis in the hippocampus compared to the control group. Immunohistochemical analysis of the mouse brain revealed an increased expression of aquaporin4 (AQP4) in the flight hippocampus compared to the controls. There was also a significant increase in the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and a decrease in the expression of the BBB-related tight junction protein, Zonula occludens-1 (ZO-1). These results indicate a disturbance of BBB integrity. Quantitative proteomic analysis showed significant alterations in pathways responsible for neurovascular integrity, mitochondrial function, neuronal structure, protein/organelle transport, and metabolism in the brain after spaceflight. Changes in pathways associated with adhesion and molecular remodeling were also documented. These data indicate that long-term spaceflight may have pathological and functional consequences associated with neurovascular damage and late neurodegeneration.
Collapse
Affiliation(s)
- Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Jacob Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
7
|
Gao P, Chen Q, Hu J, Lin Y, Lin J, Guo Q, Yue H, Zhou Y, Zeng L, Li J, Ding G, Guo G. Effect of ultra‑wide‑band electromagnetic pulses on blood‑brain barrier permeability in rats. Mol Med Rep 2020; 22:2775-2782. [PMID: 32945403 PMCID: PMC7453585 DOI: 10.3892/mmr.2020.11382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
The restrictive nature of the blood brain barrier (BBB) brings a particular challenge to the treatment of central nervous system (CNS) disorders. The effect of ultra-wide band electromagnetic pulses (UWB-EMPs) on BBB permeability was examined in the present study in order to develop a safe and effective technology that opens the BBB to improve treatment options for CNS diseases. Rats were exposed to a single UWB-EMP at various field strengths (50, 200 or 400 kV/m) and the BBB was examined using albumin immunohistochemistry and Evans blue staining at different time periods (0.5, 3, 6 and 24 h) after exposure. The expression and distribution of zonula occludens 1 (ZO-1) were evaluated using western blotting to identify a potential mechanism underlying BBB permeability. The results showed that the BBB permeability of rats exposed to UWB-EMP increased immediately following UWM-EMP treatment and peaked between 3 and 6 h after UWB-EMP exposure, returning to pre-exposure levels 24 h later. The data suggested that UWB-EMP at 200 and 400 kV/m could induce BBB opening, while 50 kV/m UWB-EMP could not. The levels of ZO-1 in the cerebral cortex were significantly decreased at 3 and 6 h after exposure; however, no change was observed in the distribution of ZO-1. The present study indicated that UWB-EMP-induced BBB opening was field strength-dependent and reversible. Decreased expression of ZO-1 may be involved in the effect of UWB-EMP on BBB permeability.
Collapse
Affiliation(s)
- Peng Gao
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qin Chen
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Junfeng Hu
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanyun Lin
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiajin Lin
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiyan Guo
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hao Yue
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Zhou
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lihua Zeng
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Li
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guirong Ding
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guozhen Guo
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, Airforce Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
BDNF-TrkB signaling is involved in the histopathological damage, synaptic protein loss and inflammatory response caused by an electromagnetic pulse in rat brain cortex. Neuroreport 2019; 30:550-555. [PMID: 30913136 DOI: 10.1097/wnr.0000000000001242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An electromagnetic pulse (EMP) can cause central nervous system damage, but the underlying mechanisms remain unclear. In this study, we investigated the effects of EMP exposure on the cortex of the rat brain and the involvement of deficiencies in the brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling pathway. Rats were exposed to EMPs once a day for 7 consecutive days. Histopathological damage was assessed by hematoxylin and eosin staining. Levels of synaptic marker postsynaptic density protein-95 (PSD95) and synaptophysin (SYN), as well as methyl-CpG-binding protein 2 (Mecp2), were determined by western blots. Levels of the proinflammatory cytokine interleukin-8 and the anti-inflammatory factor interleukin-10 were assessed using enzyme-linked immunosorbent assays. In addition, to examine the BDNF-TrkB signaling pathway, the protein and phosphorylated protein levels of BDNF, pTrkB and TrkB were determined. Our results indicated that EMP exposure led to histopathological damage, the loss of synaptic protein PSD95, Mecp2 overexpression and inflammatory response. Moreover, the BDNF-TrkB pathway was downregulated after EMP exposure. 7,8-Dihydroxyflavone, a TrkB agonist, prevented all of the EMP-induced changes except the Mecp2 overexpression. Taken together, these results suggest that EMP exposure can cause damage to the rat brain cortex and that deficient BDNF-TrkB signaling plays a role in much of the EMP-related damage.
