1
|
Shalwitz R, Day T, Ruehlmann AK, Julio L, Gordon S, Vandeuren A, Nelson M, Lyman M, Kelly K, Altvater A, Ondeck C, O'Brien S, Hamilton T, Hanson RL, Wayman K, Miller A, Shalwitz I, Batchelor E, McNutt P. Treatment of Sulfur Mustard Corneal Injury by Augmenting the DNA Damage Response (DDR): A Novel Approach. J Pharmacol Exp Ther 2024; 388:526-535. [PMID: 37977813 PMCID: PMC10801765 DOI: 10.1124/jpet.123.001686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.
Collapse
Affiliation(s)
- Robert Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tovah Day
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Anna Kotsakis Ruehlmann
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Lindsay Julio
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Shellaina Gordon
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Adrianna Vandeuren
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Marian Nelson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Megan Lyman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kyle Kelly
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Amber Altvater
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Celinia Ondeck
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Sean O'Brien
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tracey Hamilton
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Ryan L Hanson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kayla Wayman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Alexandrea Miller
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Isaiah Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Eric Batchelor
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Patrick McNutt
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| |
Collapse
|
2
|
Ye F, Wang X, Liu H, Dong X, Cheng J, Chen M, Dan G, Sai Y, Zou Z. HSP90/CDC37 inactivation promotes degradation of LKB1 protein to suppress AMPK signaling in bronchial epithelial cells exposed to sulfur mustard analog, 2-chloroethyl ethyl sulfide. Chem Biol Interact 2023; 382:110643. [PMID: 37481222 DOI: 10.1016/j.cbi.2023.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
To investigate the role of the liver kinase (LK) B1 protein, an activator of AMP-activated protein kinase (AMPK), in AMPK signaling suppression when exposed to vesicant, a kind of chemical warfare agent. Cultured human bronchial epithelial cells were inflicted with sulfur mustard (SM) analog, 2-chloroethyl ethyl sulfide (CEES) of 0.2-1.0 mM concentration, and cell proliferation, apoptosis, autophagy, and cellular ATP level were analyzed up to 24 h after the exposure. Focusing on LKB1, heat shock protein (HSP) 90, and cell division cycle (CDC) 37 proteins, the protein expression, phosphorylation, and interaction were examined with western blot, immunofluorescence staining, and/or immunoprecipitation. AMPK signaling was found to be inhibited 24 h after being exposed to either sub-cytotoxic (0.5 mM) or cytotoxic (1.0 mM) concentration of CEES based on MTS assay. Consistently, the degradation of the LKB1 protein and its less interaction with the HSP90/CDC37 complex was confirmed. It was found that 1.0, not 0.5 mM CEES also decreased the CDC37 protein, proteasome activity, and cellular ATP content that modulates HSP90 protein conformation. Inhibiting proteasome activity could alternatively activate autophagy. Finally, either 0.5 or 1.0 mM CEES activated HSP70 and autophagy, and the application of an HSP70 inhibitor blocked autophagy and autophagic degradation of the LKB1 protein. In conclusion, we reported here that AMPK signaling inactivation by CEES was a result of LKB1 protein loss via less protein complex formation and enhanced degradation.
Collapse
Affiliation(s)
- Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaogang Wang
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Haoyin Liu
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xunhu Dong
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
McNutt P. Progress towards a standardized model of ocular sulfur mustard injury for therapeutic testing. Exp Eye Res 2023; 228:109395. [PMID: 36731603 PMCID: PMC9975063 DOI: 10.1016/j.exer.2023.109395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Sulfur mustard (SM) remains a highly dangerous chemical weapon capable of producing mass casualties through liquid or vapor exposure. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. At higher doses, corneas fail to fully heal and subsequently develop a constellation of symptoms known as mustard gas keratopathy (MGK) that causes reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. Here I summarize toxicological, clinical and pathophysiological mechanisms of SM vapor injury in the cornea, describe a preclinical model of ocular SM vapor exposure for reproducible therapeutic studies, and propose new approaches to improve evaluation of therapeutic effects. I also describe recent findings illustrating the delayed development of a transient but severe recurrent corneal lesion that, in turn, triggers the emergence of secondary keratopathies characteristic of the chronic form of MGK. Development of this recurrent lesion is SM dose-dependent, although the severity of the recurrent lesion appears SM dose-independent. Similar recurrent lesions have been reported in multiple species, including humans. Given the mechanistic relationship between the recurrent lesion and chronic, secondary keratopathies, I hypothesize that preventing the development of the recurrent lesion represents a novel and potentially valuable therapeutic approach for treatment of severe corneal SM injuries. Although ocular exposure to SM vapor continues to be a challenging therapeutic target, establishing consistent and reproducible models of corneal injury that enhance mechanistic and pathophysiological understanding will help satisfy regulatory requirements and accelerate the development of effective therapies.
Collapse
Affiliation(s)
- Patrick McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston Salem, NC, 27101, USA.
| |
Collapse
|
4
|
Ramos E, Gil-Martín E, De Los Ríos C, Egea J, López-Muñoz F, Pita R, Juberías A, Torrado JJ, Serrano DR, Reiter RJ, Romero A. Melatonin as Modulator for Sulfur and Nitrogen Mustard-Induced Inflammation, Oxidative Stress and DNA Damage: Molecular Therapeutics. Antioxidants (Basel) 2023; 12:antiox12020397. [PMID: 36829956 PMCID: PMC9952307 DOI: 10.3390/antiox12020397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines, respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress, inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option in order to counteract and modulate several pathways involved in physiopathological mechanisms activated after exposure to mustards, but also for the first time, we predict whether metabolites of melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage induced by these blister agents. NLRP3 inflammasome is activated in response to a wide variety of infectious stimuli or cellular stressors, however, although the precise mechanisms leading to activation are not known, mustards are postulated as activators. In this regard, melatonin, through its anti-inflammatory action and NLRP3 inflammasome modulation could exert a protective effect in the pathophysiology and management of sulfur and nitrogen mustard-induced injury. The ability of melatonin to attenuate sulfur and nitrogen mustard-induced toxicity and its high safety profile make melatonin a suitable molecule to be a part of medical countermeasures against blister agents poisoning in the near future.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Cristóbal De Los Ríos
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - René Pita
- Chemical Defense Department, Chemical, Biological, Radiological, and Nuclear Defense School, Hoyo de Manzanares, 28240 Madrid, Spain
| | - Antonio Juberías
- Dirección de Sanidad Ejército del Aire, Cuartel General Ejército del Aire, 28008 Madrid, Spain
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943970
| |
Collapse
|
5
|
Ye F, Zeng Q, Dan G, Zhao Y, Yu W, Cheng J, Chen M, Wang B, Zhao J, Sai Y, Zou Z. Sulfur mustard analog 2-chloroethyl ethyl sulfide increases triglycerides by activating DGAT1-dependent biogenesis and inhibiting PGC1ɑ-dependent fat catabolism in immortalized human bronchial epithelial cells. Toxicol Mech Methods 2022; 33:271-278. [PMID: 36106344 DOI: 10.1080/15376516.2022.2124898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Using sulfur mustard analog 2-chloroethyl ethyl sulfide (CEES), we established an in vitro model by poisoning cultured immortalized human bronchial epithelial cells. Nile Red staining revealed lipids accumulated 24 h after a toxic dose of CEES (0.9 mM). Lipidomics analysis showed most of the increased lipids were triglycerides (TGs), and the increase in TGs was further confirmed using a Triglyceride-Glo™ Assay kit. Protein and mRNA levels of DGAT1, an important TG biogenesis enzyme, were increased following 0.4 mM CEES exposure. Under higher dose CEES (0.9 mM) exposure, protein and mRNA levels of PPARγ coactivator-1ɑ (PGC-1ɑ), a well-known transcription factor that regulates fatty acid oxidation, were decreased. Finally, application with DGAT1 inhibitor A 922500 or PGC1ɑ agonist ZLN005 was able to block the CEES-induced TGs increase. Overall, our dissection of CEES-induced TGs accumulation provides new insight into energy metabolism dysfunction upon vesicant exposure.HIGHLIGHTSIn CEES (0.9 mM)-injured cells:Triglycerides (TGs) were abundant in the accumulated lipids.Expression of DGAT1, not DGAT2, was increased.Expression of PGC1ɑ, not PGC1β, was reduced.DGAT1 inhibitor or PGC1ɑ agonist blocked the CEES-mediated increase in TGs.
