1
|
Djordjevic S, Itzykson R, Hague F, Lebon D, Legrand J, Ouled‐Haddou H, Jedraszak G, Harbonnier J, Collet L, Paubelle E, Marolleau J, Garçon L, Boyer T. STIM2 is involved in the regulation of apoptosis and the cell cycle in normal and malignant monocytic cells. Mol Oncol 2024; 18:1571-1592. [PMID: 38234211 PMCID: PMC11161727 DOI: 10.1002/1878-0261.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Calcium is a ubiquitous messenger that regulates a wide range of cellular functions, but its involvement in the pathophysiology of acute myeloid leukemia (AML) is not widely investigated. Here, we identified, from an analysis of The Cancer Genome Atlas and genotype-tissue expression databases, stromal interaction molecule 2 (STIM2) as being highly expressed in AML with monocytic differentiation and negatively correlated with overall survival. This was confirmed on a validation cohort of 407 AML patients. We then investigated the role of STIM2 in cell proliferation, differentiation, and survival in two leukemic cell lines with monocytic potential and in normal hematopoietic stem cells. STIM2 expression increased at the RNA and protein levels upon monocyte differentiation. Phenotypically, STIM2 knockdown drastically inhibited cell proliferation and induced genomic stress with DNA double-strand breaks, as shown by increased levels of phosphorylate histone H2AXγ (p-H2AXγ), followed by activation of the cellular tumor antigen p53 pathway, decreased expression of cell cycle regulators such as cyclin-dependent kinase 1 (CDK1)-cyclin B1 and M-phase inducer phosphatase 3 (CDC25c), and a decreased apoptosis threshold with a low antiapoptotic/proapoptotic protein ratio. Our study reports STIM2 as a new actor regulating genomic stability and p53 response in terms of cell cycle and apoptosis of human normal and malignant monocytic cells.
Collapse
Affiliation(s)
| | - Raphaël Itzykson
- Département Hématologie et ImmunologieHôpital Saint‐Louis, Assistance Publique‐Hôpitaux de ParisFrance
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRSUniversité Paris CitéFrance
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire UR4667Université Picardie Jules VerneAmiensFrance
| | - Delphine Lebon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Clinique et de Thérapie CellulaireCHU Amiens‐PicardieFrance
| | - Julien Legrand
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | - Guillaume Jedraszak
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Laboratoire de Génétique ConstitutionnelleCHU Amiens‐PicardieFrance
| | | | - Louison Collet
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Etienne Paubelle
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Clinique et de Thérapie CellulaireCHU Amiens‐PicardieFrance
| | - Jean‐Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Clinique et de Thérapie CellulaireCHU Amiens‐PicardieFrance
| | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieFrance
| | - Thomas Boyer
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieFrance
| |
Collapse
|
2
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
3
|
Batista-Silva H, Dambrós BF, de Moura KRS, Elie N, Delalande C, Van Der Kraak G, Silva FRMB. Calcium influx and spermatogenesis in the testis and liver enzyme activities in the zebrafish are rapidly modulated by the calcium content of the water. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111227. [PMID: 35489609 DOI: 10.1016/j.cbpa.2022.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
This study investigated the effects of varying environmental Ca2+ concentrations on the influx of Ca2+ to the testis, testicular morphology, and liver enzymes in the zebrafish. Adult zebrafish (Danio rerio) were held in water containing low (0.02 mM), control (0. 7 mM) or high (2 mM) Ca2+ concentrations for 12 h. Testes were then incubated in vitro with 0.1 μCi/mL 45Ca2+ to measure Ca2+ influx at 30 and 60 min and qualitative and quantitative testicular histological analyses were conducted. In addition, activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT), enzymes that indicate tissue damage, were evaluated in the liver. The testes from zebrafish exposed in vivo to low (0.02 mM) and high (2 mM) Ca2+ content water had a higher Ca2+ influx than the control group after 30 min of incubation, and at 60 min (high Ca2+ group only). There were morphological changes in the testes from the low and high Ca2+ groups including spermatozoa distributed in dense agglomerates and apoptotic cells. Furthermore, zebrafish exposed to high Ca2+ containing water had an increased density of haploid cells (spermatids and spermatozoa). In addition, both low and high Ca2+ water affected liver function by increasing ALT and GGT activities. Collectively, these studies show that alterations in calcium homeostasis in the testis, stimulation of the spermatogenic wave and hepatic injury were rapid responses to changes in the concentration of Ca2+ in the water.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | - Nicolas Elie
