1
|
Despotović A, Janjetović K, Zogović N, Tovilović-Kovačević G. Pharmacological Akt and JNK Kinase Inhibitors 10-DEBC and SP600125 Potentiate Anti-Glioblastoma Effect of Menadione and Ascorbic Acid Combination in Human U251 Glioblastoma Cells. Biomedicines 2023; 11:2652. [PMID: 37893026 PMCID: PMC10604608 DOI: 10.3390/biomedicines11102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, characterized by a highly invasive nature and therapy resistance. Combination of menadione and ascorbic acid (AA+MD) exerts strong ROS-mediated anti-GBM activity in vitro. The objective of this study was to improve AA+MD anti-GBM potential by modulating the activity of Akt and c-Jun N-terminal kinase (JNK), molecules with an important role in GBM development. The effects of Akt and JNK modulation on AA+MD toxicity in U251 human glioblastoma cells were assessed by cell viability assays, flow cytometry, RNA interference and plasmid overexpression, and immunoblot analysis. The AA+MD induced severe oxidative stress, an early increase in Akt phosphorylation followed by its strong inhibition, persistent JNK activation, and U251 cell death. Small molecule Akt kinase inhibitor 10-DEBC enhanced, while pharmacological and genetic Akt activation decreased, AA+MD-induced toxicity. The U251 cell death potentiation by 10-DEBC correlated with an increase in the combination-induced autophagic flux and was abolished by genetic autophagy silencing. Additionally, pharmacological JNK inhibitor SP600125 augmented combination toxicity toward U251 cells, an effect linked with increased ROS accumulation. These results indicate that small Akt and JNK kinase inhibitors significantly enhance AA+MD anti-GBM effects by autophagy potentiation and amplifying deleterious ROS levels.
Collapse
Affiliation(s)
- Ana Despotović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.D.); (K.J.)
| | - Kristina Janjetović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.D.); (K.J.)
| | - Nevena Zogović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.D.); (K.J.)
| | - Gordana Tovilović-Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Thiel A, Weishaupt AK, Nicolai MM, Lossow K, Kipp AP, Schwerdtle T, Bornhorst J. Simultaneous quantitation of oxidized and reduced glutathione via LC-MS/MS to study the redox state and drug-mediated modulation in cells, worms and animal tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123742. [PMID: 37209457 DOI: 10.1016/j.jchromb.2023.123742] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Alterations in reduced and oxidized glutathione (GSH/GSSG) levels represent an important marker for oxidative stress and potential disease progression in toxicological research. Since GSH can be oxidized rapidly, using a stable and reliable method for sample preparation and GSH/GSSG quantification is essential to obtain reproducible data. Here we describe an optimised sample processing combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, validated for different biological matrices (lysates from HepG2 cells, C. elegans, and mouse liver tissue). To avoid autoxidation of GSH, samples were treated with the thiol-masking agent N-ethylmaleimide (NEM) and sulfosalicylic acid (SSA) in a single step. With an analysis time of 5 min, the developed LC-MS/MS method offers simultaneous determination of GSH and GSSG at high sample throughput with high sensitivity. This is especially interesting with respect of screening for oxidative and protective properties of substances in in vitro and in vivo models, e.g. C. elegans. In addition to method validation parameters (linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, interday, intraday), we verified the method by using menadione and L-buthionine-(S,R)-sulfoximine (BSO) as well established modulators of cellular GSH and GSSG concentrations. Thereby menadione proved to be a reliable positive control also in C. elegans.
Collapse
Affiliation(s)
- Alicia Thiel
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Merle M Nicolai
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Kristina Lossow
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | - Anna P Kipp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany.
| |
Collapse
|
3
|
Wianowska D, Bryshten I. New Insights into Vitamin K-From Its Natural Sources through Biological Properties and Chemical Methods of Quantitative Determination. Crit Rev Anal Chem 2022; 54:1502-1524. [PMID: 36083712 DOI: 10.1080/10408347.2022.2121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Vitamin K is one of the many health-promoting substances whose impact on the human body has been underestimated until recently. However, recently published research results have changed this situation, prompting some researchers to consider it a new panacea for diseases of old age. The result is a significant increase in interest in the accurate analysis of vitamin K in various types of samples, ranging from food, through dietary supplements, to biological matrices and clinical trials, both observational and interventional. This review summarizes the current state of knowledge about the proven and speculated biological activity of vitamin K and its importance for the world's aging societies, including the methods used for its isolation and analysis in various matrices types. Of all the analytical methods, the currently preferred methods of choice for the direct analysis of vitamin K are chromatographic methods, in particular liquid chromatography-tandem mass spectrometry. This technique, despite its sensitivity and selectivity, requires an appropriate stage of sample preparation. As there is still room for improvement in the efficiency of these methods, especially at the sample preparation stage, this review shows the directions that need to be taken to make these methods faster, more efficient and more environmentally friendly.
