1
|
Braillon A, Bewley S, Blumsohn A, Naudet F. Comment on: "Should Antidepressants be Avoided in Pregnancy?". Drug Saf 2023; 46:615-616. [PMID: 37103644 DOI: 10.1007/s40264-023-01308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Affiliation(s)
| | - Susan Bewley
- Obstetrics and Women's Health, King's College London, London, UK
| | | | - Florian Naudet
- Therapeutics, Adult Psychiatry Department and Clinical Investigation Center (INSERM 1414), University Hospital, Rennes, France
| |
Collapse
|
2
|
Tokariev A, Oberlander VC, Videman M, Vanhatalo S. Cortical Cross-Frequency Coupling Is Affected by in utero Exposure to Antidepressant Medication. Front Neurosci 2022; 16:803708. [PMID: 35310093 PMCID: PMC8927083 DOI: 10.3389/fnins.2022.803708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Up to five percent of human infants are exposed to maternal antidepressant medication by serotonin reuptake inhibitors (SRI) during pregnancy, yet the SRI effects on infants’ early neurodevelopment are not fully understood. Here, we studied how maternal SRI medication affects cortical frequency-specific and cross-frequency interactions estimated, respectively, by phase-phase correlations (PPC) and phase-amplitude coupling (PAC) in electroencephalographic (EEG) recordings. We examined the cortical activity in infants after fetal exposure to SRIs relative to a control group of infants without medical history of any kind. Our findings show that the sleep-related dynamics of PPC networks are selectively affected by in utero SRI exposure, however, those alterations do not correlate to later neurocognitive development as tested by neuropsychological evaluation at two years of age. In turn, phase-amplitude coupling was found to be suppressed in SRI infants across multiple distributed cortical regions and these effects were linked to their neurocognitive outcomes. Our results are compatible with the overall notion that in utero drug exposures may cause subtle, yet measurable changes in the brain structure and function. Our present findings are based on the measures of local and inter-areal neuronal interactions in the cortex which can be readily used across species, as well as between different scales of inspection: from the whole animals to in vitro preparations. Therefore, this work opens a framework to explore the cellular and molecular mechanisms underlying neurodevelopmental SRI effects at all translational levels.
Collapse
Affiliation(s)
- Anton Tokariev
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- *Correspondence: Anton Tokariev,
| | - Victoria C. Oberlander
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Mari Videman
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Pediatric Neurology, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Sampsa Vanhatalo,
| |
Collapse
|
3
|
Sheikh A, Meng X, Liu J, Mikhailova A, Kao JPY, McQuillen PS, Kanold PO. Neonatal Hypoxia-Ischemia Causes Functional Circuit Changes in Subplate Neurons. Cereb Cortex 2020; 29:765-776. [PMID: 29365081 DOI: 10.1093/cercor/bhx358] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 01/16/2023] Open
Abstract
Neonatal hypoxia-ischemia (HI) in the preterm human results in damage to subcortical developing white matter and cognitive impairments. Subplate neurons (SPNs) are among the first-born cortical neurons and are necessary for normal cerebral development. While moderate or severe HI at P1 in rats leads to SPN loss, it is unclear if HI, esp. forms not associated with overt cell loss lead to altered SPN circuits. Thus, we used two HI models with different severities in P1 rats. Cauterization of the common carotid artery (CCA) causes a largely transient and thus milder ischemia (HI-Caut) while CCA ligation causes more severe ischemia (HI-Lig). While HI-Lig caused subplate damage, HI-Caut did not cause overt histological damage on the light microscopic level. We used laser-scanning photostimulation (LSPS) in acute thalamocortical slices of auditory cortex during P5-10 to study the functional connectivity of SPNs. Both HI categories resulted in hyperconnectivity of excitatory and inhibitory circuits to SPNs. Thus, alterations on the circuit level are present in the absence of cell loss. Our results show that SPN circuits are uniquely susceptible to HI. Given the key developmental role of SPNs, our results suggest that altered SPN circuits might underlie the abnormal development of cortical function after HI.