- Normandie Univ, UNICAEN, SF ICORE, CMABio3, 14000 Caen, Normandie, France
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
4
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
5
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
6
|
Melatonin induces mitochondrial apoptosis in osteoblasts by regulating the STIM1/cytosolic calcium elevation/ERK pathway. Life Sci 2020; 248:117455. [PMID: 32088216 DOI: 10.1016/j.lfs.2020.117455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
AIMS Idiopathic scoliosis is a common deformity of the spine that has an especially high incidence rate in adolescents. Some studies have demonstrated a close relationship between idiopathic scoliosis and melatonin deficiency. Our team's previous research showed that melatonin can inhibit the proliferation of osteoblasts, but the mechanism remains unclear. This study aimed to determine the mechanism by which melatonin inhibits the proliferation of osteoblasts. MAIN METHODS Cell viability experiment, DNA fragment detection and alkaline phosphatase (ALP) activity assays were performed to determine the effects of melatonin on the proliferation, apoptosis and differentiation of osteoblasts. We used immunofluorescence to detect the expression of STIM1 in melatonin-treated osteoblasts. STIM1 interference was achieved using a specific siRNA, and a TRPC inhibitor was used to block the influx of Ca2+. The mRNA expression was determined by RT-qPCR, and protein levels were measured by Western blot. KEY FINDINGS In this study, we found that melatonin inhibited the proliferation, differentiation and apoptosis of osteoblasts in a concentration-dependent manner. Additional studies showed that melatonin elevated cytosolic calcium levels by upregulation of STIM1, leading to osteoblast apoptosis via the mitochondrial pathway. Finally, we demonstrated that the STIM1-mediated increase in cytosolic calcium levels induced apoptosis through the ERK pathway. SIGNIFICANCE Melatonin induces mitochondrial apoptosis in osteoblasts by regulating the STIM1/cytosolic calcium elevation/ERK pathway. These basic findings provide a basis for further clinical studies on melatonin as a drug therapeutic for idiopathic scoliosis.
Collapse
|
7
|
Liang Q, Zhang Y, Huang M, Xiao Y, Xiao F. Role of mitochondrial damage in Cr(VI)‑induced endoplasmic reticulum stress in L‑02 hepatocytes. Mol Med Rep 2018; 19:1256-1265. [PMID: 30535451 DOI: 10.3892/mmr.2018.9704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Although it is well reported that mitochondrial damage and endoplasmic reticulum (ER) stress (ERS) are involved in heavy metal‑induced cytotoxicity, the role of mitochondrial damage in hexavalent chromium [Cr(VI)]‑induced ERS and the correlation between the two have not been described and remain to be elucidated. The present study evaluated the ability of Cr(VI) to induce ERS in L‑02 hepatocytes, and subsequently examined the role of reactive oxygen species (ROS)‑mediated mitochondrial damage in Cr(VI)‑induced ERS. The findings demonstrated that Cr(VI) induced ERS, which was characterized by the upregulation of ERS‑associated genes and the substantial release of Ca2+ from the ER. The Cr(VI)‑induced mitochondrial production of ROS, by disturbing mitochondrial respiratory chain complexes I and II, may damage mitochondria directly by inducing mitochondrial permeability transition pore opening and mitochondrial membrane potential collapse. The results additionally demonstrated that Cr(VI) induced Ca2+ release from the ER through ROS/caveolin‑1/protein kinase B/inositol 1,4,5‑trisphosphate receptor signaling. The application of the ROS scavenger N‑acetyl‑cysteine confirmed the role of ROS in Cr(VI)‑mediated mitochondrial damage, ERS and apoptotic cell death. The data obtained demonstrated the role of mitochondrial damage in Cr(VI)‑induced ERS and provide novel insight into the elucidation of Cr(VI)‑induced cytotoxicity.