Collapse
Affiliation(s)
- Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Iryna Bryshten
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| |
Collapse
|
4
|
DDAH1 Protects against Acetaminophen-Induced Liver Hepatoxicity in Mice. Antioxidants (Basel) 2022; 11:antiox11050880. [PMID: 35624743 PMCID: PMC9137993 DOI: 10.3390/antiox11050880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
In many developed countries, acetaminophen (APAP) overdose-induced acute liver injury is a significant therapeutic problem. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme for asymmetric dimethylarginine (ADMA) metabolism. Growing evidence suggests that liver dysfunction is associated with increased plasma ADMA levels and reduced hepatic DDAH1 activity/expression. The purpose of this study was to investigate the involvement of DDAH1 in APAP-mediated hepatotoxicity using Ddah1-/- and DDAH1 transgenic mice. After APAP challenge, Ddah1-/- mice developed more severe liver injury than wild type (WT) mice, which was associated with a greater induction of fibrosis, oxidative stress, inflammation, cell apoptosis and phosphorylation of JNK. In contrast, overexpression of DDAH1 attenuated APAP-induced liver injury. RNA-seq analysis showed that DDAH1 affects xenobiotic metabolism and glutathione metabolism pathways in APAP-treated livers. Furthermore, we found that DDAH1 knockdown aggravated APAP-induced cell death, oxidative stress, phosphorylation of JNK and p65, upregulation of CYP2E1 and downregulation of GSTA1 in HepG2 cells. Collectively, our data suggested that DDAH1 has a marked protective effect against APAP-induced liver oxidative stress, inflammation and injury. Strategies to increase hepatic DDAH1 expression/activity may be novel approaches for drug-induced acute liver injury therapy.
Collapse
|
5
|
Teslenko I, Watson CJW, Xia Z, Chen G, Lazarus P. Characterization of Cytosolic Glutathione S-Transferases Involved in the Metabolism of the Aromatase Inhibitor, Exemestane. Drug Metab Dispos 2021; 49:1047-1055. [PMID: 34593616 PMCID: PMC11025106 DOI: 10.1124/dmd.121.000635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Exemestane (EXE) is a hormonal therapy used to treat estrogen receptor-positive breast cancer by inhibiting the final step of estrogen biosynthesis catalyzed by the enzyme aromatase. Cysteine conjugates of EXE and its active metabolite 17β-dihydro-EXE (DHE) are the major metabolites found in both the urine and plasma of patients taking EXE. The initial step in cysteine conjugate formation is glutathione conjugation catalyzed by the glutathione S-transferase (GST) family of enzymes. The goal of the present study was to identify cytosolic hepatic GSTs active in the GST-mediated metabolism of EXE and 17β-DHE. Twelve recombinant cytosolic hepatic GSTs were screened for their activity against EXE and 17β-DHE, and glutathionylated EXE and 17β-DHE conjugates were detected by ultra-performance liquid chromatography tandem mass spectrometry. GST α (GSTA) isoform 1, GST μ (GSTM) isoform 3 and isoform 1 were active against EXE, whereas only GSTA1 exhibited activity against 17β-DHE. GSTM1 exhibited the highest affinity against EXE with a Michaelis-Menten constant (KM) value that was 3.8- and 7.1-fold lower than that observed for GSTA1 and GSTM3, respectively. Of the three GSTs, GSTM3 exhibited the highest intrinsic clearance against EXE (intrinsic clearance = 0.14 nl·min-1·mg-1). The KM values observed for human liver cytosol against EXE (46 μM) and 17β-DHE (77 μM) were similar to those observed for recombinant GSTA1 (53 and 30 μM, respectively). Western blot analysis revealed that GSTA1 and GSTM1 composed 4.3% and 0.57%, respectively, of total protein in human liver cytosol; GSTM3 was not detected. These data suggest that GSTA1 is the major hepatic cytosolic enzyme involved in the clearance of EXE and its major active metabolite, 17β-DHE. SIGNIFICANCE STATEMENT: Most previous studies related to the metabolism of the aromatase inhibitor exemestane (EXE) have focused mainly on phase I metabolic pathways and the glucuronidation phase II metabolic pathway. However, recent studies have indicated that glutathionylation is the major metabolic pathway for EXE. The present study is the first to characterize hepatic glutathione S-transferase (GST) activity against EXE and 17β-dihydro-EXE and to identify GST α 1 and GST μ 1 as the major cytosolic GSTs involved in the hepatic metabolism of EXE.