Collapse
|
9
|
Isoflurane Preconditioning Attenuates Brain Injury Induced by Electromagnetic Pulse via the TLR4/NF κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9653494. [PMID: 30723536 PMCID: PMC6339739 DOI: 10.1155/2019/9653494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
Electromagnetic pulse (EMP) is a unique type of electromagnetic radiation, and EMP exposure causes a series of biological effects. The nervous system is sensitive to EMP. We studied the neuroprotective effects of isoflurane preconditioning against EMP exposure and used hematoxylin-eosin staining (HE) to observe the effects of electromagnetic pulse and isoflurane preconditioning on neurons. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the expression of caspase-3, CD11b, TLR4, and NFκBp65. We found that after EMP exposure, the number of abnormal neurons had increased, and the expression of caspase-3, CD11b, TLR4, and NFκBp65 had also increased. Isoflurane preconditioning can reverse the above phenomenon. Moreover, we found that isoflurane preconditioning can reduce neuronal apoptosis and improve cognitive impairment induced by EMP. These findings indicate that isoflurane preconditioning can protect neurons in the cerebral cortex from EMP exposure, alleviate the inflammatory reaction and cell apoptosis, and improve cognitive impairment induced by EMP. These effects may occur through the downregulation of the TLR4/NFκB signaling pathway and the inhibition of microglial activation.
Collapse
|
10
|
Yang MJ, Lang HY, Miao X, Liu HQ, Zhang YJ, Wang YF, Chen YB, Liu JY, Zeng LH, Guo GZ. Effects of paternal electromagnetic pulse exposure on the reproductive endocrine function of male offspring: a pilot study. Toxicol Res (Camb) 2018; 7:1120-1127. [PMID: 30510681 PMCID: PMC6220719 DOI: 10.1039/c8tx00096d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Many studies indicate that parental exposure to an electromagnetic field (EMF) can cause long-term toxicity to the health of the offspring. While concerns have been focused on maternal influence, much less is known regarding the effects of paternal factors. Electromagnetic pulse (EMP) is a special and widely used type of EMF. The present study was designed to investigate the effects of paternal EMP exposure on the reproductive endocrine function of the male rat offspring. Male Sprague Dawley rats were randomly exposed to EMP at 200 kV m-1 for 0, 100 or 400 pulses before mating. The adult male offspring were sacrificed and the structural changes of testes, levels of serum steroid hormones, sperm characteristics, reproductive behaviors, content of the reproductive endocrine-related neurotransmitter GABA and expression of the GABAA receptor were analyzed. The results showed that paternal exposure induced a decrease of testosterone (T), sperm quantity and acrosin activity in the male offspring (p < 0.05). It did not show significant changes in the structure of testes, sperm deformity frequency and reproductive behaviors compared with the sham-exposed group. The content of GABA and the protein and mRNA expression of the hypothalamic GABAA receptor protein increased in the EMP exposure group (p < 0.05). In conclusion, our study shows that under these experimental conditions EMP had a certain degree of influence on the reproductive endocrine function of the male rat offspring, and the hypothalamic GABAA receptor may be involved in the reproductive toxicity of the male offspring.
Collapse
Affiliation(s)
- Ming-Juan Yang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
- Center for Infectious Disease Control , Institute of Disease Control and Prevention , PLA , Beijing , China
| | - Hai-Yang Lang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Xia Miao
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Hai-Qiang Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yan-Jun Zhang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Ya-Feng Wang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yong-Bin Chen
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Jun-Ye Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Li-Hua Zeng
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Guo-Zhen Guo
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| |
Collapse
|
11
|
Li K, Zhang K, Xu S, Wang X, Zhou Y, Zhou Y, Gao P, Lin J, Ding G, Guo G. EMP-induced BBB-disruption enhances drug delivery to glioma and increases treatment efficacy in rats. Bioelectromagnetics 2017; 39:60-67. [PMID: 29105885 DOI: 10.1002/bem.22090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022]
Abstract
Chemotherapy on gliomas is not satisfactorily efficient because the presence of blood-brain barriers (BBB) leads to inadequate exposure of tumor cells to administered drugs. In order to facilitate chemotherapeutics to penetrate BBB and increase the treatment efficacy of gliomas, electromagnetic pulse (EMP) was applied and the 1-(2-Chlorethyl)-cyclohexyl-nitrosourea (CCNU) lomustine concentration in tumor tissue, tumor size, tumor apoptosis, and side effects were measured in glioma-bearing rat model. The results showed that EMP exposure could enhance the delivery of CCNU to tumor tissue, facilitate tumor apoptosis, and inhibit tumor growth without obvious side effects. The data indicated that EMP-induced BBB disruption could enhance delivery of CCNU to glioblastoma multiforme and increase treatment efficacy in glioma-bearing rats. Bioelectromagnetics. 39:60-67, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kangchu Li
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Keying Zhang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Shenglong Xu
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaowu Wang
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Yongchun Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Zhou
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Peng Gao
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiajin Lin
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Guirong Ding
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Guozhen Guo
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats. Metab Brain Dis 2017; 32:1459-1469. [PMID: 28451780 DOI: 10.1007/s11011-017-0016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
Abstract
Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.