Collapse
Affiliation(s)
- Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Alexandra Mikhailova
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick S McQuillen
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Kott J, Brummelte S. Trick or treat? Evaluating contributing factors and sex-differences for developmental effects of maternal depression and its treatment. Horm Behav 2019; 111:31-45. [PMID: 30658054 DOI: 10.1016/j.yhbeh.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Maternal depression and treatment with selective serotonin reuptake inhibitors (SSRIs), the most common form of pharmaceutical intervention, can both have an impact on infant development. As such, it is difficult for healthcare providers to recommend a course of treatment to expectant mothers suffering from depression, or to women on antidepressant medication prior to pregnancy. This review will discuss the existing research on the developmental impacts of maternal depression and its treatment with SSRIs, with a particular focus on contributing factors that complicate our attempt to disentangle the consequences of maternal depression and its treatment such as the timing or severity of the depression. We will explore avenues for translational animal models to help address the question of "Trick or Treat", i.e.: which is worse for offspring development: exposure to maternal depression, or the SSRI treatment? Further, we will explore sex-dependent outcomes for the offspring in human and animal studies as male and female offspring may react differently to the presence of maternal depression or antidepressant treatment. Without more clinical and preclinical data, it remains difficult for women to make an informed decision regarding their depression treatment before, during, and after their pregnancy.
Collapse
Affiliation(s)
- Jennifer Kott
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
5
|
Kanold PO, Deng R, Meng X. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front Neuroanat 2019; 13:41. [PMID: 31040772 PMCID: PMC6476909 DOI: 10.3389/fnana.2019.00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The thalamocortical circuit is of central importance in relaying information to the cortex. In development, subplate neurons (SPNs) form an integral part of the thalamocortical pathway. These early born cortical neurons are the first neurons to receive thalamic inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs supports the role of SPNs in shaping the formation and plasticity of thalamocortical connections. Recently it has been shown that SPNs also receive inputs from the developing cortical plate and project to the thalamus. The cortical inputs to SPNs in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors are present. Thus, SPNs perform a changing integrative function over development. NMDA-receptor only synapses are crucially influenced by the resting potential and thus insults to the developing brain that causes depolarizations, e.g., hypoxia, can influence the integrative function of SPNs. Since such insults in humans cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on SPNs might provide a crucial link between early injuries and later circuit dysfunction. We thus here review subplate associated circuits, their changing functions, and discuss possible roles in development and disease.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
6
|
Videman M, Tokariev A, Saikkonen H, Stjerna S, Heiskala H, Mantere O, Vanhatalo S. Newborn Brain Function Is Affected by Fetal Exposure to Maternal Serotonin Reuptake Inhibitors. Cereb Cortex 2018; 27:3208-3216. [PMID: 27269962 DOI: 10.1093/cercor/bhw153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent experimental animal studies have shown that fetal exposure to serotonin reuptake inhibitors (SRIs) affects brain development. Modern recording methods and advanced computational analyses of scalp electroencephalography (EEG) have opened a possibility to study if comparable changes are also observed in the human neonatal brain. We recruited mothers using SRI during pregnancy (n = 22) and controls (n = 62). Mood and anxiety of mothers, newborn neurology, and newborn cortical function (EEG) were assessed. The EEG parameters were compared between newborns exposed to drugs versus controls, followed by comparisons of newborn EEG features with maternal psychiatric assessments. Neurological assessment showed subtle abnormalities in the SRI-exposed newborns. The computational EEG analyses disclosed a reduced interhemispheric connectivity, lower cross-frequency integration, as well as reduced frontal activity at low-frequency oscillations. These effects were not related to maternal depression or anxiety. Our results suggest that antenatal serotonergic treatment might change newborn brain function in a manner compatible with the recent experimental studies. The present EEG findings suggest links at the level of neuronal activity between human studies and animal experiments. These links will also enable bidirectional translation in future studies on the neuronal mechanisms and long-term neurodevelopmental effects of early SRI exposure.