Collapse
Affiliation(s)
- Irina Teslenko
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Zuping Xia
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
6
|
Liu X, Sui X, Zhang C, Wei K, Bao Y, Xiong J, Zhou Z, Chen Z, Wang C, Zhu H, Tang F. Glutathione S-transferase A1 suppresses tumor progression and indicates better prognosis of human primary hepatocellular carcinoma. J Cancer 2020; 11:83-91. [PMID: 31892975 PMCID: PMC6930411 DOI: 10.7150/jca.36495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
Glutathione S-transferase (GST) family members play an important role in detoxification, metabolism and carcinogenesis. The aim of this study is to investigate the effect of Glutathione S-transferase A1 (GSTA1) on the prognosis of HCC and to understand its role in tumor progression and the possible mechanism. GSTA1 in HCC was assessed using immunohistochemical staining, and it was found that HCC patients with better pathological differentiation had higher GSTA1 abundance. Further, high GSTA1 expression was correlated with low AFP, absent PVTT, and early stage TNM for HCC patients. Higher GSTA1 indicated longer overall survival and disease-free survival, while lower GSTA1 indicated poorer prognosis. Subsequently, lentiviral vector carrying GSTA1 gene was successfully constructed and maintained high expression in 97H and SNU449 liver cancer cells. We found that high GSTA1 restrained liver cancer cell proliferation, migration and invasion in vitro. Western blot showed that LKB1 and p-AMPK were upregulated while p-mTOR, p-p70 S6 Kinase and MMP-9 were downregulated in high GSTA1 groups. Taken together, high GSTA1 correlated with satisfactory prognosis of HCC. Additionally, GSTA1 may act as a protective factor through suppression of tumorigenesis by targeting AMPK/mTOR in HCC.
Collapse
Affiliation(s)
- Xiaojia Liu
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xianxian Sui
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Canjing Zhang
- Key Laboratory of Medical Molecular Virology, the Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Kelu Wei
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yun Bao
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Xiong
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhongwen Zhou
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhongqing Chen
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chaoqun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongguang Zhu
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Feng Tang
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
7
|
Shi C, Hao B, Yang Y, Muhammad I, Zhang Y, Chang Y, Li Y, Li C, Li R, Liu F. JNK Signaling Pathway Mediates Acetaminophen-Induced Hepatotoxicity Accompanied by Changes of Glutathione S-Transferase A1 Content and Expression. Front Pharmacol 2019; 10:1092. [PMID: 31620005 PMCID: PMC6763582 DOI: 10.3389/fphar.2019.01092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023] Open
Abstract
Acetaminophen (APAP) is an analgesic-antipyretic drug and widely used in clinics. Its overdose may cause serious liver damage. Here, we examined the mechanistic role of c-Jun N-terminal kinase (JNK) signaling pathway in liver injury induced by different doses of APAP. Male mice were treated with APAP (150 and 175 mg·kg-1), and meanwhile JNK inhibitor SP600125 was used to interfere APAP-induced liver damage. The results showed that JNK signaling pathway was activated by APAP in a dose-dependent manner. C-Jun N-terminal kinase inhibitor decreased JNK and c-Jun activation significantly (P < 0.01) at 175 mg·kg-1 APAP dose, and phosphorylation levels of upstream proteins of JNK were also decreased markedly (P < 0.05). In addition, serum aminotransferases activities and hepatic oxidative stress increased in a dose-dependent manner with APAP treatment, but the levels of aminotransferases and oxidative stress decreased in mice treated with JNK inhibitor, which implied that JNK inhibition ameliorated APAP-induced liver damage. It was observed that apoptosis was increased in APAP-induced liver injury, and SP600125 can attenuate apoptosis through the inhibition of JNK phosphorylation. Meanwhile, glutathione S-transferases A1 (GSTA1) content in serum was enhanced, while GSTA1 content and expression in liver reduced significantly with administration of APAP (150 and 175 mg·kg-1). After inhibiting JNK, GSTA1 content in serum decreased significantly (P < 0.01); meanwhile, GSTA1 content and expression in liver enhanced. These findings suggested that JNK signaling pathway mediated APAP-induced hepatic injury, which was accompanied by varying GSTA1 content and expression in liver and serum.