Collapse
Affiliation(s)
- Qi Liang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yujing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, P.R. China
| | - Manfeng Huang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yuanyuan Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, P.R. China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
8
|
Cui R, Li R, Guo X, Jia X, Yan M. RNA interference against stromal interacting molecule-1 (STIM1) ameliorates ethanol-induced hepatotoxicity. Chem Biol Interact 2018; 289:47-56. [PMID: 29704510 DOI: 10.1016/j.cbi.2018.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Previously we have demonstrated that stromal interacting molecule-1 (STIM1) was involved in ethanol induced liver injury. However, the exact pathogenic mechanism of STIM1 in alcoholic liver disease (ALD) is still unknown. We constructed plasmid vectors encoding short-hairpin RNA against STIM1 to investigate its role in ALD in the rat liver cell line BRL and in Sprague-Dawley rats. The results showed that STIM1 targeted sh-RNA (Sh-STIM1) significantly ameliorated ethanol-induced BRL cells injury and liver injury in rats with 20 weeks-induced alcoholic liver disease. Inhibition of STIM1 also reduced intracellular calcium ion concentration, reactive oxygen species (ROS) production, lipid peroxidation, NF-kappa B activation and TNF-α production under ethanol exposure. STIM1 may play an important role in the pathogenesis of alcoholic liver disease. Silencing STIM1 may be effective in preventing alcoholic liver disease.
Collapse
Affiliation(s)
- Ruibing Cui
- Department of Geriatric Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, PR China
| | - Rong Li
- Department of Geriatric Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, PR China
| | - Xiaolan Guo
- Department of Geriatric Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, PR China
| | - Xiaoqing Jia
- Department of Geriatric Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, PR China
| | - Ming Yan
- Department of Geriatric Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, PR China.
| |
Collapse
|
9
|
Liang Q, Zhang Y, Zeng M, Guan L, Xiao Y, Xiao F. The role of IP3R-SOCCs in Cr(vi)-induced cytosolic Ca 2+ overload and apoptosis in L-02 hepatocytes. Toxicol Res (Camb) 2018; 7:521-528. [PMID: 30090602 PMCID: PMC6061864 DOI: 10.1039/c8tx00029h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Heavy metals such as hexavalent chromium [Cr(vi)] could induce Ca2+ overload and subsequently hepatocyte injury, and even apoptotic cell death, but the source of the increased cytosolic-free Ca2+ is still unclear. The present study aimed to explore the role of an inositol 1,4,5-trisphosphate receptor (IP3R) - store-operated calcium channels (SOCCs) in Cr(vi)-induced Ca2+ overload and apoptosis in L-02 hepatocytes. The cytosolic-free Ca2+ concentration was evaluated using the fluorescent Ca2+ indicator Fluo-4/acetoxymethyl ester (Fluo-4/AM), while Ca2+ concentrations in the mitochondria and endoplasmic reticulum (ER) were detected using the related commercial kits. The gene and protein expression levels of IP3R, sensors' stromal interaction molecule 1 (STIM1) and pore-forming proteins' Ca2+ release-activated Ca2+ channel protein 1 (Orai1) were examined using quantitative real-time PCR (qPCR) and western blotting, respectively. Apoptotic cells were examined by flow cytometry. Cr(vi) exposure induced Ca2+ overload and apoptosis in the hepatocytes. By utilizing the IP3R inhibitor 2-aminoethyldiphenylborate (2-APB) and SOCC inhibitor YM-58483, we found that the increase of Cr(vi)-induced cytosolic-free Ca2+ depended on IP3R-mediated Ca2+ release from the ER and SOCC-mediated Ca2+ influx from the extracellular space. We also confirmed that the Cr(vi)-induced extracellular calcium influx (store-operated Ca2+ entry, SOCE) depended on ER Ca2+ release. We reached the conclusion that IP3R-SOCCs played an important role in Cr(vi)-induced Ca2+ overload and apoptotic cell death in the hepatocytes, which will provide experimental evidence for the research on the exogenous chemical-induced Ca2+ overload of hepatocytes, and for the prevention and early treatment of liver damage in a Cr(vi)-exposed population.