Collapse
Affiliation(s)
- Mari Videman
- Division of Pediatric Neurology, Department of Children and Adolescents.,BABA Center, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Anton Tokariev
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital.,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Heini Saikkonen
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Susanna Stjerna
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital
| | - Hannu Heiskala
- Division of Pediatric Neurology, Department of Children and Adolescents
| | - Outi Mantere
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, McGill University, Montréal, Canada.,Bipolar Disorders Clinic, Douglas Mental Health University Institute, Montréal, Canada
| | - Sampsa Vanhatalo
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital
| |
Collapse
|
7
|
Gemmel M, Bögi E, Ragan C, Hazlett M, Dubovicky M, van den Hove DL, Oberlander TF, Charlier TD, Pawluski JL. Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome. Neurosci Biobehav Rev 2018; 85:102-116. [DOI: 10.1016/j.neubiorev.2017.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
|
8
|
Gemmel M, Kokras N, Dalla C, Pawluski JL. Perinatal fluoxetine prevents the effect of pre-gestational maternal stress on 5-HT in the PFC, but maternal stress has enduring effects on mPFC synaptic structure in offspring. Neuropharmacology 2018; 128:168-180. [DOI: 10.1016/j.neuropharm.2017.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/29/2023]
|
9
|
Mao Y, Pedersen LH, Christensen J, Vestergaard M, Zhou W, Olsen J, Sun Y. Prenatal exposure to antidepressants and risk of epilepsy in childhood. Pharmacoepidemiol Drug Saf 2016; 25:1320-1330. [PMID: 27477111 DOI: 10.1002/pds.4072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aimed to estimate the association between prenatal exposure to antidepressants and risk of epilepsy in childhood, taking maternal depression into account. METHODS We conducted a population-based cohort study including all Danish singletons born alive between 1997 and 2008 (n = 734 237). Information on antidepressant medication and diagnosis of depression and epilepsy was obtained from Danish National Registers. The exposed group comprised children of mothers who used antidepressants from 30 days before pregnancy until the date of birth. The reference group comprised children of mothers who used no antidepressants from 6 months before pregnancy to birth. We estimated the hazard ratios (HR) of epilepsy and 95% confidence intervals (CI) using Cox proportional hazard models. RESULTS We identified 12 438 (1.7%) children exposed to antidepressants during pregnancy (including 30 days before pregnancy) and 5829 (0.8%) children diagnosed with epilepsy in the follow-up time (mean: 6.7 years). Children exposed to antidepressants during pregnancy had a 27% higher risk of epilepsy (aHR: 1.27; 95%CI: 1.05-1.54) than children in the reference group. The estimate of this association was 1.71 (95%CI: 1.10-2.66) if their mothers also had a registry-based hospital diagnosis of depression in the 6 months before pregnancy or during pregnancy and 1.14 (95%CI: 0.91-1.43) if their mothers had no registry-based hospital diagnosis of depression. Children of mothers who used antidepressants from 2 to 6 months before pregnancy (but not during pregnancy) had an increased risk of epilepsy (aHR: 1.36; 95%CI: 1.07-1.73). CONCLUSIONS Antidepressant use during pregnancy was associated with a higher risk of epilepsy among children whose mothers had also a registry-based hospital diagnosis of depression during pregnancy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanyan Mao
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China. .,School of Public Health, Fudan University, Shanghai, China. .,Department of Reproductive Epidemiology and Social Medicine, Shanghai Institute of Planned Parenthood Research, Shanghai, China.
| | - Lars Henning Pedersen
- Department of Clinical Medicine, Obstetrics and Gynecology, Aarhus University, Aarhus, Denmark
| | - Jakob Christensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Mogens Vestergaard
- Research Unit for General Practice, Aarhus University, Aarhus, Denmark.,Section for General Medical Practice, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Weijin Zhou
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Department of Reproductive Epidemiology and Social Medicine, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yuelian Sun
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Jha SC, Meltzer-Brody S, Steiner RJ, Cornea E, Woolson S, Ahn M, Verde AR, Hamer RM, Zhu H, Styner M, Gilmore JH, Knickmeyer RC. Antenatal depression, treatment with selective serotonin reuptake inhibitors, and neonatal brain structure: A propensity-matched cohort study. Psychiatry Res 2016; 253:43-53. [PMID: 27254086 PMCID: PMC4930375 DOI: 10.1016/j.pscychresns.2016.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 05/08/2016] [Accepted: 05/22/2016] [Indexed: 11/17/2022]
Abstract
The aim of this propensity-matched cohort study was to evaluate the impact of prenatal SSRI exposure and a history of maternal depression on neonatal brain volumes and white matter microstructure. SSRI-exposed neonates (n=27) were matched to children of mothers with no history of depression or SSRI use (n=54). Additionally, neonates of mothers with a history of depression, but no prenatal SSRI exposure (n=41), were matched to children of mothers with no history of depression or SSRI use (n=82). Structural magnetic resonance imaging and diffusion weighted imaging scans were acquired with a 3T Siemens Allegra scanner. Global tissue volumes were characterized using an automatic, atlas-moderated expectation maximization segmentation tool. Local differences in gray matter volumes were examined using deformation-based morphometry. Quantitative tractography was performed using an adaptation of the UNC-Utah NA-MIC DTI framework. SSRI-exposed neonates exhibited widespread changes in white matter microstructure compared to matched controls. Children exposed to a history of maternal depression but no SSRIs showed no significant differences in brain development compared to matched controls. No significant differences were found in global or regional tissue volumes. Additional research is needed to clarify whether SSRIs directly alter white matter development or whether this relationship is mediated by depressive symptoms during pregnancy.