Collapse
Affiliation(s)
- Chenxi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Beili Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ishfaq Muhammad
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yicong Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ying Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changwen Li
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Fangping Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
8
|
Ibitoye OB, Ajiboye TO. Protocatechuic acid protects against menadione-induced liver damage by up-regulating nuclear erythroid-related factor 2. Drug Chem Toxicol 2018; 43:567-573. [DOI: 10.1080/01480545.2018.1523187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- O. B. Ibitoye
- Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - T. O. Ajiboye
- Antioxidants, Redox Biology and Toxicology Research Laboratory, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
9
|
Prasad CV, Nayak VL, Ramakrishna S, Mallavadhani UV. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies. Chem Biol Drug Des 2017; 91:220-233. [PMID: 28734085 DOI: 10.1111/cbdd.13073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/21/2017] [Accepted: 07/08/2017] [Indexed: 12/16/2022]
Abstract
A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data (1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent.
Collapse
Affiliation(s)
- Chakka Vara Prasad
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Vadithe Lakshma Nayak
- Department of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sistla Ramakrishna
- Department of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | |
Collapse
|
10
|
Shen Y, Zhou M, Yan J, Gong Z, Xiao Y, Zhang C, Du P, Chen Y. miR-200b inhibits TNF-α-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol 2017; 312:G123-G132. [PMID: 27979826 DOI: 10.1152/ajpgi.00316.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED Inflammatory bowel diseases (IBDs) are chronic, inflammatory disorders of the gastrointestinal tract with unclear etiologies. Intestinal epithelial cells (IECs), containing crypt and villus enterocytes, occupy a critical position in the pathogenesis of IBDs and are a major producer of immunoregulatory cytokines and a key component of the intact epithelial barrier. Previously, we have reported that miR-200b is involved in the progression of IBDs and might maintain the integrity of the intestinal epithelial barrier via reducing the loss of enterocytes. In this study, we further investigated the impact of miR-200b on intestinal epithelial inflammation and tight junctions in two distinct differentiated states of Caco-2 cells after TNF-α treatment. We demonstrated that TNF-α-enhanced IL-8 expression was decreased by microRNA (miR)-200b in undifferentiated IECs. Simultaneously, miR-200b could alleviate TNF-α-induced tight junction (TJ) disruption in well-differentiated IECs by reducing the reduction in the transepithelial electrical resistance (TEER), inhibiting the increase in paracellular permeability, and preventing the morphological redistribution of the TJ proteins claudin 1 and ZO-1. The expression levels of the JNK/c-Jun/AP-1 and myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) pathways were attenuated in undifferentiated and differentiated enterocytes, respectively. Furthermore, a dual-luciferase reporter gene detection system provided direct evidence that c-Jun and MLCK were the specific targets of miR-200b. Collectively, our results highlighted that miR-200b played a positive role in IECs via suppressing intestinal epithelial IL-8 secretion and attenuating TJ damage in vitro, which suggested that miR-200b might be a promising strategy for IBD therapy. NEW & NOTEWORTHY This was the first time that the inhibitory role of miR-200b on intestinal epithelial inflammation and paracellular permeability has been reported. Moreover, we further divided the intestinal epithelial cells (IECs) into two differentiated conditions and investigated the distinct impacts of miR-200b. Finally, we put forward and proved that myosin light chain kinase (MLCK) was a novel target of miR-200b.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junkai Yan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Zizhen Gong
