1
|
Pescke IK, de Oliveira Rozino L, Zenato K, Cardozo T, Flores WH, Vargas VMF. Lowering the pH leads to the disaggregation of NiO and ZnO nanoparticles and modifies the mutagenic response. J Appl Toxicol 2024; 44:445-454. [PMID: 37828814 DOI: 10.1002/jat.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
In a changing environmental scenario, acid rain can have a significant impact on aquatic ecosystems. Acidification is known to produce corrosion in metals, hence increasing their harmful effects on the environment, organisms and human health. The prevalent use of metallic nanoparticles (NPs) in everyday products raises concerns regarding exposure and nanotoxicity even in these acidified conditions. We thus report on the cytotoxic and genotoxic potential of nickel oxide (NiO-NP) and zinc oxide (ZnO-NP) NPs when suspended in aqueous media in light of pH variations (7.5 and 5). A modified microsuspension method of the Salmonella/microsome assay was adopted, and strains (TA97a, TA98, TA100, TA102) were exposed to NPs (10-1280 μg/plate) with and without a metabolization fraction. The acidic condition favored disaggregation and caused a decrease in NPs size. Mutagenicity was observed in all samples and different strains, with greater DNA base pair substitution damage (TA100 and TA102), but extrinsic conditions (pH) suggest different action mechanisms of NiO-NP and ZnO-NP on genetic content. Mutagenic activity was found to increase upon metabolic activation (TA98, TA100, and TA102) demonstrating the bioactivity of NiO-NP and ZnO-NP in relation to metabolites generated by the mammalian p450 system in vitro. Modifications in the Salmonella assay methodology increased cell exposure time. The observed responses recommend this modified assay as one of the methodologies of choice for nanoecotoxicological evaluation. These findings emphasize the significance of incorporating the environmental context when evaluating the toxicity of metal-based NPs.
Collapse
Affiliation(s)
- Ismael Krüger Pescke
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lívia de Oliveira Rozino
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Karoline Zenato
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tatiane Cardozo
- Grupo de Materiais Nanoestruturados, Universidade Federal do Pampa (UNIPAMPA), Bagé, Brazil
| | | | - Vera Maria Ferrão Vargas
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
2
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
3
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
4
|
Zhang X, Zhang J, Wang Q, Ghimire S, Mei L, Wu C. Effects of Particle Size and Surface Charge on Mutagenicity and Chicken Embryonic Toxicity of New Silver Nanoclusters. ACS OMEGA 2022; 7:17703-17712. [PMID: 35664612 PMCID: PMC9161408 DOI: 10.1021/acsomega.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Though there are many toxicological studies on metal nanoparticles (NPs), it remains difficult to explain discrepancies observed between studies, largely due to the lack of positive controls and disconnection between physicochemical properties of nanomaterials with their toxicities at feasible exposures in a specified test system. In this study, we investigated effects of particle size and surface charge on in vitro mutagenic response and in vivo embryonic toxicity for newly synthesized silver nanoclusters (AgNCs) at human or environmental relevant exposure and compared the new findings with one of the most common nanoscale particles, titanium dioxide NPs (TiO2 NPs as a positive control). We hypothesized that the interaction of the test system and physicochemical properties of nanomaterials are critical in determining their toxicities at concentrations relevant with human or environmental exposures. We assessed the mutagenicity of the AgNCs (around 2 nm) and two sizes of TiO2 NPs (i.e., small: 5-15 nm, big: 30-50 nm) using a Salmonella reverse mutation assay (Ames test). The smallest size of AgNCs showed the highest mutagenic activity with the Salmonella strain TA100 in the absence and presence of the S9 mixture, because the AgNCs maintained the nano-size scale in the Ames test, compared with two other NPs. For TiO2 NPs, the size effect was interfered by the agglomeration of TiO2 NPs in media and the generation of oxidative stress from the NPs. The embryonic toxicity and the liver oxidative stress were evaluated using a chicken embryo model at three doses (0.03, 0.33, and 3.3 μg/g egg), with adverse effects on chicken embryonic development in both sizes of TiO2 NPs. The non-monotonic response was determined for developmental toxicity for the tested NPs. Our data on AgNCs was different from previous findings on AgNPs. The chicken embryo results showed some size dependency of nanomaterials, but they were more well correlated with lipid peroxidation (malondialdehyde) in chicken fetal livers. A different level of agglomeration of TiO2 NPs and AgNCs was observed in the assay media of Ames and chicken embryo tests. These results suggest that the test nanotoxicities are greatly impacted by the experimental conditions and the nanoparticle's size and surface charge.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Jinglin Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Qin Wang
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Shweta Ghimire
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Lei Mei
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Changqing Wu
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Duraisamy SS, Vijayakumar N, Rajendran J, Venkatesan A, Kartha B, Kandasamy SP, Nicoletti M, Alharbi NS, Kadaikunnan S, Khaled JM, Govindarajan M. Facile synthesis of silver nanoparticles using the Simarouba glauca leaf extract and their impact on biological outcomes: A novel perspective for nano-drug development. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
7
|
Hu M, Palić D. Role of MicroRNAs in regulation of DNA damage in monocytes exposed to polystyrene and TiO 2 nanoparticles. Toxicol Rep 2020; 7:743-751. [PMID: 32579136 PMCID: PMC7305267 DOI: 10.1016/j.toxrep.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Time and dose dependent DNA damage profile was established to determine the genotoxicity of PSNPs and nano-TiO2-ARS. Expression of DNA damage repairing genes was elevated post nano-TiO2-ARS, but not post PSNPs exposure. miRNA expression screening with different potential activators revealed miR-155-5p as best candidate. Transfection of miR-155-5p mimic influenced expression of genes invovled in DNA damage post expousre to TiO2 and PSNPs. miR-155-5p showed the highest potential to be used as biomarker for PSNPs and nano-TiO2-ARS induced adverse effects.