Collapse
Affiliation(s)
- Shaili C Jha
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samantha Meltzer-Brody
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel J Steiner
- Psychological Sciences, Vanderbilt University, Nasheville, TN 37240, USA
| | - Emil Cornea
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA
| | - Audrey R Verde
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert M Hamer
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Knickmeyer
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Glover ME, Clinton SM. Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research. Int J Dev Neurosci 2016; 51:50-72. [PMID: 27165448 PMCID: PMC4930157 DOI: 10.1016/j.ijdevneu.2016.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been a mainstay pharmacological treatment for women experiencing depression during pregnancy and postpartum for the past 25 years. SSRIs act via blockade of the presynaptic serotonin transporter and result in a transient increase in synaptic serotonin. Long-lasting changes in cellular function such as serotonergic transmission, neurogenesis, and epigenetics, are thought to underlie the therapeutic benefits of SSRIs. In recent years, though, growing evidence in clinical and preclinical settings indicate that offspring exposed to SSRIs in utero or as neonates exhibit long-lasting behavioral adaptions. Clinically, children exposed to SSRIs in early life exhibit increased internalizing behavior reduced social behavior, and increased risk for depression in adolescence. Similarly, rodents exposed to SSRIs perinatally exhibit increased traits of anxiety- or depression-like behavior. Furthermore, certain individuals appear to be more susceptible to early life SSRI exposure than others, suggesting that perinatal SSRI exposure may pose greater risks for negative outcome within certain populations. Although SSRIs trigger a number of intracellular processes that likely contribute to their therapeutic effects, early life antidepressant exposure during critical neurodevelopmental periods may elicit lasting negative effects in offspring. In this review, we cover the basic development and structure of the serotonin system, how the system is affected by early life SSRI exposure, and the behavioral outcomes of perinatal SSRI exposure in both clinical and preclinical settings. We review recent evidence indicating that perinatal SSRI exposure perturbs the developing limbic system, including altered serotonergic transmission, neurogenesis, and epigenetic processes in the hippocampus, which may contribute to behavioral domains (e.g., sociability, cognition, anxiety, and behavioral despair) that are affected by perinatal SSRI treatment. Identifying the molecular mechanisms that underlie the deleterious behavioral effects of perinatal SSRI exposure may highlight biological mechanisms in the etiology of mood disorders. Moreover, because recent studies suggest that certain individuals may be more susceptible to the negative consequences of early life SSRI exposure than others, understanding mechanisms that drive such susceptibility could lead to individualized treatment strategies for depressed women who are or plan to become pregnant.
Collapse
Affiliation(s)
| | - Sarah M Clinton
- Department of Psychiatry, University of Alabama-Birmingham, USA.
| |
Collapse
|
12
|
Brummelte S, Mc Glanaghy E, Bonnin A, Oberlander TF. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience 2016; 342:212-231. [PMID: 26905950 DOI: 10.1016/j.neuroscience.2016.02.037] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as 'plasticity' rather than 'risk' factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk.
Collapse
Affiliation(s)
- S Brummelte
- Department of Psychology, Wayne State University, 5057 Woodward Avenue, Detroit, MI 48202, USA.
| | - E Mc Glanaghy
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - A Bonnin
- Zilkha Neurogenetic Institute and Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - T F Oberlander
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
da Silva AI, Braz GRF, Pedroza AA, Nascimento L, Freitas CM, Ferreira DJS, Manhães de Castro R, Lagranha CJ. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression. J Bioenerg Biomembr 2015; 47:309-18. [DOI: 10.1007/s10863-015-9617-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022]
|
14
|
Ko MC, Lee LJH, Li Y, Lee LJ. Long-term consequences of neonatal fluoxetine exposure in adult rats. Dev Neurobiol 2014; 74:1038-51. [PMID: 24771683 DOI: 10.1002/dneu.22185] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023]
Abstract
Serotonin (5-HT) plays important roles during neural development. Administration of selective serotonin reuptake inhibitor (SSRI)-type medication during gestation may influence the maturation of the fetal brain and subsequent brain functions. To mimic the condition of late-gestation SSRI exposure, we administered fluoxetine (FLX) in neonatal rats during the first postnatal week, which roughly corresponds to the third trimester period of human gestation. FLX-exposed adult male rats exhibited reduced locomotor activity and depression-like behaviors. Furthermore, sensorimotor gating capacity was also impaired. Interestingly, increased social interaction was noticed in FLX-exposed rats. When the levels of 5-HT and tryptophan hydroxylase were examined, no significant changes were found in FLX rats compared to control (CON) rats. The behavioral phenotypes of FLX rats suggested malfunction of the limbic system. Dendritic architectures of neurons in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) were examined. Layer II/III mPFC pyramidal neurons in FLX rats had exuberant dendritic branches with elongated terminal segments compared to those in CON rats. In BLA pyramidal neurons, the dendritic profiles were comparable between the two groups. However, in FLX rats, the density of dendritic spines was reduced in both mPFC and BLA. Together, our results demonstrated the long-lasting effects of early FLX treatment on emotional and social behaviors in adult rats in which impaired neuronal structure in the limbic system was also noticed. The risk of taking SSRI-type antidepressants during pregnancy should be considered.