Collapse
Affiliation(s)
- Qi Liang
- Department of Radiology , The Third Xiangya Hospital , Central South University , Changsha 410013 , PR China
| | - Yujing Zhang
- Department of Health Toxicology , Xiangya School of Public Health , Central South University , Changsha 410078 , PR China . ; Tel: +86-731-84487130
| | - Ming Zeng
- Department of Health Toxicology , Xiangya School of Public Health , Central South University , Changsha 410078 , PR China . ; Tel: +86-731-84487130
| | - Lan Guan
- Department of Health Toxicology , Xiangya School of Public Health , Central South University , Changsha 410078 , PR China . ; Tel: +86-731-84487130
| | - Yuanyuan Xiao
- Department of Health Toxicology , Xiangya School of Public Health , Central South University , Changsha 410078 , PR China . ; Tel: +86-731-84487130
| | - Fang Xiao
- Department of Health Toxicology , Xiangya School of Public Health , Central South University , Changsha 410078 , PR China . ; Tel: +86-731-84487130
| |
Collapse
|
10
|
Lu T, Zhou D, Gao P, Si L, Xu Q. Resveratrol attenuates high glucose-induced endothelial cell apoptosis via mediation of store-operated calcium entry. Mol Cell Biochem 2017. [DOI: 10.1007/s11010-017-3194-7 10.1007/s11010-017-3194-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Resveratrol attenuates high glucose-induced endothelial cell apoptosis via mediation of store-operated calcium entry. Mol Cell Biochem 2017; 442:73-80. [PMID: 28921392 DOI: 10.1007/s11010-017-3194-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
Abstract
The aim of this study was to evaluate the influence of resveratrol on HG-induced calcium entry in islet microvascular (MS-1) endothelial cells. MS-1 cells were pretreated with resveratrol or 2-APB (an inhibitor of store-operated calcium entry) and then incubated with high glucose. Cell viability was determined using the cell counting kit-8 method. Reactive oxygen species, endothelial apoptosis, and NO production were detected by DHE probe, TUNEL detection, and nitrate reductase assay kit. Protein levels of SOCE were detected by western blotting. Pretreatment with resveratrol significantly attenuated HG-induced endothelial apoptosis and improved cell viability. However, pretreatment with resveratrol and 2-APB abolished this effect, suggesting that the attenuation of HG-induced apoptosis by resveratrol may be associated with SOCE. Subsequent analyses indicated that HG induced the SOCE-related proteins, including TRPC1, Orai1, and Stim1. These results suggest that resveratrol pretreatment is associated with relieved HG-induced endothelial apoptosis at least partly via inhibition of SOCE-related proteins.
Collapse
|
12
|
Abstract
Calcium (Ca2+) signaling plays a critical role in regulating plethora of cellular functions including cell survival, proliferation and migration. The perturbations in cellular Ca2+ homeostasis can lead to cell death either by activating autophagic pathways or through induction of apoptosis. Endoplasmic reticulum (ER) is the major storehouse of Ca2+ within cells and a number of physiological agonists mediate ER Ca2+ release by activating IP3 receptors (IP3R). This decrease in ER Ca2+ levels is sensed by STIM, which physically interacts and activates plasma membrane Ca2+ selective Orai channels. Emerging literature implicates a key role for STIM1, STIM2, Orai1 and Orai3 in regulating both cell survival and death pathways. In this review, we will retrospect the work highlighting the role of STIM and Orai homologs in regulating cell death signaling. We will further discuss the rationales that could explain the dual role of STIM and Orai proteins in regulating cell fate decisions.