Collapse
Affiliation(s)
- Haifa Othman
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Mohamed Ammari
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia.
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1006, Tunis, Tunisia.
| | - Mohsen Sakly
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
13
|
Li JH, Jiang DP, Wang YF, Yan JJ, Guo QY, Miao X, Lang HY, Xu SL, Liu JY, Guo GZ. Influence of electromagnetic pulse on the offspring sex ratio of male BALB/c mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:155-161. [PMID: 28735146 DOI: 10.1016/j.etap.2017.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/27/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Public concern is growing about the exposure to electromagnetic fields (EMF) and its effect on male reproductive health. Detrimental effect of EMF exposure on sex hormones, reproductive performance and sex-ratio was reported. The present study was designed to clarify whether paternal exposure to electromagnetic pulse (EMP) affects offspring sex ratio in mice. 50 male BALB/c mice aged 5-6 weeks were exposed to EMP daily for 2 weeks before mated with non-exposed females at 0d, 7d, 14d, 21d and 28d after exposure. Sex hormones including total testosterone, LH, FSH, and GnRH were detected using radioimmunoassay. The sex ratio was examined by PCR and agarose gel electrophoresis. The results of D0, D21 and D28 showed significant increases compared with sham-exposed groups. The serum testosterone increased significantly in D0, D14, D21, and D28 compared with sham-exposed groups (p<0.05). Overall, this study suggested that EMP exposure may lead to the disturbance of reproductive hormone levels and affect the offspring sex ratio.
Collapse
Affiliation(s)
- Jin-Hui Li
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, 100071, China
| | - Da-Peng Jiang
- Academy of Military Medical Science, Beijing, 100071,China
| | - Ya-Feng Wang
- Navy Center for Disease Control and Prevention, Beijing, 101113, China
| | - Jia-Jia Yan
- The First Affiliated Hospital of Xi'an Medical College University, Xi'an, Shaanxi, 710077, China
| | - Qi-Yan Guo
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xia Miao
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hai-Yang Lang
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Sheng-Long Xu
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun-Ye Liu
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Guo-Zhen Guo
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
14
|
Sano MB, Volotskova O, Xing L. Treatment of Cancer In Vitro Using Radiation and High-Frequency Bursts of Submicrosecond Electrical Pulses. IEEE Trans Biomed Eng 2017; 65:928-935. [PMID: 28783621 DOI: 10.1109/tbme.2017.2734887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is an emerging cancer therapy, which uses bursts of short duration, alternating polarity, high-voltage electrical pulses to focally ablate tumors. Here, we present a preliminary investigation of the combinatorial effects of H-FIRE and ionizing radiation. In vitro cell cultures were exposed to bursts of 500 ns pulses and single radiation doses of 2 or 20 Gy then analyzed for 14 days. H-FIRE and radiation therapy (RT) appear to induce different delayed cell death mechanisms and in all treatment groups combinatorial therapy resulted in lower overall viabilities. These results indicate that in vivo investigation of the antitumor efficacy of combined H-FIRE and RT is warranted.
Collapse
|
15
|
Bonakdar M, Wasson EM, Lee YW, Davalos RV. Electroporation of Brain Endothelial Cells on Chip toward Permeabilizing the Blood-Brain Barrier. Biophys J 2016; 110:503-513. [PMID: 26789772 DOI: 10.1016/j.bpj.2015.11.3517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022] Open
Abstract
The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway.