Collapse
Affiliation(s)
- Meng-Ching Ko
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
15
|
Liao CC, Lee LJ. Presynaptic 5-HT1B receptor-mediated synaptic suppression to the subplate neurons in the somatosensory cortex of neonatal rats. Neuropharmacology 2014; 77:81-9. [DOI: 10.1016/j.neuropharm.2013.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022]
|
16
|
Weikum WM, Brain U, Chau CMY, Grunau RE, Boyce WT, Diamond A, Oberlander TF. Prenatal serotonin reuptake inhibitor (SRI) antidepressant exposure and serotonin transporter promoter genotype (SLC6A4) influence executive functions at 6 years of age. Front Cell Neurosci 2013; 7:180. [PMID: 24130516 PMCID: PMC3795328 DOI: 10.3389/fncel.2013.00180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022] Open
Abstract
Prenatal exposure to serotonin reuptake inhibitor (SRI) antidepressants and maternal depression may affect prefrontal cognitive skills (executive functions; EFs) including self-control, working memory and cognitive flexibility. We examined long-term effects of prenatal SRI exposure on EFs to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4 (a gene that codes for the serotonin transporter [5-HTT] central to the regulation of synaptic serotonin levels and behavior). Children who were exposed to SRIs prenatally (SRI-exposed N = 26) and non-exposed (N = 38) were studied at age 6 years (M = 6.3; SD = 0.5) using the Hearts & Flowers task (H&F) to assess EFs. Maternal mood was measured during pregnancy (3rd trimester) and when the child was age 6 years (Hamilton Depression Scale). Parent reports of child behavior were also obtained (MacArthur Health & Behavior Questionnaire). Parents of prenatally SRI-exposed children reported fewer child externalizing and inattentive (ADHD) behaviors. Generalized estimate equation modeling showed a significant 3-way interaction between prenatal SRI exposure, SLC6A4 variant, and maternal mood at the 6-year time-point on H&F accuracy. For prenatally SRI-exposed children, regardless of maternal mood, the H&F accuracy of children with reduced 5HTT expression (a short [S] allele) remained stable. Even with increasing maternal depressive symptoms (though all below clinical threshold), EFs of children with at least one short allele were comparable to children with the same genotype whose mothers reported few if any depressive symptoms—in this sense they showed resilience. Children with two long (L) alleles were more sensitive to context. When their mothers had few depressive symptoms, LL children showed extremely good EF performance—better than any other group. When their mothers reported more depressive symptoms, LL children's EF performance was worse than that of any other group. In the face of a mother with a more depressed mood, EFs were best preserved in children prenatally exposed to SRIs and with at least one short SLC6A4 allele. Yet, prenatally-exposed LL children hold out promise of possibly superior EF if their mother's mood remains euthymic or improves.
Collapse
Affiliation(s)
- Whitney M Weikum
- Pediatrics, Child and Family Research Institute, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C. Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res 2013; 252:1-9. [PMID: 23714074 DOI: 10.1016/j.bbr.2013.05.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
Depression is strongly associated with the circadian system, disruption of the circadian system leads to increased propensity to disease and to mood disorders including depression. The present study explored in rats the effects of circadian disruption by constant light on behavioral and hormonal indicators of a depressive-like condition and on the biological clock, the suprachiasmatic nucleus (SCN). Exposure to constant light for 8 weeks resulted in loss of circadian patterns of spontaneous general activity, melatonin and corticosterone. Moreover these rats exhibited anhedonia in a sucrose consumption test, and increased grooming in the open-field test, which reflects an anxiety-like condition. In the SCN decreased cellular activation was observed by c-Fos immunohistochemistry. In rats exposed to constant darkness, circadian behavioral and hormonal patterns remained conserved, however mild depressive-like indicators were observed in the anhedonia test and mild anxiety-like behaviors were observed in the open field test. Data indicate that chronic conditions of LL or DD are both disruptive for the activity of the SCN leading to depression- and anxiety-like behavior. Present results point out the main role played by the biological clock and the risk of altered photoperiods on affective behavior.