Collapse
Affiliation(s)
- Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qinya Zeng
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bin Wang
- Department of Medical Adiministration, Dongda Proctology Hospital, Beijing, 100020, China
| | - Jiqing Zhao
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
6
|
Zhao Z, Yan X, Li L, Shu Y, He J, Wang L, Huang Q, Xie J, Zhao J, Peng S. Proliferating Stem Cells are Acutely Affected by DNA Damage Induced by Sulfur Mustard. DNA Cell Biol 2022; 41:716-726. [PMID: 35834647 DOI: 10.1089/dna.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sulfur mustard (SM), a chemical warfare agent, can form adducts with DNA, RNA, and proteins. Reactions with DNA lead to the formation of both DNA monoadducts and interstrand cross-links, resulting in DNA damage, and is an important component of SM toxicity. Our previous in vivo studies indicated that dividing cells such as hematopoietic stem cells and intestinal villi stem cells seemed to have increased sensitivity to SM. Therefore, to compare the sensitivity of somatic and stem cells to SM and to investigate the mechanism of SM cytotoxicity, we isolated human foreskin fibroblasts, reprogrammed them into pluripotent stem cells, and then compared the DNA damage repair pathways involved upon SM treatment. Our results indicated that proliferating stem cells were more sensitive to SM-induced DNA damage, and the damage mainly comprised single-stranded breaks. Furthermore, the pathways involved in DNA repair in stem cells and somatic cells were different.
Collapse
Affiliation(s)
- Zengming Zhao
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Xiabei Yan
- Department of Reproductive Medicine, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, China
| | - Lizhong Li
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Yulei Shu
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Jun He
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Lili Wang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Qingzhen Huang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Jianwei Xie
- Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Jun Zhao
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Shuangqing Peng
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
7
|
Jan YH, Heck DE, An Y, Laskin DL, Laskin JD. Nitrogen Mustard Alkylates and Cross-Links p53 in Human Keratinocytes. Chem Res Toxicol 2022; 35:636-650. [PMID: 35312310 PMCID: PMC9491701 DOI: 10.1021/acs.chemrestox.1c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytotoxic blistering agents such as sulfur mustard and nitrogen mustard (HN2) were synthesized for chemical warfare. Toxicity is due to reactive chloroethyl side chains that modify and damage cellular macromolecules including DNA and proteins. In response to DNA damage, cells initiate a DNA damage response directed at the recruitment and activation of repair-related proteins. A central mediator of the DNA damage response is p53, a protein that plays a critical role in regulating DNA repair. We found that HN2 causes cytosolic and nuclear accumulation of p53 in HaCaT keratinocytes; HN2 also induced post-translational modifications on p53 including S15 phosphorylation and K382 acetylation, which enhance p53 stability, promote DNA repair, and mediate cellular metabolic responses to stress. HN2 also cross-linked p53, forming dimers and high-molecular-weight protein complexes in the cells. Cross-linked multimers were also modified by K48-linked ubiquitination indicating that they are targets for proteasome degradation. HN2-induced modifications transiently suppressed the transcriptional activity of p53. Using recombinant human p53, HN2 alkylation was found to be concentration- and redox status-dependent. Dithiothreitol-reduced protein was more efficiently cross-linked indicating that p53 cysteine residues play a key role in protein modification. LC-MS/MS analysis revealed that HN2 directly alkylated p53 at C124, C135, C141, C176, C182, C275, C277, H115, H178, K132, and K139, forming both monoadducts and cross-links. The formation of intermolecular complexes was a consequence of HN2 cross-linked cysteine residues between two molecules of p53. Together, these data demonstrate that p53 is a molecular target for mustard vesicants. Modification of p53 likely mediates cellular responses to HN2 including DNA repair and cell survival contributing to vesicant-induced cytotoxicity.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, New York 10595, United States
| | - Yunqi An
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Zhang J, Xu C, Liu K, Li Y, Wang M, Tao L, Yu H, Zhang C. Deep Sequencing Discovery and Profiling of Known and Novel miRNAs Produced in Response to DNA Damage in Rice. Int J Mol Sci 2021; 22:ijms22189958. [PMID: 34576121 PMCID: PMC8472271 DOI: 10.3390/ijms22189958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Under extreme environmental conditions such as ultraviolet and ionizing radiation, plants may suffer DNA damage. If these damages are not repaired accurately and rapidly, they may lead to chromosomal abnormalities or even cell death. Therefore, organisms have evolved various DNA repair mechanisms to cope with DNA damage which include gene transcription and post-translational regulation. MicroRNA (miRNA) is a type of non-coding single-stranded RNA molecule encoded by endogenous genes. They can promote DNA damage repair by regulating target gene transcription. Here, roots from seedlings of the japonica rice cultivar ‘Yandao 8’ that were treated with bleomycin were collected for transcriptome-level sequencing, using non-treated roots as controls. A total of 14,716,232 and 17,369,981 reads mapping to miRNAs were identified in bleomycin-treated and control groups, respectively, including 513 known and 72 novel miRNAs. Compared with the control group, 150 miRNAs showed differential expression levels. Target predictions of these differentially expressed miRNAs yielded 8731 potential gene targets. KEGG annotation and a gene ontology analysis indicated that the highest-ranked target genes were classified into metabolic processes, RNA degradation, DNA repair, and so on. Notably, the DNA repair process was significantly enriched in both analyses. Among these differentially expressed miRNAs, 58 miRNAs and 41 corresponding potential target genes were predicted to be related to DNA repair. RT-qPCR results confirmed that the expression patterns of 20 selected miRNAs were similar to those from the sequencing results, whereas four miRNAs gave opposite results. The opposing expression patterns of several miRNAs with regards to their target genes relating to the DNA repair process were also validated by RT-qPCR. These findings provide valuable information for further functional studies of miRNA involvement in DNA damage repair in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengxiu Yu
- Correspondence: (H.Y.); (C.Z.); Tel.: +86-0514-8797-9304 (H.Y. & C.Z.)
| | - Chao Zhang
- Correspondence: (H.Y.); (C.Z.); Tel.: +86-0514-8797-9304 (H.Y. & C.Z.)