Collapse
Affiliation(s)
- Mohammad Bonakdar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia.
| | - Elisa M Wasson
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
| | - Yong W Lee
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Virginia Tech, Blacksburg, Virginia
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
16
|
Jiang DP, Li JH, Zhang J, Xu SL, Kuang F, Lang HY, Wang YF, An GZ, Li J, Guo GZ. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res 2016; 1642:10-19. [DOI: 10.1016/j.brainres.2016.02.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/05/2016] [Accepted: 02/14/2016] [Indexed: 11/30/2022]
|
17
|
Zhou Y, Qiu LB, An GZ, Zhou JX, Du L, Ma YH, Guo GZ, Ding GR. Effects of electromagnetic pulse exposure on gelatinase of blood-brain barrier in vitro. Electromagn Biol Med 2016; 36:1-7. [PMID: 27355558 DOI: 10.3109/15368378.2016.1140058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood-brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.
Collapse
Affiliation(s)
- Yan Zhou
- a Department of Radiation Biology , Fourth Military Medical University , Xi'an , P. R. China
| | - Lian-Bo Qiu
- a Department of Radiation Biology , Fourth Military Medical University , Xi'an , P. R. China.,b Department of Nutrition , Aviation Medical Evaluation and Training Center of Airforce , Dalian , P. R. China
| | - Guang-Zhou An
- a Department of Radiation Biology , Fourth Military Medical University , Xi'an , P. R. China
| | - Jia-Xing Zhou
- c Centre of Nautical and Aviation Medicine PLA , Navy General Hospital , Beijing , P. R. China
| | - Le Du
- a Department of Radiation Biology , Fourth Military Medical University , Xi'an , P. R. China
| | - Ya-Hong Ma
- a Department of Radiation Biology , Fourth Military Medical University , Xi'an , P. R. China
| | - Guo-Zhen Guo
- a Department of Radiation Biology , Fourth Military Medical University , Xi'an , P. R. China
| | - Gui-Rong Ding
- a Department of Radiation Biology , Fourth Military Medical University , Xi'an , P. R. China
| |
Collapse
|
18
|
Yu Q, Huang J, Hu J, Zhu H. Advance in spinal cord ischemia reperfusion injury: Blood-spinal cord barrier and remote ischemic preconditioning. Life Sci 2016; 154:34-8. [PMID: 27060223 DOI: 10.1016/j.lfs.2016.03.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
The blood-spinal cord barrier (BSCB) is the physiological and metabolic substance diffusion barrier between blood circulation and spinal cord tissues. This barrier plays a vital role in maintaining the microenvironment stability of the spinal cord. When the spinal cord is subjected to ischemia/reperfusion (I/R) injury, the structure and function of the BSCB is disrupted, further destroying the spinal cord homeostasis and ultimately leading to neurological deficit. Remote ischemic preconditioning (RIPC) is an approach in which interspersed cycles of preconditioning ischemia is followed by reperfusion to tissues/organs to protect the distant target tissues/organs against subsequent lethal ischemic injuries. RIPC is an innovation of the treatment strategies that protect the organ from I/R injury. In this study, we review the morphological structure and function of the BSCB, the injury mechanism of BSCB resulting from spinal cord I/R, and the effect of RIPC on it.
Collapse
Affiliation(s)
- Qijing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jinxiu Huang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei, China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei, China.