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Cong Zhang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| |
Collapse
|
11
|
Wang ZY, Li HY, Jiang Z, Zhou TB, Drummen GPC. GSTM1 Gene Polymorphism is Implicated in Increased Susceptibility to Prostate Cancer in Caucasians and Asians. Technol Cancer Res Treat 2016; 15:NP69-NP78. [PMID: 26614779 DOI: 10.1177/1533034615617650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/22/2015] [Indexed: 11/15/2022] Open
Abstract
Published reports on the relationship between GSTM1 gene polymorphisms and prostate cancer risk are heterogeneous in their conclusions, and the significance of these polymorphisms is still debated. This meta-analysis was performed to attempt to combine comparable studies, thereby increasing sample size and statistical significance in order to obtain a better evaluation of the association between GSTM1 polymorphisms and prostate cancer risk. The association investigations were identified from PubMed, Cochrane Library, and China Biological Medicine Database on March 1, 2014. Forty-three reports were recruited into this meta-analysis that contained data from 6741 patients and 9053 controls. There was a marked association between the GSTM1 null genotype and prostate cancer risk in the overall population (odds ratio = 1.39, 95% confidence interval: 1.21-1.60, P <00001), caucasians (odds ratio = 1.48, 95% confidence interval: 1.23-1.79, P <0001) and Asians (odds ratio = 1.62, 95% confidence interval: 1.16-2.27, P = .005). However, the GSTM1 null genotype was not associated with prostate cancer risk in Africans (odds ratio = 0.77, 95% confidence interval: 0.53-1.13, P = 0.19) and African Americans (odds ratio = 1.00, 95% confidence interval: 0.69-1.45, P = 0.99). In conclusion, GSTM1 null genotype was a risk factor to predict the prostate cancer risk in the overall population, Caucasians, and Asians. Although compelling, limitations inherent to meta-analysis, study design of the individual studies, and most importantly, possible gene-gene and gene-environment interactions, as well as the potential involvement of glutathione S-transferases in multiple cellular processes make drawing definite conclusions difficult.
Collapse
Affiliation(s)
- Zhong-Yang Wang
- Department of Urology Surgery, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong-Yan Li
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Zongpei Jiang
- Department of Nephrology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tian-Biao Zhou
- Department of Nephrology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gregor P C Drummen
- Cellular Stress and Ageing Program, Bionanoscience and Bio-Imaging Program, Bio&Nano-Solutions, Bielefeld, Germany
| |
Collapse
|
12
|
Chang YC, Liu FP, Ma X, Li MM, Li R, Li CW, Shi CX, He JS, Li Z, Lin YX, Zhao CW, Han Q, Zhao YL, Wang DN, Liu JL. Glutathione S-transferase A1 – a sensitive marker of alcoholic injury on primary hepatocytes. Hum Exp Toxicol 2016; 36:386-394. [DOI: 10.1177/0960327116650013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The primary hepatocytes were extracted and purified from mice through improved Seglen two-step perfusion method. Ethanol-induced injury hepatocytes model in mice was used to investigate the importance of glutathione S-transferase A1 (GSTA1) in hepatocytes injury by comparison with other indicators, such as alanine aminotransferase, aspartate aminotransferase, malondialdehyde, glutathione and superoxide dismutase. The release of GSTA1 was demonstrated to be an earlier and more sensitive indicator of hepatocytes injury than other indicators. Significant increases in GSTA1 were detected at 2 h after ethanol exposure, while other indicators were undetected at this time. A markedly difference in other indicators were observed at 6 and 8 h. The release of GSTA1 was significantly increased at a concentration of 50 mmol/L ethanol, the lowest exposure concentration than that in other indicators. In contrast, other indicators release was not statistically significant until concentrations of 75 mmol/L and 100 mmol/L ethanol. These results suggest that GSTA1 can be detected at the early stage of low concentration ethanol exposure and that GSTA1 is more sensitive and reliable marker in ethanol-induced hepatic injury.