| |
Collapse
|
9
|
Venosa A, Smith LC, Gow AJ, Zarbl H, Laskin JD, Laskin DL. Macrophage activation in the lung during the progression of nitrogen mustard induced injury is associated with histone modifications and altered miRNA expression. Toxicol Appl Pharmacol 2021; 423:115569. [PMID: 33971176 DOI: 10.1016/j.taap.2021.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Activated macrophages have been implicated in lung injury and fibrosis induced by the cytotoxic alkylating agent, nitrogen mustard (NM). Herein, we determined if macrophage activation is associated with histone modifications and altered miRNA expression. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in increases in phosphorylation of H2A.X in lung macrophages at 1 d and 3 d post-exposure. This DNA damage response was accompanied by methylation of histone (H) 3 lysine (K) 4 and acetylation of H3K9, marks of transcriptional activation, and methylation of H3K36 and H3K9, marks associated with transcriptional repression. Increases in histone acetyl transferase and histone deacetylase were also observed in macrophages 1 d and 28 d post-NM exposure. PCR array analysis of miRNAs (miR)s involved in inflammation and fibrosis revealed unique and overlapping expression profiles in macrophages isolated 1, 3, 7, and 28 d post-NM. An IPA Core Analysis of predicted mRNA targets of differentially expressed miRNAs identified significant enrichment of Diseases and Functions related to cell cycle arrest, apoptosis, cell movement, cell adhesion, lipid metabolism, and inflammation 1 d and 28 d post NM. miRNA-mRNA interaction network analysis revealed highly connected miRNAs representing key upstream regulators of mRNAs involved in significantly enriched pathways including miR-34c-5p and miR-27a-3p at 1 d post NM and miR-125b-5p, miR-16-5p, miR-30c-5p, miR-19b-3p and miR-148b-3p at 28 d post NM. Collectively, these data show that NM promotes histone remodeling and alterations in miRNA expression linked to lung macrophage responses during inflammatory injury and fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - L Cody Smith
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Mishra N, Raina K, Agarwal R. Deciphering the role of microRNAs in mustard gas-induced toxicity. Ann N Y Acad Sci 2020; 1491:25-41. [PMID: 33305460 DOI: 10.1111/nyas.14539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
Mustard gas (sulfur mustard, SM), a highly vesicating chemical warfare agent, was first deployed in warfare in 1917 and recently during the Iraq-Iran war (1980s) and Syrian conflicts (2000s); however, the threat of exposure from stockpiles and old artillery shells still looms large. Whereas research has been long ongoing on SM-induced toxicity, delineating the precise molecular pathways is still an ongoing area of investigation; thus, it is important to attempt novel approaches to decipher these mechanisms and develop a detailed network of pathways associated with SM-induced toxicity. One such avenue is exploring the role of microRNAs (miRNAs) in SM-induced toxicity. Recent research on the regulatory role of miRNAs provides important results to fill in the gaps in SM toxicity-associated mechanisms. In addition, differentially expressed miRNAs can also be used as diagnostic markers to determine the extent of toxicity in exposed individuals. Thus, in our review, we have summarized the studies conducted so far in cellular and animal models, including human subjects, on the expression profiles and roles of miRNAs in SM- and/or SM analog-induced toxicity. Further detailed research in this area will guide us in devising preventive strategies, diagnostic tools, and therapeutic interventions against SM-induced toxicity.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
11
|
Male Factors: the Role of Sperm in Preimplantation Embryo Quality. Reprod Sci 2020; 28:1788-1811. [DOI: 10.1007/s43032-020-00334-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
|
12
|
Jost P, Muckova L, Pejchal J. In vitro stress response induced by sulfur mustard in lung fibroblasts NHLF and human pulmonary epithelial cells A-549. Arch Toxicol 2020; 94:3503-3514. [PMID: 32681189 DOI: 10.1007/s00204-020-02845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Sulfur mustard [bis(2-chloroethyl) sulfide; SM] is a highly poisonous chemical warfare agent. The mechanism of its cytotoxicity affects several pathways, which cause cell damage or death. The main organ affected in case of exposure to both aerosol and vapor is lungs. The present study focuses on time- and concentration-dependent changes in human lung fibroblasts NHLF and lung epithelial cell line A-549. The cells were treated with SM at the concentrations of 5, 10 and 100 µM and signs of stress response were evaluated during 1-72 h post-treatment. Parameters for testing included cell viability and morphology, loss of transmembrane mitochondrial potential, apoptosis, oxidative stress, changes in the cell cycle, and ATM kinase activation. The cytotoxic effect of SM resulted in a time-dependent decrease in viability of A-459 associated with apoptosis more markedly than in NHLF. We did not observe any generation of reactive oxygen species by SM. SM at concentrations of 5 and 10 µM induced the S-phase cell cycle arrest at both cell lines. On the other hand, 100 µM caused nonspecific cell cycle arrest. ATM kinase was activated transiently. The results indicate that NHLF cells are less prone to toxic damage by SM in case of cell viability, apoptosis and loss of transmembrane mitochondrial potential. The analysis provides a time-related cytotoxic profile of A-549 and NHLF cells for further investigation into the prevention of SM toxic effects and their potential treatment.
Collapse
Affiliation(s)
- Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
DNA damage signaling in the cellular responses to mustard vesicants. Toxicol Lett 2020; 326:78-82. [PMID: 32173488 DOI: 10.1016/j.toxlet.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023]
Abstract
Mustard vesicants, including sulfur mustard (2,2'-dichlorodiethyl sulfide, SM) and nitrogen mustard (bis(2-chloroethyl)methylamine, HN2) are cytotoxic blistering agents synthesized for chemical warfare. Because they contain highly reactive electrophilic chloroethyl side chains, they readily react with cellular macromolecules like DNA forming monofunctional and bifunctional adducts. By targeting DNA, mustards can compromise genomic integrity, disrupt the cell cycle, and cause mutations and cytotoxicity. To protect against genotoxicity following exposure to mustards, cells initiate a DNA damage response (DDR). This involves activation of signaling cascades including ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3-related) and DNA-PKcs (DNA-dependent protein kinase, catalytic unit). Signaling induced by the DDR leads to the recruitment and activation of repair related proteins such as phospho H2AX and phospho p53 to sites of DNA lesions. Excessive DNA modifications by mustards can overwhelm DNA repair leading to single and double strand DNA breaks, cytotoxicity and tissue damage, sometimes leading to cancer. Herein we summarize DDR signaling pathways induced by SM, HN2 and the half mustard, 2-chloroethyl ethyl sulfide (CEES). At the present time, little is known about how mustard-induced DNA damage leads to the activation of DDR signaling. A better understanding of mechanisms by which mustard vesicants induce the DDR may lead to the development of countermeasures effective in mitigating tissue injury.
Collapse
|
14
|
Wahler G, Heck DE, Heindel ND, Laskin DL, Laskin JD, Joseph LB. Antioxidant/stress response in mouse epidermis following exposure to nitrogen mustard. Exp Mol Pathol 2020; 114:104410. [PMID: 32113906 DOI: 10.1016/j.yexmp.2020.104410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/13/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nitrogen mustard (NM) is a highly reactive bifunctional alkylating agent that induces inflammation, edema and blistering in skin. An important mechanism mediating the action of NM and related mustards is oxidative stress. In these studies a modified murine patch-test model was used to analyze DNA damage and the antioxidant/stress response following NM exposure in isolated epidermis. NM (20 μmol) was applied to glass microfiber filters affixed to a shaved dorsal region of skin of CD-1 mice. NM caused structural damage to the stratum corneum as reflected by increases in transepidermal water loss and skin hydration. This was coordinate with edema, mast cell degranulation and epidermal hyperplasia. Within 3 h of NM exposure, a 4-fold increase in phosphorylated histone H2AX, a marker of DNA double-stranded breaks, and a 25-fold increase in phosphorylated p53, a DNA damage marker, were observed in the epidermis. This was associated with a 40% increase in 8-oxo-2'-deoxyguanosine modified DNA in the epidermis and a 4-fold increase in 4-hydroxynonenal modified epidermal proteins. At 12 h post NM, there was a 3-75 fold increase in epidermal expression of antioxidant/stress proteins including heme oxygenase-1, thioredoxin reductase, superoxide dismutase, glutathione reductase, heat shock protein 27 and cyclooxygenase 2. These data indicate that NM induces early oxidative epidermal injury in mouse skin leading to an antioxidant/stress response. Agents that enhance this response may be useful in mitigating mustard-induced skin injury.