| | - Hongfei Zhu
- Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| |
Collapse
|
19
|
Ibey BL, Roth CC, Ledwig PB, Payne JA, Amato AL, Dalzell DR, Bernhard JA, Doroski MW, Mylacraine KS, Seaman RL, Nelson GS, Woods CW. Cellular effects of acute exposure to high peak power microwave systems: Morphology and toxicology. Bioelectromagnetics 2016; 37:141-151. [PMID: 26991689 DOI: 10.1002/bem.21962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022]
Abstract
Electric fields produced by advanced pulsed microwave transmitter technology now readily exceed the Institute of Electrical and Electronic Engineers (IEEE) C.95.1 peak E-field limit of 100 kV/m, highlighting a need for scientific validation of such a specific limit. Toward this goal, we exposed Jurkat Clone E-6 human lymphocyte preparations to 20 high peak power microwave (HPPM) pulses (120 ns duration) with a mean peak amplitude of 2.3 MV/m and standard deviation of 0.1 with the electric field at cells predicted to range from 0.46 to 2.7 MV/m, well in excess of current standard limit. We observed that membrane integrity and cell morphology remained unchanged 4 h after exposure and cell survival 24 h after exposure was not statistically different from sham exposure or control samples. Using flow cytometry to analyze membrane disruption and morphological changes per exposed cell, no changes were observed in HPPM-exposed samples. Current IEEE C95.1-2005 standards for pulsed radiofrequency exposure limits peak electric field to 100 kV/m for pulses shorter than 100 ms [IEEE (1995) PC95.1-Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz, Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA]. This may impose large exclusion zones that limit HPPM technology use. In this study, we offer evidence that maximum permissible exposure of 100 kV/m for peak electric field may be unnecessarily restrictive for HPPM devices. Bioelectromagnetics. 37:141-151, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bennett L Ibey
- Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Caleb C Roth
- General Dynamics Information Technology, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Patrick B Ledwig
- General Dynamics Information Technology, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Jason A Payne
- Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Alayna L Amato
- Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Danielle R Dalzell
- Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Joshua A Bernhard
- Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Michael W Doroski
- Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Kevin S Mylacraine
- General Dynamics Information Technology, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Ronald L Seaman
- General Dynamics Information Technology, Joint Base San Antonio, Fort Sam Houston, Texas
| | - Gregory S Nelson
- Directed Energy Division, High Power Microwave Applications Branch, Kirtland Air Force Base, New Mexico
| | - Clifford W Woods
- Directed Energy Division, High Power Microwave Applications Branch, Kirtland Air Force Base, New Mexico
| |
Collapse
|
20
|
Electromagnetic pulse activated brain microglia via the p38 MAPK pathway. Neurotoxicology 2016; 52:144-9. [DOI: 10.1016/j.neuro.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022]
|
21
|
Wang LF, Li X, Gao YB, Wang SM, Zhao L, Dong J, Yao BW, Xu XP, Chang GM, Zhou HM, Hu XJ, Peng RY. Activation of VEGF/Flk-1-ERK Pathway Induced Blood–Brain Barrier Injury After Microwave Exposure. Mol Neurobiol 2014; 52:478-91. [DOI: 10.1007/s12035-014-8848-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
|
22
|
Li C, Yang L, Li CH, Xie Y, Wu T. Dosimetric variability of the rats' exposure to electromagnetic pulses. Electromagn Biol Med 2014; 34:334-43. [PMID: 24941230 DOI: 10.3109/15368378.2014.925472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rats' exposure to electromagnetic pulses (EMPs) has been conducted using an EMP simulator for various biological endpoints. In contrast, information about the EMP energy distribution and its variability in rats is lacking. EMPs are signals with spectrum concentrating in several hundred MHz, leading to EM absorption patterns different from those obtained at high frequencies. In this study, two anatomical models of rats (a male and a female) were reconstructed from magnetic resonance imaging. The models had the same posture as in the exposure experiments. Realistic EMPs were acquired directly from the EMP simulator and applied to the simulations. The interaction of the EMP with the rat was analyzed through the finite-difference time-domain method. Two approaches were utilized to calculate the energy absorption at the tissue and whole-body levels. Dosimetric variability due to incident directions, polarizations, exposure signals simplification, and rat separation was evaluated in this study. The variability result differed substantially from that of the non-constrained rats' exposure experiments. The result sensitivity to frequency and amplitude was discussed as well. The work can be used as a basis to determine the uncertainty and to formulate a standard experimental protocol for this type of experiment.