Collapse
|
13
|
Gao XP, Qian DW, Xie Z, Hui H. Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:131-137. [PMID: 28293388 PMCID: PMC5339652 DOI: 10.22038/ijbms.2017.8235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cells was used in this study. Cell injury was assessed using WST-1 assay and lactate dehydrogenase, alanine transaminase, and aspartate aminotransferase release assay. Cell apoptosis were quantified by flow cytometric analysis. The intracellular oxidative level was evaluated by reactive oxidative species, malondialdehyde and glutathione detection. Furthermore, the expression level of Erk, p-Erk, Nrf-2 were assessed using Western blot. Results: Treatment with ethanol induced marked cell injury and cell apoptosis in BRL cells. Licochalcone B significantly attenuated ethanol-induced cell injury, and inhibited cell apoptosis. Furthermore, licochalcone B significantly inhibited ethanol-induced intracellular oxidative level, upregulated the expression of p-Erk, and promoted nuclear localization of Nrf2. Additionally, this hepatoprotective role was significantly abolished by inhibition of Erk signaling. However, no apparent effects of Erk inhibition were observed on ethanol-induced hepatotoxicity. Conclusion: This study demonstrates that licochalcone B protects hepatocyte from alcohol-induced cell injury, and this hepatoprotective role might be attributable to apoptosis reduction, inhibition of oxidative stress, and upregulation of Erk–Nrf2. Therefore, licochalcone B might possess potential as a novel therapeutic drug candidate for alcohol-related liver disorders.
Collapse
Affiliation(s)
- Xiao-Peng Gao
- Department of General Surgery, Xi'an Central Hospital, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710003, P.R. China
| | - Dong-Wei Qian
- Department of Operation Room, Xi'an Central Hospital, The affiliated Xi'an central hospital of Xi'an Jiaotong university College of Medicine, Xi'an 710003, P.R. China
| | - Zhen Xie
- Department Two of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Hao Hui
- Department Two of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
14
|
Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy. Eur J Pharmacol 2016; 791:578-588. [PMID: 27663281 DOI: 10.1016/j.ejphar.2016.09.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022]
Abstract
The reactive oxygen species(ROS)/mitogen-activated protein kinase (MAPK) destroyed autophagy and the reactive oxygen species/mitogen-activated protein kinase (MAPK) pathway are considered closely related to ethanol-induced hepatocellular injury. Previous work indicated that corosolic acid, the natural extracts of leaves of the banaba tree, Lagerstroemia speciosa L., could protect the liver against ethanol-induced damage, but the underlying mechanism is unclear. In the study we found that corosolic acid significantly inhibited ethanol-induced apoptosis, increased level of tumor necrosis factor-α(TNF-α) and reactive oxygen species accumulation in vitro. Corosolic acid inhibited ethanol-activated p38 and c-Jun N-terminal kinase MAPK signaling in BRL-3A and HepG2 cells as well as in experimental rats. Corosolic acid restored the ethanol-suppressed expression of autophagy-related genes, including beclin-1 and the ratio of microtubule-associated protein light chain 3II/I (LC3II/I) via AMP-activated protein kinase (AMPK) activation both in vitro and in vivo. In experimental rats, corosolic acid ameliorated the detrimental histopathological findings. Corosolic acid may protect the liver against ethanol-induced injury by modulation of MAPK signaling and autophagy activation. These findings suggested that corosolic acid might be a promising agent in treatment of alcoholic liver diseases.