Collapse
Affiliation(s)
- Gabriella Wahler
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States.
| |
Collapse
|
15
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Jan YH, Heck DE, Laskin DL, Laskin JD. Sulfur Mustard Analog Mechlorethamine (Bis(2-chloroethyl)methylamine) Modulates Cell Cycle Progression via the DNA Damage Response in Human Lung Epithelial A549 Cells. Chem Res Toxicol 2019; 32:1123-1133. [PMID: 30964658 DOI: 10.1021/acs.chemrestox.8b00417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitrogen mustard, mechlorethamine (bis(2-chloroethyl)methylamine; HN2), and sulfur mustard are potent vesicants that modify and disrupt cellular macromolecules including DNA leading to cytotoxicity and tissue injury. In many cell types, HN2 upregulates DNA damage signaling pathways including ataxia telangiectasia mutated (ATM), ataxia telangiectasia mutated- and Rad3-related (ATR) as well as DNA-dependent protein kinase (DNA-PK). In the present studies, we investigated crosstalk between the HN2-induced DNA damage response and cell cycle progression using human A549 lung epithelial cells. HN2 (1-20 μM; 24 h) caused a concentration-dependent arrest of cells in the S and G2/M phases of the cell cycle. This was associated with inhibition of DNA synthesis, as measured by incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into S phase cells. Cell cycle arrest was correlated with activation of DNA damage and cell cycle checkpoint signaling. Thus, HN2 treatment resulted in time- and concentration-dependent increases in expression of phosphorylated ATM (Ser1981), Chk2 (Thr68), H2AX (Ser139), and p53 (Ser15). Activation of DNA damage signaling was most pronounced in S-phase cells followed by G2/M-phase cells. HN2-induced cell cycle arrest was suppressed by the ATM and DNA-PK inhibitors, KU55933 and NU7441, respectively, and to a lesser extent by VE821, an ATR inhibitor. This was correlated with abrogation of DNA damage checkpoints signaling. These data indicate that activation of ATM, ATR, and DNA-PK signaling pathways by HN2 are important in the mechanism of vesicant-induced cell cycle arrest and cytotoxicity. Drugs that inhibit activation of DNA damage signaling may be effective countermeasures for vesicant-induced tissue injury.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Department of Environmental and Occupational Health , Rutgers University School of Public Health , Piscataway , New Jersey 08854 , United States
| | - Diane E Heck
- Department of Environmental Health Science , New York Medical College , Valhalla , New York 10595 , United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health , Rutgers University School of Public Health , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
17
|
Yan X, Shu Y, He J, Zhao J, Jia L, Xie J, Sun Y, Zhao Z, Peng S. Therapeutic Effects of Human Umbilical Cord Mesenchymal Stromal Cells in Sprague-Dawley Rats with Percutaneous Exposure to Sulfur Mustard. Stem Cells Dev 2018; 28:69-80. [PMID: 30343632 DOI: 10.1089/scd.2018.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sulfur mustard (SM) exposure, whose symptoms are similar to radiation exposure, can lead to acute injury. Because mesenchymal stromal cells (MSCs) have been used to experimentally and clinically treat acute radiation syndrome, in this study, MSCs were intravenously injected into rats after percutaneous SM exposure. Then, we examined sternum and spleen samples by histopathological and immunohistochemical methods to observe pathological changes. Furthermore, blood samples were taken to test the white blood cell (WBC) count, blood platelet count (BPC), red blood cell count, and the levels of cytokines in the serum. The number of bone marrow karyocytes and the WBC in the MSC + SM group were higher than those in the SM group, and the levels of granulocyte colony-stimulating factor, granulocyte-macrophage colony stimulating factor, monocyte chemoattractant protein-1, interleukin (IL)-1α, IL-5, and interferon-γ in the MSC + SM group remained high at different time points after SM exposure. In addition, the BPC, the level of erythropoietin and the relative weight of the spleen in the MSC + SM group were significantly higher than those in the SM group. Meanwhile, spleens in the MSC + SM group were more hyperplastic and hematopoietic, and had fewer apoptotic cells than in the SM group. Furthermore, rat body weight and locomotion ability in the MSC + SM group were higher than in the SM group. This evidence supports the potential ability of MSCs in immunoregulation and functional improvements to the hemopoietic microenvironment. Intravenous injection of MSCs exerted significant therapeutic effects in rats with percutaneous exposure to SM.
Collapse
Affiliation(s)
- Xiabei Yan
- 1 Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Yulei Shu
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Jun He
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Jun Zhao
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Li Jia
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Jianwei Xie
- 3 Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yansong Sun
- 4 Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zengming Zhao
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Shuangqing Peng
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
18
|
Beigi Harchegani A, Mirnam Niha M, Sohrabiyan M, Ghatrehsamani M, Tahmasbpour E, Shahriary A. Cellular and molecular mechanisms of sulfur mustard toxicity on spermatozoa and male fertility. Toxicol Res (Camb) 2018; 7:1029-1035. [PMID: 30510677 PMCID: PMC6220723 DOI: 10.1039/c8tx00062j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Sulfur mustard (SM) is a toxic compound that can target human spermatozoa. SM induces a wide variety of pathological effects in human reproductive organs, including sexual hormone disturbance, testicular atrophy, impaired spermatogenesis, poor sperm quality, defects in embryo development, childhood physical abnormalities, and severe fertility problems. However, the molecular and cellular mechanisms of SM action on male reproductive health and human sperm function are unclear. Excessive production of reactive oxygen species and the resulting oxidative stress is likely a significant mechanism of SM action, and could be associated with sperm DNA damage, membrane lipid peroxidation, reduced membrane fluidity, mitochondrial deficiency, apoptosis, and poor sperm quality. In this review, we aim to discuss the cellular and molecular mechanisms of SM action on sperm and reproductive health, the significance of OS, and the mechanisms through which SM enhances the infertility rate among SM-exposed individuals.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center , Systems biology and poisonings institute , Baqiyatallah University of Medical Sciences , Tehran , Iran . ; Tel: +21-82482502
| | - Mahdiyeh Mirnam Niha
- Department of Medical Radiation Engineering , Central Tehran Branch , Islamic Azad University , Tehran , Iran
| | - Milad Sohrabiyan
- Chemical Injuries Research Center , Systems biology and poisonings institute , Baqiyatallah University of Medical Sciences , Tehran , Iran . ; Tel: +21-82482502
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center , Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine & Biomedical Innovations , Pasteur Institute of Iran , Tehran , Iran . ; Tel: +21-9111193051
| | - Alireza Shahriary
- Chemical Injuries Research Center , Systems biology and poisonings institute , Baqiyatallah University of Medical Sciences , Tehran , Iran . ; Tel: +21-82482502
| |
Collapse
|
19
|
A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Arch Toxicol 2018; 93:61-79. [PMID: 30324314 DOI: 10.1007/s00204-018-2324-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Despite its worldwide ban, the warfare agent sulfur mustard (SM) still represents a realistic threat, due to potential release in terroristic attacks and asymmetric conflicts. Therefore, the rigorous and quantitative detection of SM exposure is crucial for diagnosis, health risk assessment, and surveillance of international law. Alkylation adducts of nucleic acids can serve as valuable toxicologically relevant 'biomarkers of SM exposure'. Here, we developed a robust and versatile bioanalytical platform based on isotope dilution UPLC-MS/MS to quantify major SM-induced DNA and RNA adducts, as well as adducts induced by the monofunctional mustard 2-chloroethyl ethyl sulfide. We synthesized 15N/13C-labeled standards, which allowed absolute quantitation with full chemical specificity and subfemtomole sensitivities. DNA and RNA mono-alkylation adducts and crosslinks were carefully analyzed in a dose- and time-dependent manner in various matrices, including human cancer and primary cells, derived of the main SM-target tissues. Nucleic acid adducts were detected up to 6 days post-exposure, indicating long persistence, which highlights their toxicological relevance and proves their suitability as forensic and medical biomarkers. Finally, we investigated ex vivo-treated rat skin biopsies and human blood samples, which set the basis for the implementation into the method portfolio of Organization for the Prohibition of Chemical Weapons-designated laboratories to analyze authentic samples from SM-exposed victims.