Collapse
Affiliation(s)
- Congsheng Li
- a College of Computer Science and Technology, Beijing University of Science and Technology , Beijing , China .,b China Academy of Telecommunication Research of Ministry of Industry and Information Technology , Beijing , China , and
| | - Lei Yang
- b China Academy of Telecommunication Research of Ministry of Industry and Information Technology , Beijing , China , and
| | - Chung-huan Li
- c Schmid & Partner Eng. AG (SPEAG) , Zürich , Switzerland
| | - Yi Xie
- b China Academy of Telecommunication Research of Ministry of Industry and Information Technology , Beijing , China , and
| | - Tongning Wu
- b China Academy of Telecommunication Research of Ministry of Industry and Information Technology , Beijing , China , and
| |
Collapse
|
23
|
Li XQ, Wang J, Fang B, Tan WF, Ma H. Intrathecal antagonism of microglial TLR4 reduces inflammatory damage to blood-spinal cord barrier following ischemia/reperfusion injury in rats. Mol Brain 2014; 7:28. [PMID: 24751148 PMCID: PMC4022154 DOI: 10.1186/1756-6606-7-28] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inflammatory reaction in blood-spinal cord barrier (BSCB) plays a crucial role in ischemia/reperfusion (I/R) injury. It has been shown that microglia could be activated through Toll-like receptors (TLRs). Therefore, we hypothesize that TLR4 is involved in the microglial activation and BSCB disruption after I/R. RESULTS To verify our hypothesis, we analyzed the behavioral data, changes of BSCB permeability, as well as expressions of microglial marker Iba-1 and TLR4 in spinal cord I/R model induced by 14 min aortic occlusion. Double immunostaining reveals that after I/R, Iba-1 immunoreactivity increased gradually 12 h after reperfusion and maintained at a such level throughout 36 h. Such increasing pattern of Iba-1 expression is consistent with the increases in Evan's Blue (EB) extravasation, spinal water content and mechanical allodynia demonstrated by lowed withdrawal threshold to Von Frey filaments. Moreover, double immunostaining suggested that TLR4 was highly expressed in microglia. Intrathecal infusion of minocycline and TAK-242 (TLR4 inhibitor) treatment attenuated I/R-induced allodynia and BSCB leakage. In contrast, LPS induced TLR4 expression aggregated above-mentioned injuries. Furthermore, the nuclear factor-kappa B (NF-κB) activity has a similar profile as TLR4 activity. It is consisted with the results of NF-κB mRNA and protein expression changes and activation of downstream cytokine, IL-1β. Expectedly, intrathecal infusion of pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, showed similar protective effects as minocycline and TAK-242. In addition, our data show that TLR4 closely involved in I/R-induced inflammatory damage induced neuronal apoptosis. Significantly, neutralizing TLR4 function largely reduced neuronal apoptosis determined by NeuN immunoreactivity in ventral gray matter and increased percentage of double-label cells with cleaved caspase3, whereas LPS reversed these effects. Similarly, inhibitions of microglia and NF-κB with minocycline or PDTC treatment accordingly perform the same protective effects on I/R injury. CONCLUSION The results indicate that compromised BSCB caused by I/R injury lead to spinal microglial activation and TLR4, its membrane-bound receptor, up-regulation, which then initiate neuro-inflammation and neuro-apoptosis via NF-κB/ IL-1β pathway. To inhibit the positive feedback loop of TLR4-microglia-NF-κB/ IL-1β pathway by minocycline, TAK-242 (TLR4 inhibitor) and pyrrolidine dithiocarbamate (PDTC, NF-κB inhibitor) may provide new targets for treating I/R injury in clinic.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Jun Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Wen-Fei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
24
|
Neuroprotective effects of sevoflurane against electromagnetic pulse-induced brain injury through inhibition of neuronal oxidative stress and apoptosis. PLoS One 2014; 9:e91019. [PMID: 24614080 PMCID: PMC3948751 DOI: 10.1371/journal.pone.0091019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.
Collapse
|
25
|
Yang MJ, Liu JY, Wang YF, Lang HY, Miao X, Zhang LY, Zeng LH, Guo GZ. Effects of electromagnetic pulse on polydactyly of mouse fetuses. Theriogenology 2013; 80:18-23. [PMID: 23623167 DOI: 10.1016/j.theriogenology.2013.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 12/18/2022]
Abstract
There is an increasing public concern regarding potential health impacts from electromagnetic radiation exposure. Embryonic development is sensitive to the external environment, and limb development is vital for life quality. To determine the effects of electromagnetic pulse (EMP) on polydactyly of mouse fetuses, pregnant mice were sham-exposed or exposed to EMP (400 kV/m with 400 pulses) from Days 7 to 10 of pregnancy (Day 0 = day of detection of vaginal plug). As a positive control, mice were treated with 5-bromodeoxyuridine on Days 9 and 10. On Days 11 or 18, the fetuses were isolated. Compared with the sham-exposed group, the group exposed to EMP had increased rates of polydactyly fetuses (5.1% vs. 0.6%, P < 0.05) and abnormal gene expression (22.2% vs. 2.8%, P < 0.05). Ectopic expression of Fgf4 was detected in the apical ectodermal ridge, whereas overexpression and ectopic expression of Shh were detected in the zone of polarizing activity of limbs in the EMP-exposed group and in the positive control group. However, expression of Gli3 decreased in mesenchyme cells in those two groups. The percentages of programmed cell death of limbs in EMP-exposed and positive control group were decreased (3.57% and 2.94%, respectively, P < 0.05, compared with 7.76% in sham-exposed group). In conclusion, polydactyly induced by EMP was accompanied by abnormal expression of the above-mentioned genes and decreased percentage of programmed cell death during limb development.
