1
|
Koziorowski D, Figura M, Milanowski ŁM, Szlufik S, Alster P, Madetko N, Friedman A. Mechanisms of Neurodegeneration in Various Forms of Parkinsonism-Similarities and Differences. Cells 2021; 10:656. [PMID: 33809527 PMCID: PMC7999195 DOI: 10.3390/cells10030656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.
Collapse
Affiliation(s)
- Dariusz Koziorowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Monika Figura
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Łukasz M. Milanowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Piotr Alster
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Natalia Madetko
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Andrzej Friedman
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| |
Collapse
|
2
|
Wang R, Wang Y, Qu L, Chen B, Jiang H, Song N, Xie J. Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2. Neurochem Int 2019; 125:127-135. [DOI: 10.1016/j.neuint.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/30/2022]
|
3
|
Vela D. The Dual Role of Hepcidin in Brain Iron Load and Inflammation. Front Neurosci 2018; 12:740. [PMID: 30374287 PMCID: PMC6196657 DOI: 10.3389/fnins.2018.00740] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022] Open
Abstract
Hepcidin is the major regulator of systemic iron metabolism, while the role of this peptide in the brain has just recently been elucidated. Studies suggest a dual role of hepcidin in neuronal iron load and inflammation. This is important since neuronal iron load and inflammation are pathophysiological processes frequently associated with neurodegeneration. Furthermore, manipulation of hepcidin activity has recently been used to recover neuronal damage due to brain inflammation in animal models and cultured cells. Therefore, understanding the mechanistic insights of hepcidin action in the brain is important to uncover its role in treating neuronal damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| |
Collapse
|
4
|
Kwiatek-Majkusiak J, Geremek M, Koziorowski D, Tomasiuk R, Szlufik S, Friedman A. Higher serum levels of pro-hepcidin in patients with Parkinson's disease treated with deep brain stimulation. Neurosci Lett 2018; 684:205-209. [PMID: 29928951 DOI: 10.1016/j.neulet.2018.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 01/08/2023]
Abstract
Hepcidin is an essential hormone responsible for the systemic metabolism of iron and simultaneously belongs to the family of the protein mediators of the acute inflammatory response, primarily induced in response to interleukin 6. It can therefore be regarded as a link between the oxidative stress processes, where iron plays an important role, and the processes of neuroinflammation - both considered to be responsible for the neurodegeneration in Parkinson's disease. We assessed the serum level of pro-hepcidin in patients with Parkinson's disease treated only pharmacologically and those treated additionally with deep brain stimulation (DBS) as compared to the control group. Thirty-seven patients with Parkinson's disease (18 females, 19 males, mean age: 57 years) were treated only pharmacologically with optimal, individualized therapy for each patient, whereas 15 (7 females, 8 males, mean age: 54 years) were treated additionally with DBS. The control group consisted of 31 healthy volunteers (15 females, 16 males, mean age: 58 years). In the subgroup of patients with Parkinson's disease treated with DBS the serum concentration of pro-hepcidin was significantly higher and the result was statistically significantly higher than in the control group (p = 0.0003) and in patients with Parkinson's disease treated only pharmacologically (p = 0.025). The results suggested the possible immunomodulatory effect of prolonged high-frequency stimulation and the implantation of the electrodes into the brain tissue of the host, most likely in the form of the increasaed production of inflammatory mediators, associated with the activation of the astroglia and microglia. The rational justification for the purpose of our study was the evidences and hypothesis from studies on the potential immunomodulatory and neuroprotective effect of DBS in patients with Parkinson's disease, the systemic influence of the DBS procedure on the improvement of motor function, reduction of dopaminergic drugs, improvement of the quality of life of patients, and animal studies, which have proven the presence of regional neuroinflammation around implanted electrodes.
Collapse
Affiliation(s)
- J Kwiatek-Majkusiak
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland.
| | - M Geremek
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland
| | - D Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland
| | - R Tomasiuk
- Biochemistry Laboratory, Mazovia Brodnowski Hospital, Warsaw, Poland
| | - S Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland
| | - A Friedman
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland
| |
Collapse
|
5
|
Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer's disease: as it was in the beginning. Rev Neurosci 2018; 28:825-843. [PMID: 28704198 DOI: 10.1515/revneuro-2017-0006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Abstract
Since Alzheimer's disease was first described in 1907, many attempts have been made to reveal its main cause. Nowadays, two forms of the disease are known, and while the hereditary form of the disease is clearly caused by mutations in one of several genes, the etiology of the sporadic form remains a mystery. Both forms share similar sets of neuropathological and molecular manifestations, including extracellular deposition of amyloid-beta, intracellular accumulation of hyperphosphorylated tau protein, disturbances in both the structure and functions of mitochondria, oxidative stress, metal ion metabolism disorders, impairment of N-methyl-D-aspartate receptor-related signaling pathways, abnormalities of lipid metabolism, and aberrant cell cycle reentry in some neurons. Such a diversity of symptoms led to proposition of various hypotheses for explaining the development of Alzheimer's disease, the amyloid hypothesis, which postulates the key role of amyloid-beta in Alzheimer's disease development, being the most prominent. However, this hypothesis does not fully explain all of the molecular abnormalities and is therefore heavily criticized. In this review, we propose a hypothetical model of Alzheimer's disease progression, assuming a key role of age-related mitochondrial dysfunction, as was postulated in the mitochondrial cascade hypothesis. Our model explains the connections between all the symptoms of Alzheimer's disease, with particular attention to autophagy, metal metabolism disorders, and aberrant cell cycle re-entry in neurons. Progression of the Alzheimer's disease appears to be a complex process involving aging and too many protective mechanisms affecting one another, thereby leading to even greater deleterious effects.