Collapse
|
20
|
Beigi Harchegani A, Khor A, Tahmasbpour E, Ghatrehsamani M, Bakhtiari Kaboutaraki H, Shahriary A. Role of oxidative stress and antioxidant therapy in acute and chronic phases of sulfur mustard injuries: a review. Cutan Ocul Toxicol 2018; 38:9-17. [DOI: 10.1080/15569527.2018.1495230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Khor
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Bakhtiari Kaboutaraki
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Khateri S, Balali-Mood M, Blain P, Williams F, Jowsey P, Soroush MR, Behravan E, Sadeghi M. DNA damage and repair proteins in cellular response to sulfur mustard in Iranian veterans more than two decades after exposure. Toxicol Lett 2018; 293:67-72. [DOI: 10.1016/j.toxlet.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 01/15/2023]
|
22
|
Next-generation sequencing approaches for the study of genome and epigenome toxicity induced by sulfur mustard. Arch Toxicol 2018; 92:3443-3457. [PMID: 30155719 DOI: 10.1007/s00204-018-2294-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Sulfur mustard (SM) is an extensive nucleophilic and alkylating agent that targets different tissues. The genotoxic property of SM is the most threatening effect, because it is associated with detrimental inflammations and susceptibility to several kinds of cancer. Moreover, SM causes a wide variety of adverse effects on DNA which result in accumulation of DNA adducts, multiple mutations, aneuploidies, and epigenetic aberrations in the genome. However, these adverse effects are still not known well, possibly because no valid biomarkers have been developed for detecting them. The advent of next-generation sequencing (NGS) has provided opportunities for the characterization of these alterations with a higher level of molecular detail and cost-effectivity. The present review introduces NGS approaches for the detection of SM-induced DNA adducts, mutations, chromosomal structural variation, and epigenetic aberrations, and also comparing and contrasting them with regard to which might be most advantageous.
Collapse
|
23
|
Behravan E, Moallem SA, Kalalinia F, Ahmadimanesh M, Blain P, Jowsey P, Khateri S, Forghanifard MM, BalaliMood M. Telomere shortening associated with increased levels of oxidative stress in sulfur mustard-exposed Iranian veterans. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:1-5. [PMID: 30173859 DOI: 10.1016/j.mrgentox.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Sulfur Mustard (SM) is the most widely used chemical weapon. It was used in World War 1 and in the more recent Iran-Iraq conflict. Genetic toxicity and DNA alkylation effects of SM in molecular and animal experiments are well documented. In this study, lymphocytic telomere lengths and serum levels of isoprostane F2α were measured using q-PCR and enzyme immunoassay-based methods in 40 Iranian veterans who had been exposed to SM between 1983-88 and 40 non-exposed healthy volunteers. The relative telomere length in SM-exposed individuals was found to be significantly shorter than the non-exposed individuals. In addition, the level of 8-isoprostane F2α was significantly higher in the SM-exposed group compared to controls. Oxidative stress can be caused by defective antioxidant responses following gene mutations or altered activities of antioxidant enzymes. Chronic respiratory diseases and infections may also increaseoxidative stress. The novel finding of this study was a the identification of 'premature ageing phenotype'. More specifically, telomere shortening which occurs naturally with aging is accelerated in SM-exposed individuals. Oxidative stress, mutations in DNA repair genes and epimutaions may be among the major mechanisms of telomere attrition. These findings may help for a novel therapeutic strategy by telomere elongation or for validation of an exposure biomarker for SM toxicity.
Collapse
Affiliation(s)
- Effat Behravan
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahl Al Bayt University, Karbala, Iraq
| | - Fatemeh Kalalinia
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter Blain
- NIHR Health Protection Research Unit for Chemical & Radiation Threats & Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4AA, UK
| | - Paul Jowsey
- NIHR Health Protection Research Unit for Chemical & Radiation Threats & Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4AA, UK
| | - Shahriar Khateri
- Organization for the Prohibition of Chemical Weapons, The Hague, The Netherlands
| | | | - Mahdi BalaliMood
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Khamisabadi A, Tahmasbpour E, Ghanei M, Shahriary A. Roles of matrix metalloproteinases (MMPs) in SM-induced pathologies. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1477163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ali Khamisabadi
- Faculty of Veterinary Medicine, Tabriz University, Tabriz, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Beigi Harchegani A, Tahmasbpour E, Borna H, Imamy A, Ghanei M, Shahriary A. Free Radical Production and Oxidative Stress in Lung Tissue of Patients Exposed to Sulfur Mustard: An Overview of Cellular and Molecular Mechanisms. Chem Res Toxicol 2018; 31:211-222. [PMID: 29569912 DOI: 10.1021/acs.chemrestox.7b00315] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sulfur mustard (SM) is a chemical alkylating compound that primary targets lung tissue. It causes a wide variety of pathological effects in respiratory system such as chronic bronchitis, bronchiolitis obliterans, necrosis of the mucosa and inflammation, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. However, molecular and cellular mechanisms for these pathologies are still unclear. Oxidative stress (OS) induced by reactive oxygen species (ROS) is likely a significant mechanism by which SM leads to cell death and tissues injury. SM can trigger various molecular and cellular pathways that are linked to ROS generation, OS, and inflammation. Hypoxia-induced oxidative stress, reduced activity of enzymatic antioxidants, depletion of intercellular glutathione (GSH), decreased productivity of GSH-dependent antioxidants, mitochondrial dysfunction, accumulation of leukocytes and proinflammatory cytokines, and increased expression of ROS producing-related enzymes and inflammatory mediators are the major events in which SM leads to massive production of ROS and OS in pulmonary system. Therefore, understanding of these molecules and signaling pathways gives us valuable information about toxicological effects of SM on injured tissues and the way for developing a suitable clinical treatment. In this review, we aim to discuss the possible mechanisms by which SM induces excessive production of ROS, OS, and antioxidants depletion in lung tissue of exposed patients.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine & Biomedical Innovations , Pasteur Institute of Iran , Tehran , Iran
| | - Hojat Borna
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Ali Imamy
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| |
Collapse
|
26
|
Panahi Y, Fattahi A, Nejabati HR, Abroon S, Latifi Z, Akbarzadeh A, Ghasemnejad T. DNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:230-236. [PMID: 29428683 DOI: 10.1016/j.etap.2018.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Sulfur mustard (SM) is an alkylating agent that causes severe damages to the skin, eyes, and the respiratory system. DNA alkylation is one of the most critical lesions that could lead to monoadducts and cross-links, as well as DNA strand breaks. In response to these adducts, cells initiate a series of reactions to recruit specific DNA repair pathways. The main DNA repair pathways in human cells, which could be involved in the DNA SM-induced DNA damages, are base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end joining (NHEJ). There is, thus, a need for a short review to clarify which damage caused by SM is repaired by which repair pathway. Increasing our knowledge about different DNA repair mechanisms following SM exposure would lay the first step for developing new therapeutic agents to treat people exposed to SM. In this review, we describe the major DNA repair pathways, according to the DNA adducts that can be caused by SM.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Abroon
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Ghasemnejad
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|
28
|
Rose D, Schmidt A, Brandenburger M, Sturmheit T, Zille M, Boltze J. Sulfur mustard skin lesions: A systematic review on pathomechanisms, treatment options and future research directions. Toxicol Lett 2017; 293:82-90. [PMID: 29203275 DOI: 10.1016/j.toxlet.2017.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare, which has been used for one hundred years. However, its exact pathomechanisms are still incompletely understood and there is no specific therapy available so far. In this systematic review, studies published between January 2000 and July 2017 involving pathomechanisms and experimental treatments of SM-induced skin lesions were analyzed to summarize current knowledge on SM pathology, to provide an overview on novel treatment options, and to identify promising targets for future research to more effectively counter SM effects. We suggest that future studies should focus on (I) systemic effects of SM intoxication due to its distribution throughout the body, (II) removal of SM depots that continuously release active compound contributing to chronic skin damage, and (III) therapeutic options that counteract the pleiotropic effects of SM.