Collapse
Affiliation(s)
- Y-C Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - F-P Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - X Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - M-M Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - R Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - C-W Li
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - C-X Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - J-S He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Z Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Y-X Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - C-W Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Q Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Y-L Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - D-N Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - J-L Liu
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
13
|
Abstract
The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
LINSALATA MICHELE, ORLANDO ANTONELLA, TUTINO VALERIA, NOTARNICOLA MARIA, D’ATTOMA BENEDETTA, RUSSO FRANCESCO. Inhibitory effect of vitamin K1 on growth and polyamine biosynthesis of human gastric and colon carcinoma cell lines. Int J Oncol 2015; 47:773-81. [DOI: 10.3892/ijo.2015.3033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/27/2015] [Indexed: 11/06/2022] Open
|
15
|
Reljic Z, Zlatovic M, Savic-Radojevic A, Pekmezovic T, Djukanovic L, Matic M, Pljesa-Ercegovac M, Mimic-Oka J, Opsenica D, Simic T. Is increased susceptibility to Balkan endemic nephropathy in carriers of common GSTA1 (*A/*B) polymorphism linked with the catalytic role of GSTA1 in ochratoxin a biotransformation? Serbian case control study and in silico analysis. Toxins (Basel) 2014; 6:2348-62. [PMID: 25111321 PMCID: PMC4147586 DOI: 10.3390/toxins6082348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Although recent data suggest aristolochic acid as a putative cause of Balkan endemic nephropathy (BEN), evidence also exists in favor of ochratoxin A (OTA) exposure as risk factor for the disease. The potential role of xenobiotic metabolizing enzymes, such as the glutathione transferases (GSTs), in OTA biotransformation is based on OTA glutathione adducts (OTHQ-SG and OTB-SG) in blood and urine of BEN patients. We aimed to analyze the association between common GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms and BEN susceptibility, and thereafter performed an in silico simulation of particular GST enzymes potentially involved in OTA transformations. GSTA1, GSTM1, GSTT1 and GSTP1 genotypes were determined in 207 BEN patients and 138 non-BEN healthy individuals from endemic regions by polymerase chain reaction (PCR). Molecular modeling in silico was performed for GSTA1 protein. Among the GST polymorphisms tested, only GSTA1 was significantly associated with a higher risk of BEN. Namely, carriers of the GSTA1*B gene variant, associated with lower transcriptional activation, were at a 1.6-fold higher BEN risk than those carrying the homozygous GSTA1*A/*A genotype (OR = 1.6; p = 0.037). In in silico modeling, we found four structures, two OTB-SG and two OTHQ-SG, bound in a GSTA1 monomer. We found that GSTA1 polymorphism was associated with increased risk of BEN, and suggested, according to the in silico simulation, that GSTA1-1 might be involved in catalyzing the formation of OTHQ-SG and OTB-SG conjugates.
Collapse
Affiliation(s)
- Zorica Reljic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Mario Zlatovic
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia.
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | | | - Ljubica Djukanovic
- Clinic of Nephrology, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Jasmina Mimic-Oka
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Dejan Opsenica
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia.
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
16
|
Oniki K, Hori M, Saruwatari J, Morita K, Kajiwara A, Sakata M, Mihara S, Ogata Y, Nakagawa K. Interactive effects of smoking and glutathione S-transferase polymorphisms on the development of non-alcoholic fatty liver disease. Toxicol Lett 2013; 220:143-9. [PMID: 23643483 DOI: 10.1016/j.toxlet.2013.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 12/14/2022]
Abstract
Glutathione S-transferases (GSTs) protect cells against exogenous and endogenous oxidative stress. GST polymorphisms are associated with the development of cardiovascular disease (CVD) and diabetes mellitus (DM), especially in current-smokers. Non-alcoholic fatty liver disease (NAFLD) is a predictor of future CVD or DM, because oxidative stress contributes to their pathogenesis. This study investigated whether the combination of smoking status and GST genotypes could affect the risk for NAFLD. A cross-sectional analysis was conducted among 713 Japanese participants (458 males and 255 females) during a health screening program. The GSTM1 null, GSTT1 null, GSTP1 A/B or B/B and GSTA1 A/B or B/B genotypes were determined and deemed to be high-risk genotypes. The prevalence of NAFLD was 18.7%. Among never-smokers, carriers of one, and those of two or more high-risk GSTM1, GSTP1 or GSTA1 genotypes were at a higher risk for NAFLD than those who were not carriers [odds ratio (95% confidence interval): 2.6 (1.1-5.9) and 3.3 (1.3-8.1), respectively], and the risk was further increased among current-smokers [4.6 (1.6-13.0) and 5.4 (1.2-23.7), respectively]. This is the first report to show that the combination of current-smoking and harboring high-risk GSTM1, GSTP1 and/or GSTA1 genotypes is interactively associated with the risk of NAFLD.
Collapse
Affiliation(s)
- Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|