Collapse
Affiliation(s)
- Ming-Juan Yang
- Department of Radiation Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Electromagnetic Pulse Exposure Induces Overexpression of Beta Amyloid Protein in Rats. Arch Med Res 2013; 44:178-84. [DOI: 10.1016/j.arcmed.2013.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/20/2013] [Indexed: 11/18/2022]
|
27
|
Fang B, Wang H, Sun XJ, Li XQ, Ai CY, Tan WF, White PF, Ma H. Intrathecal transplantation of bone marrow stromal cells attenuates blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury in rabbits. J Vasc Surg 2013; 58:1043-52. [PMID: 23478501 DOI: 10.1016/j.jvs.2012.11.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/05/2012] [Accepted: 11/17/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Intrathecal administration of bone marrow stromal cells has been found to produce beneficial effects on ischemia-reperfusion injury to the spinal cord. The blood-spinal cord barrier is critical to maintain spinal cord homeostasis and neurologic function. However, the effects of bone marrow stromal cells on the blood-spinal cord barrier after spinal cord ischemia-reperfusion injury are not well understood. This study investigated the effects and possible mechanisms of bone marrow stromal cells on blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury. METHODS This was a prospective animal study conducted at the Central Laboratory of the First Affiliated Hospital, China Medical University. The study used 81 Japanese white rabbits (weight, 1.8-2.6 kg). Spinal cord ischemia-reperfusion injury was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Two days before the injury was induced, bone marrow stromal cells (1 × 10(8) in 0.2-mL phosphate-buffered saline) were transplanted by intrathecal injection. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histologic examination. The permeability of the blood-spinal cord barrier was examined using Evans blue (EB) and lanthanum nitrate as vascular tracers. The expression and localization of tight junction protein occludin were assessed by Western blot, real-time polymerase chain reaction, and immunofluorescence analysis. Matrix metalloproteinase-9 (MMP-9) and tumor necrosis factor-α (TNF-α) expression were also measured. RESULTS Intrathecal transplantation of bone marrow stromal cells minimized the neuromotor dysfunction and histopathologic deficits (P < .01) and attenuated EB extravasation at 4 hours (5.41 ± 0.40 vs 7.94 ± 0.36 μg/g; P < .01) and 24 hours (9.03 ± 0.44 vs 15.77 ± 0.89 μg/g; P < .01) after spinal cord ischemia-reperfusion injury. In addition, bone marrow stromal cells treatment suppressed spinal cord ischemia-reperfusion injury-induced decreases in occludin (P < .01). Finally, bone marrow stromal cells reduced the excessive expression of MMP-9 and TNF-α (P < .01). CONCLUSIONS Pre-emptive intrathecal transplantation of bone marrow stromal cells stabilized the blood-spinal cord barrier integrity after spinal cord ischemia-reperfusion injury in a rabbit model of transient aortic occlusion. This beneficial effect was partly mediated by inhibition of MMP-9 and TNF-α and represents a potential therapeutic approach to mitigating spinal cord injury after aortic occlusion. CLINICAL RELEVANCE Clinical thoracoabdominal aorta surgery may trigger spinal cord ischemia-reperfusion injury, resulting in paraplegia as well as bladder, bowel, and sexual dysfunction. Transplantation of bone marrow stromal cells has attracted increasing attention in the field of nervous system protection, but its mechanisms have not been elucidated completely. The blood-spinal cord barrier plays a crucial role to maintain normal spinal cord function. This study suggested that intrathecal transplantation of bone marrow stromal cells stabilized blood-spinal cord barrier integrity through inhibiting the upregulation of matrix metalloproteinase-9 and tumor necrosis factor-a and ameliorated spinal cord ischemia-reperfusion injury. This may provide a novel train of thought to enhance the protective effects of bone marrow stromal cells on spinal cord injury.