Collapse
Affiliation(s)
- Dorothee Rose
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Universität der Bundeswehr, Fakultät für Humanwissenschaften, Department für Sportwissenschaft, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
| | - Matthias Brandenburger
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Tabea Sturmheit
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Marietta Zille
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany; Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| |
Collapse
|
29
|
Alteration of miRNA expression in a sulfur mustard resistant cell line. Toxicol Lett 2017; 293:38-44. [PMID: 28823541 DOI: 10.1016/j.toxlet.2017.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are responsible for post-transcriptional control of protein expression. Numerous miRNAs have been identified to be responsible for the resistance of tumor cells to cytostatic drugs. Possibly, the same miRNAs also play a role in the sulfur mustard (SM)-resistance of the keratinocyte cell line HaCaT/SM as alkylating cytostatics exhibit similar cytotoxic effects as SM. METHODS Basal expression levels of 1920 miRNAs in total were analyzed in HaCaT/SM compared to the origin human keratinocyte cell line HaCaT. The effect for selected miRNAs on cell survival was analyzed using antagomirs for ectopic miRNA level decrease or miRNA mimics for increase. Cell survival was calculated as SM dose-dependent-curves. RESULTS Out of 1920 miRNAs analyzed, 49 were significantly up- and 29 were significantly downregulated in HaCaT/SM when compared to HaCaT controls. Out of these, 36 could be grouped in miRNA families. Most of the 15 miRNA family members showed either a common increase or decrease. Only the members of miR-10, miR-154, miR-430 and miR-548 family showed an inconsistent picture. The ectopic increase of miR-181 in HaCaT/SM had a positive effect on cell survival in the presence of SM. CONCLUSION In summary, the extensive differences in miRNA expression pattern between these cell lines indicate that specific miRNAs may play a role in the resistance mechanism against sulfur mustard. The miR-125b-2 and miR-181b alone are not responsible for the resistance development against SM, but an ectopic increase of miR-181 even enhances the SM resistance of HaCaT/SM. Improving the resistance in normal keratinocytes by treatment with either both miRNAs together or a different combination might be used as an initial step in development of an innovative new drug or prophylactic agent against SM.
Collapse
|
30
|
Jost P, Fikrova P, Svobodova H, Pejchal J, Stetina R. Protective potential of different compounds and their combinations with MESNA against sulfur mustard-induced cytotoxicity and genotoxicity. Toxicol Lett 2017; 275:92-100. [PMID: 28495614 DOI: 10.1016/j.toxlet.2017.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/11/2017] [Accepted: 05/05/2017] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to evaluate the efficacy of potential candidate molecules or their combinations against strong alkylation agent sulfur mustard (SM) on the human lung alveolar epithelial cell line A-549. Candidate molecules were chosen on the basis of their previously observed protective effects in vitro. The tested compounds, including antioxidants, sulfhydryl or other sulfur-containing molecules, nitrogen-containing molecules, PARP inhibitors and a NO synthase inhibitor, were applicated 30min before SM treatment. The efficiency of candidate molecules to protect cells against DNA damage and cell death induced by SM was determined using single-cell gel electrophoresis (comet assay) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by viable cells. The damage of DNA was assessed 1 and 24h after dose 50μM SM. Cell survival was assessed 24 and 72h after the exposure. To achieve maximal cytoprotection, combinations of selected compounds with sodium 2-mercaptoethane sulphonate (MESNA) were tested. We found significant protective effects by several drugs used individually and also in combination with MESNA. High protection was achieved by sodium thiosulphate, which was further potentiated when combined with MESNA. Most of the selected compounds or mixture provided only moderate genoptotection without having any effect towards cell viability.
Collapse
Affiliation(s)
- Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Petra Fikrova
- Department of Research and Development, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Hana Svobodova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Rudolf Stetina
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
31
|
Khan F, Niaz K, Ismail Hassan F, Abdollahi M. An evidence-based review of the genotoxic and reproductive effects of sulfur mustard. Arch Toxicol 2016; 91:1143-1156. [PMID: 28032143 DOI: 10.1007/s00204-016-1911-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023]
Abstract
Sulfur mustard (SM) is a chemical warfare agent which is cytotoxic in nature, and at the molecular level, SM acts as DNA alkylating agent leading to genotoxic and reproductive effects. Mostly, the exposed areas of the body are the main targets for SM; however, it also adversely affects various tissues of the body and ultimately exhibits long-term complications including genotoxic and reproductive effects, even in the next generations. The effect of SM on reproductive system is the reason behind male infertility. The chronic genotoxic and reproductive complications of SM have been observed in the next generation, such as reproductive hormones disturbances, testicular atrophy, deficiency of sperm cells, retarded growth of sperm and male infertility. SM exerts toxic effects through various mechanisms causing reproductive dysfunction. The key mechanisms include DNA alkylation, production of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NAD) depletion. However, the exact molecular mechanism of such long-term effects of SM is still unclear. In general, DNA damage, cell death and defects in the cell membrane are frequently observed in SM-exposed individuals. SM can activate various cellular and molecular mechanisms related to oxidative stress (OS) and inflammatory responses throughout the reproductive system, which can cause decreased spermatogenesis and impaired sperm quality via damage to tissue function and structure. Moreover, the toxic effects of SM on the reproductive system as well as the occurrence of male infertility among exposed war troopers in the late exposure phase is still uncertain. The chronic effects of SM exposure in parents can cause congenital defects in their children. In this review, we aimed to investigate chronic genotoxic and reproductive effects of SM and their molecular mechanisms in the next generations.
Collapse
Affiliation(s)
- Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
32
|
Nourani MR, Mahmoodzadeh Hosseini H, Azimzadeh Jamalkandi S, Imani Fooladi AA. Cellular and molecular mechanisms of acute exposure to sulfur mustard: a systematic review. J Recept Signal Transduct Res 2016; 37:200-216. [DOI: 10.1080/10799893.2016.1212374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammad Reza Nourani
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Marzony ET, Ghanei M, Panahi Y. Relationship of oxidative stress with male infertility in sulfur mustard-exposed injuries. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature. Toxicol Lett 2016; 241:71-81. [DOI: 10.1016/j.toxlet.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 11/23/2022]
|
35
|
Tahmasbpour E, Reza Emami S, Ghanei M, Panahi Y. Role of oxidative stress in sulfur mustard-induced pulmonary injury and antioxidant protection. Inhal Toxicol 2015; 27:659-72. [DOI: 10.3109/08958378.2015.1092184] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Li DW, Sun JY, Wang K, Zhang S, Hou YJ, Yang MF, Fu XY, Zhang ZY, Mao LL, Yuan H, Fang J, Fan CD, Zhu MJ, Sun BL. Attenuation of Cisplatin-Induced Neurotoxicity by Cyanidin, a Natural Inhibitor of ROS-Mediated Apoptosis in PC12 Cells. Cell Mol Neurobiol 2015; 35:995-1001. [PMID: 25895624 PMCID: PMC11488056 DOI: 10.1007/s10571-015-0194-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/10/2015] [Indexed: 01/15/2023]
Abstract
Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.