The release of nanoparticles into the environment can interfere with the health of the exposed organisms. MicroRNAs have been suggested as potential toxicology biomarkers. The expression of potential zebrafish nano-toxicity biomarker miRNAs in our previous study was validated in THP-1 human monocytic cell line after exposure to polystyrene (PSNPs) and ARS labeled Titanium dioxide nanoparticles (nano-TiO2-ARS). miRNAs expression post exposure to PLGA nanoparticles and E. coli BioParticles was used to exclude potential activation and engagement of miRNAs through phagocytosis or pro-inflammatory specific responses. miR-155-5p showed the highest potential to be used as biomarker for PSNPs and nano-TiO2-ARS induced toxicity. To determine effects of PSNPs and nano-TiO2-ARS on genotoxicity, time and dose dependent DNA damage profile was established. Severe DNA damage was triggered by both nanoparticles, and expression of DNA damage repairing genes was elevated post nano-TiO2-ARS, but not post PSNPs exposure, questioning the utility of the comet assay as universal assessment tool for genotoxicity induced by nanoparticles in general. Transfection of miR-155-5p mimic influenced the expression of miR-155-5p related, DNA damage responsible genes post both nano-TiO2-ARS and PSNPs exposure. Transfection results suggest significant involvement of miR-155-5p in gene repair mechanisms triggered by adverse effects of PSNPs and nano-TiO2-ARS on monocytes.
Collapse
Affiliation(s)
- Moyan Hu
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
8
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
9
|
Zhang R, Yan F, Chen Y. Exogenous Physical Irradiation on Titania Semiconductors: Materials Chemistry and Tumor-Specific Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801175. [PMID: 30581710 PMCID: PMC6299725 DOI: 10.1002/advs.201801175] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Titania semiconductors can be activated by external physical triggers to produce electrons (e-) and holes (h+) pairs from the energy-band structure and subsequently induce the generation of reactive oxygen species for killing cancer cells, but the traditional ultraviolet light with potential phototoxicity and low-tissue-penetrating depth as the irradiation source significantly hinders the further in vivo broad biomedical applications. Here, the very-recent development of novel exogenous physical irradiation of titania semiconductors for tumor-specific therapies based on their unique physiochemical properties, including near infrared (NIR)-triggered photothermal hyperthermia and photodynamic therapy, X-ray/Cerenkov radiation-activated deep-seated photodynamic therapy, ultrasound-triggered sonodynamic therapy, and the intriguing synergistic therapeutic paradigms by combined exogenous physical irradiations are in focus. Most of these promising therapeutic modalities are based on the semiconductor nature of titania nanoplatforms, together with their defect modulation for photothermal hyperthermia. The biocompatibility and biosafety of these titania semiconductors are also highlighted for guaranteeing their further clinical translation. Challenges and future developments of titania-based therapeutic nanoplatforms and the corresponding developed therapeutic modalities for potential clinical translation of tumor-specific therapy are also discussed and outlooked.
Collapse
Affiliation(s)
- Ruifang Zhang
- Department of UltrasoundThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan Province450052P. R. China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| |
Collapse
|
10
|
Du X, Gao S, Hong L, Zheng X, Zhou Q, Wu J. Genotoxicity evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the Ames test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 838:22-27. [PMID: 30678824 DOI: 10.1016/j.mrgentox.2018.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used in the cosmetics, health, and food industries, but their safety and genotoxicity remain a matter of debate. We investigated whether TiO2-NPs could induce gene mutations in mouse lymphoma L5178Y cells and Salmonella typhimurium strains TA97a, TA98, TA100, TA102, and TA1535. Following preliminary tests, 2 mg/mL for the mouse lymphoma gene mutation assay and 1.25 mg/plate for the in vitro bacterial reverse mutation assay (Ames test) were selected as the highest concentrations. Exposure to TiO2-NPs for 4 or 24 h with or without S9 metabolic activation did not increase mutation frequency for any of the concentrations tested in L5178Y cells. In the Ames test, TiO2-NPs did not induce reverse mutation in the bacterial strains. No positive mutagenic responses were observed in either test system, and therefore we cannot classify TiO2-NPs as mutagenic; further testing will be required to determine conclusively whether TiO2-NPs are genotoxic.