Collapse
|
6
|
Vela D. Hepcidin, an emerging and important player in brain iron homeostasis. J Transl Med 2018; 16:25. [PMID: 29415739 PMCID: PMC5803919 DOI: 10.1186/s12967-018-1399-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/31/2018] [Indexed: 02/08/2023] Open
Abstract
Hepcidin is emerging as a new important factor in brain iron homeostasis. Studies suggest that there are two sources of hepcidin in the brain; one is local and the other comes from the circulation. Little is known about the molecular mediators of local hepcidin expression, but inflammation and iron-load have been shown to induce hepcidin expression in the brain. The most important source of hepcidin in the brain are glial cells. Role of hepcidin in brain functions has been observed during neuronal iron-load and brain hemorrhage, where secretion of abundant hepcidin is related with the severity of brain damage. This damage can be reversed by blocking systemic and local hepcidin secretion. Studies have yet to unveil its role in other brain conditions, but the rationale exists, since these conditions are characterized by overexpression of the factors that stimulate brain hepcidin expression, such as inflammation, hypoxia and iron-overload.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Martyr's Boulevard n.n., 10000, Prishtina, Kosova.
| |
Collapse
|
7
|
Healy S, McMahon JM, FitzGerald U. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations. Prog Neurobiol 2017; 158:1-14. [DOI: 10.1016/j.pneurobio.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023]
|
8
|
Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer's disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol 2016; 38:1-9. [PMID: 27329321 DOI: 10.1016/j.jtemb.2016.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
There is strong literature support for brain metal dysregulation, oxidative stress and oxidative damage to neurons in Alzheimer's disease (AD); these processes begin early and continue throughout the disease. Here, we review current knowledge on metal dysregulation and nucleic acid oxidative damage in AD (we also include new data demonstrating increased RNA and DNA oxidative damage in hippocampus from individuals having suffered from degenerative (e.g. AD) and psychological diseases: 8-oxo-7,8-dihydroguanine (8-oxoGua) levels as determined by HPLC-EC-UV were particularly elevated in RNA and heterogeneously distributed among adjacent regions versus the control). Whereas neuronal iron accumulation occurs in aging, neuronal iron levels further increase in AD accompanied by oxidative damage, decreased copper levels, amyloid plaque formation and brain inflammation. The 'hepcidin-ferroportin iron overload' AD hypothesis links these processes together and is discussed here. Moreover, we find that most existing transgenic animal AD models only partly involve these processes, rather they are often limited to expression of mutated amyloid beta protein precursor (AbetaPP), presenilin, tau or apolipoprotein E proteins although a few models appear more relevant than others. Relevant models are likely to be crucial for refining and testing this hypothesis as well as developing new drugs.
Collapse
Affiliation(s)
- Tim Hofer
- Department of Toxicology and Risk Assessment, Infection Control and Environmental Health, The Norwegian Institute of Public Health, Oslo, Norway.
| | - George Perry
- UTSA Neurosciences Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
9
|
Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease. PARKINSONS DISEASE 2016; 2016:8684130. [PMID: 27298749 PMCID: PMC4889865 DOI: 10.1155/2016/8684130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.
Collapse
|
10
|
Poli M, Asperti M, Ruzzenenti P, Regoni M, Arosio P. Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol 2014; 5:86. [PMID: 24808863 PMCID: PMC4009444 DOI: 10.3389/fphar.2014.00086] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022] Open
Abstract
The discovery of hepcidin clarified the basic mechanism of the control of systemic iron homeostasis. Hepcidin is mainly produced by the liver as a propeptide and processed by furin into the mature active peptide. Hepcidin binds ferroportin, the only cellular iron exporter, causing the internalization and degradation of both. Thus hepcidin blocks iron export from the key cells for dietary iron absorption (enterocytes), recycling of hemoglobin iron (the macrophages) and the release of storage iron from hepatocytes, resulting in the reduction of systemic iron availability. The BMP/HJV/SMAD pathway is the major regulator of hepcidin expression that responds to iron status. Also inflammation stimulates hepcidin via the IL6/STAT3 pathway with a support of an active BMP/HJV/SMAD pathway. In some pathological conditions hepcidin level is inadequately elevated and reduces iron availability in the body, resulting in anemia. These conditions occur in the genetic iron refractory iron deficiency anemia and the common anemia of chronic disease (ACD) or anemia of inflammation. Currently, there is no definite treatment for ACD. Erythropoiesis-stimulating agents and intravenous iron have been proposed in some cases but they are scarcely effective and may have adverse effects. Alternative approaches aimed to a pharmacological control of hepcidin expression have been attempted, targeting different regulatory steps. They include hepcidin sequestering agents (antibodies, anticalins, and aptamers), inhibitors of BMP/SMAD or of IL6/STAT3 pathway or of hepcidin transduction (siRNA/shRNA) or ferroportin stabilizers. In this review we summarized the biochemical interactions of the proteins involved in the BMP/HJV/SMAD pathway and its natural inhibitors, the murine and rat models with high hepcidin levels currently available and finally the progresses in the development of hepcidin antagonists, with particular attention to the role of heparins and heparin sulfate proteoglycans in hepcidin expression and modulation of the BMP6/SMAD pathway.
Collapse
Affiliation(s)
- Maura Poli
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Michela Asperti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Paola Ruzzenenti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Maria Regoni
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Paolo Arosio
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| |
Collapse
|
11
|
Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:726954. [PMID: 23710288 PMCID: PMC3654362 DOI: 10.1155/2013/726954] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes.
Collapse
|