Collapse
Affiliation(s)
- Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther 2012; 18:609-15. [PMID: 22686334 DOI: 10.1111/j.1755-5949.2012.00340.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Blood-brain barrier (BBB) is a dynamic interference that regulates the nutrition and toxic substance in and out of the central nervous system (CNS), and plays a crucial role in maintaining a stable circumstance of the CNS. Tight junctions among adjacent cells form the basic structure of BBB to limiting paracellular permeability. In the present review, the constituents of tight junction proteins are depicted in detail, together with the regulation of tight junction under stimulation and in pathological conditions. Tight junction modulators are also discussed.
Collapse
Affiliation(s)
- Wei-Ye Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Chen YB, Li J, Liu JY, Zeng LH, Wan Y, Li YR, Ren D, Guo GZ. Effect of Electromagnetic Pulses (EMP) on associative learning in mice and a preliminary study of mechanism. Int J Radiat Biol 2011; 87:1147-54. [PMID: 21929296 DOI: 10.3109/09553002.2011.584937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the effects of electromagnetic pulses (EMP) on associative learning in mice and test a preliminary mechanism for these effects. MATERIALS AND METHODS A tapered parallel plate gigahertz transverse electromagnetic (GTEM) cell with a flared rectangular coaxial transmission line was used to expose male BALB/c mice to EMP (peak-intensity 400 kV/m, rise-time 10 ns, pulse-width 350 ns, 0.5 Hz and total 200 pulses). Concurrent sham-exposed mice were used as a control. Associative learning, oxidative stress in the brain, serum chemistry and the protective action of tocopherol monoglucoside (TMG) in mice were measured, respectively. RESULTS (1) Twelve hour and 1 day post EMP exposure associative learning was reduced significantly compared with sham control (p<0.05) but recovered at 2 d post EMP exposure. (2) Compared with the sham control, lipid peroxidation of brain tissue and chemiluminescence (CL) intensity increased significantly (p<0.05), while the activity of the antioxidant enzymes Superoxide Dismutase [SOD], Glutathione [GSH], Glutathione Peroxidase [GSH-Px], Catalase [CAT]) decreased significantly (p<0.05) at 3 h, 6 h, 12 h and 1 d post EMP exposure. All these parameters recovered at 2 d post EMP exposure. (3) No significant differences between the sham control group and EMP exposed group were observed in serum cholesterol and triglycerides. (4) Pretreatment of mice with TMG showed protective effects to EMP exposure. CONCLUSIONS EMP exposure significantly decreased associative learning in mice and TMG acted as an effective protective agent from EMP exposure. This mechanism could involve an increase of oxidative stress in brain by EMP exposure.
Collapse
Affiliation(s)
- Yong Bin Chen
- Fourth Military Medical University, Department of Radiation Medicine, Xi'an, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
LI G, PANG XF. Effects of Electromagnetic Field Exposure on Electromagnetic Properties of Biological Tissues*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Qiu LB, Zhou Y, Wang Q, Yang LL, Liu HQ, Xu SL, Qi YH, Ding GR, Guo GZ. Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood–brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats. Toxicology 2011; 285:31-8. [DOI: 10.1016/j.tox.2011.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|
32
|
Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. ACTA ACUST UNITED AC 2010; 64:328-63. [PMID: 20685221 DOI: 10.1016/j.brainresrev.2010.05.003] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic and complex interface between blood and the central nervous system that strictly controls the exchanges between the blood and brain compartments, therefore playing a key role in brain homeostasis and providing protection against many toxic compounds and pathogens. In this review, the unique properties of brain microvascular endothelial cells and intercellular junctions are examined. The specific interactions between endothelial cells and basement membrane as well as neighboring perivascular pericytes, glial cells and neurons, which altogether constitute the neurovascular unit and play an essential role in both health and function of the central nervous system, are also explored. Some relevant pathways across the endothelium, as well as mechanisms involved in the regulation of BBB permeability, and the emerging role of the BBB as a signaling interface are addressed as well. Furthermore, we summarize some of the experimental approaches that can be used to monitor BBB properties and function in a variety of conditions and have allowed recent advances in BBB knowledge. Elucidation of the molecular anatomy and dynamics of the BBB is an essential step for the development of new strategies directed to maintain or restore BBB integrity and barrier function and ultimately preserve the delicate interstitial brain environment.
Collapse
Affiliation(s)
- Filipa Lourenço Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|