Collapse
Affiliation(s)
- Araceli Tapia-Osorio
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México 04510, Distrito Federal, México, Mexico
| | | | | | | |
Collapse
|
18
|
Juan LW, Liao CC, Lai WS, Chang CY, Pei JC, Wong WR, Liu CM, Hwu HG, Lee LJ. Phenotypic characterization of C57BL/6J mice carrying the Disc1 gene from the 129S6/SvEv strain. Brain Struct Funct 2013; 219:1417-31. [PMID: 23689501 DOI: 10.1007/s00429-013-0577-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/10/2013] [Indexed: 02/07/2023]
Abstract
Disruption of disrupted-in-schizophrenia 1 (DISC1), a candidate susceptibility gene for schizophrenia, was first identified in a large Scottish family in which many members suffered from various psychiatric disorders, including schizophrenia. To model the Scottish DISC1 truncation, we established a Disc1 mutant mouse line in which the 129S6/SvEv 25-bp deletion variant was transferred into the C57BL/6J strain by backcrossing. A battery of behavioral tasks was conducted to evaluate the basic behaviors and cognitive function of these mice. In heterozygote and homozygote Disc1 mutant (Het and Homo) mice, behavioral impairments were noted in working memory test which is thought to be mediated by the function of the medial prefrontal cortex (mPFC). The properties of mPFC neurons were characterized in both morphological and physiological aspects. The dendritic diameters were decreased in layer II/III mPFC pyramidal neurons of Het and Homo mice, whereas a significant reduction in spine density was observed in Homo mice. Neuronal excitability was declined in layer II/III mPFC pyramidal neurons of Het and Homo mice, yet increased transmitter release was identified in Homo mice. Thus, the structural and functional alterations of the mPFC in Het and Homo mice might account for their cognitive impairment. Since most of the gene knockout mice are generated from 129 substrain-derived embryonic stem cells, potential Disc1 deficiency should be considered.
Collapse
Affiliation(s)
- Liang-Wen Juan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Ren-Ai Rd, Section 1, Taipei, 100, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Licznerski P, Duman RS. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 2012; 251:33-50. [PMID: 23036622 DOI: 10.1016/j.neuroscience.2012.09.057] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 01/22/2023]
Abstract
Dendritic spines provide a compartment for assembly and functional organization of synaptic machinery that plays a fundamental role in neuronal communication and neuroplasticity. Studies in humans as well as in animal models have demonstrated abnormal spine architecture in several psychiatric disorders, including depression and other stress-related illnesses. The negative impact of stress on the density and organization of spines is thought to contribute to the behavioral deficits caused by stress exposure. Moreover, there is now evidence that medication-induced recovery involves changes in synaptic plasticity and dendrite morphology, including increased expression of pre- and postsynaptic plasticity-related proteins, as well as the density and function of axo-spinous synapses. Here we review the evidence from brain imaging and postmortem studies demonstrating that depression is accompanied by structural and functional alterations of cortical and limbic brain regions, including the prefrontal cortex, hippocampus and amygdala. In addition, we present more direct evidence from basic research studies that exposure to stress alters spine morphology, function and plasticity and that antidepressants, particularly new rapid acting agents, reverse these effects. Elucidation of the signaling pathways and molecular mechanisms that control spine synapse assembly and plasticity will contribute to a better understanding of the pathophysiology of depression and development of novel, more effective therapeutic agents.
Collapse
Affiliation(s)
- P Licznerski
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06508, United States
| | | |
Collapse
|
20
|
Hanley GE, Oberlander TF. Neurodevelopmental outcomes following prenatal exposure to serotonin reuptake inhibitor antidepressants: A “social teratogen” or moderator of developmental risk? ACTA ACUST UNITED AC 2012; 94:651-9. [DOI: 10.1002/bdra.23032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/28/2012] [Accepted: 04/19/2012] [Indexed: 11/10/2022]
|