Collapse
|
15
|
Cheng JS, Chou CT, Liu YY, Sun WC, Shieh P, Kuo DH, Kuo CC, Jan CR, Liang WZ. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca²⁺ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells. Food Chem Toxicol 2016; 91:151-66. [PMID: 27016494 DOI: 10.1016/j.fct.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 03/21/2016] [Indexed: 12/28/2022]
Abstract
Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan
| | - Yuan-Yuarn Liu
- Division of Trauma, Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 907, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| |
Collapse
|
16
|
Cui R, Yan L, Luo Z, Guo X, Yan M. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis. Toxicol Appl Pharmacol 2015; 287:52-66. [DOI: 10.1016/j.taap.2015.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/16/2015] [Accepted: 05/26/2015] [Indexed: 11/15/2022]
|
17
|
Chen YM, Zhao JF, Liu YL, Chen J, Jiang RL. Chronic ethanol treatment of human hepatocytes inhibits the activation of the insulin signaling pathway by increasing cytosolic free calcium levels. Int J Mol Med 2015; 36:739-46. [PMID: 26165524 DOI: 10.3892/ijmm.2015.2282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/26/2015] [Indexed: 01/04/2023] Open
Abstract
The present study aimed to investigate the effects of ethanol treatment on the induction of intracellular calcium ([Ca(2+)](i)) levels and the inhibition of the activation of the insulin signaling pathway in human hepatocytes. L‑02 cells were treated with various concentrations of ethanol for different periods of time. Cell viability and alanine aminotransferase (ALT)/aspartate aminotransferase (AST) leakage in the culture supernatant were evaluated. Changes in [Ca(2+)](i) levels were detected by flow cytometry and confocal microscopy. Total RNA and protein were extracted to examine the mRNA and protein levels of insulin receptor substrate (IRS)1, IRS2, phosphatidylinositol 3‑kinase (PI3K) and glucose transporter 2 (GLUT2) by reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis, respectively. Furthermore, insulin was added to the ethanol‑treated L‑02 cells, and the phosphorylation levels of PI3K and protein kinase B (PKB) were determined by western blot analysis before and after Ca(2+) blockage. No significant changes were observed in cell viability, [Ca(2+)](i) levels and in the expression and phosphorylation levels of insulin signal transduction molecules when the L‑02 cells were treated with 0.5 or 1% ethanol. However, treatment with 2 or 4% ethanol resulted in a significant decrease in cell viability and in the mRNA levels of IRS1, IRS2, PI3K (p85α) and GLUT2, as well as in an increase in ALT/AST leakage and in the [Ca(2+)](i) levels (P<0.05). The expression and phosphorylation levels of PI3K (p85α) and PKB were also inhibited by treatment with 2 or 4% ethanol. These cytological effects induced by ethanol treatment were partially reversed by Ca(2+) blockage. These results suggest that ethanol treatment inhibits the activation of the insulin signal transduction pathway in a dose‑, time‑ and Ca(2+)‑dependent manner. The inhibition of IRS1/2, PI3K (p85α), PKB and GLUT2 expression and of PI3K (p85α) and PKB phosphorylation by the high concentrations of ethanol may be the core molecular mechanism of ethanol-induced insulin resistance, and may be related to the induction of [Ca(2+)](i) levels.
Collapse
Affiliation(s)
- Yi-Min Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jin-Fang Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong-Lin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jie Chen
- Department of Endocrinology, The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Rong-Lin Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
18
|
Vashisht A, Trebak M, Motiani RK. STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015; 309:C457-69. [PMID: 26017146 DOI: 10.1152/ajpcell.00064.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcium (Ca(2+)) regulates a plethora of cellular functions including hallmarks of cancer development such as cell cycle progression and cellular migration. Receptor-regulated calcium rise in nonexcitable cells occurs through store-dependent as well as store-independent Ca(2+) entry pathways. Stromal interaction molecules (STIM) and Orai proteins have been identified as critical constituents of both these Ca(2+) influx pathways. STIMs and Orais have emerged as targets for cancer therapeutics as their altered expression and function have been shown to contribute to tumorigenesis. Recent data demonstrate that they play a vital role in development and metastasis of a variety of tumor types including breast, prostate, cervical, colorectal, brain, and skin tumors. In this review, we will retrospect the data supporting a key role for STIM1, STIM2, Orai1, and Orai3 proteins in tumorigenesis and discuss the potential of targeting these proteins for cancer therapy.