Collapse
Affiliation(s)
- Da-wei Li
- Department of Neurology, Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Jing-yi Sun
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Kun Wang
- Taishan Vocational College of Nursing, Taian, 271000, Shandong, China
| | - Shuai Zhang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ya-jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ming-feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Xiao-yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Zong-yong Zhang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Lei-lei Mao
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Hui Yuan
- Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, China
| | - Jie Fang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Cun-dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Mei-jia Zhu
- Department of Neurology, Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China.
| | - Bao-liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
- Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
37
|
Mangerich A, Debiak M, Birtel M, Ponath V, Balszuweit F, Lex K, Martello R, Burckhardt-Boer W, Strobelt R, Siegert M, Thiermann H, Steinritz D, Schmidt A, Bürkle A. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicol Lett 2015; 244:56-71. [PMID: 26383629 DOI: 10.1016/j.toxlet.2015.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of N7-ETE-guanine DNA adducts, the excision rate of CEES-induced DNA adducts was not affected by PARP inhibition. Furthermore, while CEES induced moderate changes in cellular NAD(+) levels, annexin V/PI flow cytometry analysis revealed that these changes did not affect CEES-induced short-term cytotoxicity 24h after treatment. In contrast, PARP inhibition impaired cell proliferation and clonogenic survival, and potentiated micronuclei formation of HaCaT cells upon CEES treatment. Similarly, PARP inhibition affected clonogenic survival of cells treated with bi-functional mustards such as SM and HN2. In conclusion, we demonstrate that PARylation plays a functional role in mustard-induced cellular stress response with substance-specific differences. Since PARP inhibitors exhibit therapeutic potential to treat SM-related pathologies and to sensitize cancer cells for mustard-based chemotherapy, potential long-term effects of PARP inhibition on genomic stability and carcinogenesis should be carefully considered when pursuing such a strategy.
Collapse
Affiliation(s)
- Aswin Mangerich
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Malgorzata Debiak
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Matthias Birtel
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Viviane Ponath
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Frank Balszuweit
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Kirsten Lex
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Rita Martello
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Waltraud Burckhardt-Boer
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Romano Strobelt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, 80336 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Alexander Bürkle
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany.
| |
Collapse
|
38
|
Wang P, Zhang Y, Chen J, Guo L, Xu B, Wang L, Xu H, Xie J. Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method. Chem Res Toxicol 2015; 28:1224-33. [PMID: 25955432 DOI: 10.1021/acs.chemrestox.5b00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a powerful alkylating vesicant that can rapidly penetrate skin, ocular, and lung bronchus mucous membranes and react with numerous nucleophiles in vivo. Although the lesion mechanisms of SM remain unclear, DNA damage is believed to be the most crucial factor in initiating SM-induced toxicity. Four major DNA adducts were identified for retrospective detection and DNA lesion evaluation, namely, N(7)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA), and O(6)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (O(6)-HETEG). Because of previous observations that the levels of SM-DNA adducts were relatively higher in adipose-rich organs, such as the brain, we focused on the in vitro and in vivo fates of the DNA adducts in exposed adipocytes. A UPLC-MS/MS method developed in our laboratory was used to profile the N(7)-HETEG, Bis-G, and N(3)-HETEA levels in human mature adipocytes (HA-s) that had differentiated from human subcutaneous preadipocytes (HPA-s). This method was also used to profile three other cell lines related to the targeting of major tissues, including human keratinocytes (HaCaT), human hepatocytes (L-02), and human lung fibroblasts (HLF). Long-lasting adduct persistence and a high proportion of Bis-G were found in exposed adipocytes in vitro. The survival properties of exposed adipocytes were also tested. At the same time, the fate of SM-DNA adducts in vivo was characterized using a rat model exposed to 1 and 10 mg/kg doses of SM. The level of DNA adducts in the exposed adipose tissue (AT) was much lower than those in other organs studied in our previous work. The adduct persistence behavior was observed in AT with an extremely high proportion of Bis-G, which was higher than N(7)-HETEG. In light of these results, we suggest that an adipose-rich environment may promote the formation of Bis-G and that adipocyte-specific DNA repair mechanisms may result in adduct persistence and the survival of adipocytes after SM exposure. These conclusions should be further investigated.
Collapse
Affiliation(s)
- Peng Wang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yajiao Zhang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jia Chen
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Bin Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lili Wang
- ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Hua Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jianwei Xie
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|
39
|
Checkpoint kinase 1 is activated and promotes cell survival after exposure to sulphur mustard. Toxicol Lett 2015; 232:413-21. [DOI: 10.1016/j.toxlet.2014.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023]
|
40
|
Jowsey PA, Blain PG. Whole genome expression analysis in primary bronchial epithelial cells after exposure to sulphur mustard. Toxicol Lett 2014; 230:393-401. [PMID: 25102026 DOI: 10.1016/j.toxlet.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/23/2022]
Abstract
Sulphur mustard (SM) is a highly toxic chemical agent and poses a current threat to both civilians and military personnel in the event of a deliberate malicious release. Acute SM toxicity develops over the course of several hours and mainly affects the skin and mucosal surfaces of the eyes and respiratory system. In cases of acute severe exposure, significant lung injury can result in respiratory failure and death. Systemic levels of SM can also be fatal, frequently due to immunodepletion and the subsequent development of secondary infections. Whilst the physical effects associated with SM exposure are well documented, the molecular mechanisms mediating these changes are poorly understood, hindering the development of an effective therapeutic strategy. To gain a better understanding of the mechanism of SM toxicity, this study investigated whole genome transcriptional changes after SM in primary human bronchial epithelial cells, as a model for inhalation exposure. The analysis revealed >400 transcriptional changes associated with SM exposure. Pathways analysis confirmed the findings of previous studies suggesting that DNA damage, cell cycle arrest, cell death and inflammation were important components of SM toxicity. In addition, several other interesting observations were made, suggesting that protein oxidation as well as effects on the mitotic apparatus may contribute to SM toxicity.
Collapse
Affiliation(s)
- Paul A Jowsey
- Medical Toxicology Centre, Wolfson Unit, Newscastle University, Newcastle upon Tyne NE 4AA, United Kingdom.
| | - Peter G Blain
- Medical Toxicology Centre, Wolfson Unit, Newscastle University, Newcastle upon Tyne NE 4AA, United Kingdom
| |
Collapse
|
41
|
Bennett RA, Behrens E, Zinn A, Duncheon C, Lamkin TJ. Mustard gas surrogate, 2-chloroethyl ethylsulfide (2-CEES), induces centrosome amplification and aneuploidy in human and mouse cells. Cell Biol Toxicol 2014; 30:195-205. [DOI: 10.1007/s10565-014-9279-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/07/2014] [Indexed: 12/21/2022]
|
42
|
Inturi S, Tewari-Singh N, Agarwal C, White CW, Agarwal R. Activation of DNA damage repair pathways in response to nitrogen mustard-induced DNA damage and toxicity in skin keratinocytes. Mutat Res 2014; 763-764:53-63. [PMID: 24732344 DOI: 10.1016/j.mrfmmm.2014.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
Nitrogen mustard (NM), a structural analog of chemical warfare agent sulfur mustard (SM), forms adducts and crosslinks with DNA, RNA and proteins. Here we studied the mechanism of NM-induced skin toxicity in response to double strand breaks (DSBs) resulting in cell cycle arrest to facilitate DNA repair, as a model for developing countermeasures against vesicant-induced skin injuries. NM exposure of mouse epidermal JB6 cells decreased cell growth and caused S-phase arrest. Consistent with these biological outcomes, NM exposure also increased comet tail extent moment and the levels of DNA DSB repair molecules phospho H2A.X Ser139 and p53 Ser15 indicating NM-induced DNA DSBs. Since DNA DSB repair occurs via non homologous end joining pathway (NHEJ) or homologous recombination repair (HRR) pathways, next we studied these two pathways and noted their activation as defined by an increase in phospho- and total DNA-PK levels, and the formation of Rad51 foci, respectively. To further analyze the role of these pathways in the cellular response to NM-induced cytotoxicity, NHEJ and HRR were inhibited by DNA-PK inhibitor NU7026 and Rad51 inhibitor BO2, respectively. Inhibition of NHEJ did not sensitize cells to NM-induced decrease in cell growth and cell cycle arrest. However, inhibition of the HRR pathway caused a significant increase in cell death, and prolonged G2M arrest following NM exposure. Together, our findings, indicating that HRR is the key pathway involved in the repair of NM-induced DNA DSBs, could be useful in developing new therapeutic strategies against vesicant-induced skin injury.
Collapse
Affiliation(s)
- Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA.
| |
Collapse
|
43
|
Batal M, Boudry I, Mouret S, Wartelle J, Emorine S, Bertoni M, Bérard I, Cléry-Barraud C, Douki T. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin. Toxicol Appl Pharmacol 2013; 273:644-50. [PMID: 24141030 DOI: 10.1016/j.taap.2013.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM-DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM-DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker.
Collapse
Affiliation(s)
- Mohamed Batal
- Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier - Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France; Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Inturi S, Tewari-Singh N, Jain AK, Roy S, White CW, Agarwal R. Absence of a p53 allele delays nitrogen mustard-induced early apoptosis and inflammation of murine skin. Toxicology 2013; 311:184-90. [PMID: 23845566 DOI: 10.1016/j.tox.2013.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022]
Abstract
Bifunctional alkylating agent sulfur mustard (SM) and its analog nitrogen mustard (NM) cause DNA damage leading to cell death, and potentially activating inflammation. Transcription factor p53 plays a critical role in DNA damage by regulating cell cycle progression and apoptosis. Earlier studies by our laboratory demonstrated phosphorylation of p53 at Ser15 and an increase in total p53 in epidermal cells both in vitro and in vivo following NM exposure. To elucidate the role of p53 in NM-induced skin toxicity, we employed SKH-1 hairless mice harboring wild type (WT) or heterozygous p53 (p53+/-). Exposure to NM (3.2mg) caused a more profound increase in epidermal thickness and apoptotic cell death in WT relative to p53+/- mice at 24h. However, by 72h after exposure, there was a comparable increase in NM-induced epidermal cell death in both WT and p53+/- mice. Myeloperoxidase activity data showed that neutrophil infiltration was strongly enhanced in NM-exposed WT mice at 24h persisting through 72h of exposure. Conversely, robust NM-induced neutrophil infiltration (comparable to WT mice) was seen only at 72h after exposure in p53+/- mice. Similarly, NM-exposure strongly induced macrophage and mast cell infiltration in WT, but not p53+/- mice. Together, these data indicate that early apoptosis and inflammation induced by NM in mouse skin are p53-dependent. Thus, targeting this pathway could be a novel strategy for developing countermeasures against vesicants-induced skin injury.
Collapse
Affiliation(s)
- Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Ghasemi H, Owlia P, Jalali-Nadoushan MR, Pourfarzam S, Azimi G, Yarmohammadi ME, Shams J, Fallahi F, Moaiedmohseni S, Moin A, Yaraee R, Vaez-Mahdavi MR, Faghihzadeh S, Mohammad Hassan Z, Soroush MR, Naghizadeh MM, Ardestani SK, Ghazanfari T. A clinicopathological approach to sulfur mustard-induced organ complications: a major review. Cutan Ocul Toxicol 2013; 32:304-24. [PMID: 23590683 DOI: 10.3109/15569527.2013.781615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Sulfur mustard (SM), with an old manufacturing history still remains as potential threat due to easy production and extensive effects. OBJECTIVES Increasing studies on SM indicates the interest of researchers to this subject. Almost all human body organs are at risk for complications of SM. This study offers organ-by-organ information on the effects of SM in animals and humans. METHODS The data sources were literature reviews since 1919 as well as our studies during the Iraq-Iran war. The search items were SM and its all other nomenclatures in relation to, in vivo, in vitro, humans, animals, eye, ocular, ophthalmic, lungs, pulmonary, skin, cutaneous, organs and systemic. Amongst more than 1890 SM-related articles, 257 more relevant clinicopathologic papers were selected for this review. RESULTS SM induces a vast range of damages in nearly all organs. Acute SM intoxication warrants immediate approach. Among chronic lesions, delayed keratitis and blindness, bronchiolitis obliterans and respiratory distress, skin pruritus, dryness and cancers are the most commonly observed clinical sequelae. CONCLUSION Ocular involvements in a number of patients progress toward a severe, rapid onset form of keratitis. Progressive deterioration of respiratory tract leads to "mustard lung". Skin problems continue as chronic frustrating pruritus on old scars with susceptibility to skin cancers. Due to the multiple acute and chronic morbidities created by SM exposure, uses of multiple drugs by several routes of administrations are warranted.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schoenhals M, Kassambara A, Veyrune JL, Moreaux J, Goldschmidt H, Hose D, Klein B. Krüppel-like factor 4 blocks tumor cell proliferation and promotes drug resistance in multiple myeloma. Haematologica 2013; 98:1442-9. [PMID: 23585530 DOI: 10.3324/haematol.2012.066944] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Krüppel-like factor 4 is a transcription factor with anti-proliferative effects in differentiated cells, but with the ability to reprogram adult cells into cell-cycling pluripotent cells. In cancer, Krüppel-like factor 4 acts as either an anti-oncogene or an oncogene. We analyzed Krüppel-like factor 4 gene expression in multiple myeloma using Affymetrix microarrays. We generated conditionally expressing Krüppel-like factor 4 myeloma cell lines to investigate the function of this gene in myeloma biology. Krüppel-like factor 4 gene expression is high in normal plasma cells, but reduced in primary multiple myeloma cells from two-thirds of patients. It is not expressed by any human myeloma cell line due to promoter methylation. Conditional expression of Krüppel-like factor 4 led to complete cell cycle blockade, mainly in G1 phase, with no major apoptosis. This blockade was associated with induction of p21(Cip1) and p27(Kip1) in cell lines with an intact p53 pathway, and of p27(Kip1) only in those with an impaired p53 pathway. Krüppel-like factor 4 is highly expressed in the poor prognostic MS group with t(4;14) translocation and in the good prognostic CD-1 group with t(11;14) or t(6;14). The apparent contradiction of cell cycle inhibitor Krüppel-like factor 4 expression in patients with poor prognosis could be reconciled since its expression increased the resistance of myeloma cell lines to melphalan. In conclusion, we describe for the first time that Krüppel-like factor 4 could play a critical role in controlling the cell cycle and resistance to alkylating agents in multiple myeloma cells.
Collapse
|