Collapse
Affiliation(s)
- Ayushi Vashisht
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; and
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; and
| |
Collapse
|
19
|
Chen S, Zhang Z, Wu Y, Shi Q, Yan H, Mei N, Tolleson WH, Guo L. Endoplasmic Reticulum Stress and Store-Operated Calcium Entry Contribute to Usnic Acid-Induced Toxicity in Hepatic Cells. Toxicol Sci 2015; 146:116-26. [PMID: 25870318 DOI: 10.1093/toxsci/kfv075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of usnic acid as a weight loss agent is a safety concern due to reports of acute liver failure in humans. Previously we demonstrated that usnic acid induces apoptosis and cytotoxicity in hepatic HepG2 cells. We also demonstrated that usnic acid induces autophagy as a survival mechanism against its cytotoxicity. In this study, we investigated and characterized further molecular mechanisms underlying the toxicity of usnic acid in HepG2 cells. We found that usnic acid causes endoplasmic reticulum (ER) stress demonstrated by the increased expression of typical ER stress markers, including CHOP, ATF-4, p-eIF2α, and spliced XBP1. Usnic acid inhibited the secretion of Gaussia luciferase measured by an ER stress reporter assay. An ER stress inhibitor 4-phenylbutyrate attenuated usnic acid-induced apoptosis. Moreover, usnic acid significantly increased the cytosolic free Ca(2+) concentration. Usnic acid increased the expression of calcium release-activated calcium channel protein 1 (CRAM1 or ORAI1) and stromal interaction molecule 1, two key components of store-operated calcium entry (SOCE), which is the major Ca(2+) influx pathway in non-excitable cells, this finding was also confirmed in primary rat hepatocytes. Furthermore, knockdown of ORAI1 prevented ER stress and ATP depletion in response to usnic acid. In contrast, overexpression of ORAI1 increased ER stress and ATP depletion caused by usnic acid. Taken together, our results suggest that usnic acid disturbs calcium homeostasis, induces ER stress, and that usnic acid-induced cellular damage occurs at least partially via activation of the Ca(2+) channel of SOCE.
Collapse
Affiliation(s)
- Si Chen
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Zhuhong Zhang
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079 *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Yuanfeng Wu
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Qiang Shi
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Hua Yan
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Nan Mei
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - William H Tolleson
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Lei Guo
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| |
Collapse
|
20
|
The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells. Toxicol Lett 2015; 232:122-32. [DOI: 10.1016/j.toxlet.2014.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/27/2022]
|
21
|
Jozsef L, Tashiro K, Kuo A, Park EJ, Skoura A, Albinsson S, Rivera-Molina F, Harrison KD, Iwakiri Y, Toomre D, Sessa WC. Reticulon 4 is necessary for endoplasmic reticulum tubulation, STIM1-Orai1 coupling, and store-operated calcium entry. J Biol Chem 2014; 289:9380-95. [PMID: 24558039 DOI: 10.1074/jbc.m114.548602] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite recent advances in understanding store-operated calcium entry (SOCE) regulation, the fundamental question of how ER morphology affects this process remains unanswered. Here we show that the loss of RTN4, is sufficient to alter ER morphology and severely compromise SOCE. Mechanistically, we show this to be the result of defective STIM1-Orai1 coupling because of loss of ER tubulation and redistribution of STIM1 to ER sheets. As a functional consequence, RTN4-depleted cells fail to sustain elevated cytoplasmic Ca(2+) levels via SOCE and therefor are less susceptible to Ca(2+) overload induced apoptosis. Thus, for the first time, our results show a direct correlation between ER morphology and SOCE and highlight the importance of RTN4 in cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Levente Jozsef
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|