Collapse
Affiliation(s)
- Xiuming Du
- Testing Center, Shanghai Research Institute of Chemical Industry CO., LTD., Shanghai, China
| | - Shunxiang Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Liling Hong
- Testing Center, Shanghai Research Institute of Chemical Industry CO., LTD., Shanghai, China
| | - Xin Zheng
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qingyun Zhou
- Testing Center, Shanghai Research Institute of Chemical Industry CO., LTD., Shanghai, China.
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
11
|
Charles S, Jomini S, Fessard V, Bigorgne-Vizade E, Rousselle C, Michel C. Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context. Nanotoxicology 2018; 12:357-374. [DOI: 10.1080/17435390.2018.1451567] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sandrine Charles
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Stéphane Jomini
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Valérie Fessard
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Laboratoire de Fougères, Unité Toxicologie des Contaminants, Javené, France
| | - Emilie Bigorgne-Vizade
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Christophe Rousselle
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Cécile Michel
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| |
Collapse
|
12
|
Lustri WR, Lazarini SC, Lustri BC, Corbi PP, Silva MAC, Resende Nogueira FA, Aquino R, Amaral AC, Treu Filho O, Massabni AC, da Silva Barud H. Spectroscopic characterization and biological studies in vitro of a new silver complex with furosemide: Prospective of application as an antimicrobial agent. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Alexander JF, Aguirre-Villarreal D, Godin B. Liposomal encapsulation masks genotoxicity of a chemotherapeutic agent in regulatory toxicology assessments. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:829-833. [PMID: 28062373 DOI: 10.1016/j.nano.2016.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/01/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
The burgeoning application of nanotechnology to a variety of industries including cosmetics, food, medicine and materials has led to the exploration of nanotoxicology as a trending subject of research. However the role of a nanovector, in affecting the mutagenicity of its therapeutic payload has not yet been investigated. In this study, we compare the mutagenicity of the free drug - doxorubicin hydrochloride with its nanoencapsulated form - doxorubicin loaded liposome, using conventional methods required for regulatory approval. Contrary to free doxorubicin, doxorubicin encapsulated liposome expressed a significantly lower mutant frequency in the Ames assay, and was non-genotoxic in the in vitro micronucleus assay. Further investigation of the systems' cytotoxicity and their interaction with the bacterial cell envelope, suggests that the modification of the test parameters and release of the encapsulated drug prior to the Ames test show comparable mutagenic potential of the nanotherapeutic system to a free drug.
Collapse
Affiliation(s)
- Jenolyn F Alexander
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX
| | | | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX.
| |
Collapse
|
14
|
Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:162-174. [PMID: 26655660 DOI: 10.1016/j.aquatox.2015.11.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 05/02/2023]
Abstract
The enormous investments in nanotechnology have led to an exponential increase of new manufactured nano-enabled materials whose impact in the aquatic systems is still largely unknown. Ecotoxicity and nanosafety studies mostly resulted in contradictory results and generally failed to clearly identify biological patterns that could be related specifically to nanotoxicity. Generation of reactive oxygen species (ROS) is one of the most discussed nanotoxicity mechanism in literature. ROS can induce oxidative stress (OS), resulting in cyto- and genotoxicity. The ROS overproduction can trigger the induction of anti-oxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidases (GPx), which are used as biomarkers of response. A critical overview of the biochemical responses induced by the presence of NPs on freshwater organisms is performed with a strong interest on indicators of ROS and general stress. A special focus will be given to the NPs transformations, including aggregation, and dissolution, in the exposure media and the produced biochemical endpoints.
Collapse
Affiliation(s)
- Gonçalo Vale
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Harry Dallas, TX 75390, USA.
| | - Kahina Mehennaoui
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation (ERIN) Department, Belvaux, Luxembourg.
| | - Sebastien Cambier
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation (ERIN) Department, Belvaux, Luxembourg.
| | - Giovanni Libralato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino 155, 30172, Mestre, Venice, Italy.
| | - Stéphane Jomini
- Laboratoire Interdisciplinaire des Environements Continentaux (LIEC), Université de Lorraine, UMR 7360, Campus Bridoux rue du Général Delestraint, 57070 Metz, France.
| | - Rute F Domingos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Institut de Physique du Globe de Paris, Sorbonne Paris Cité, UMR CNRS 7154, Université Paris Diderot, 75205 Paris Cedex 05, France.
| |
Collapse
|
15
|
Azqueta A, Dusinska M. The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet 2015. [PMID: 26217380 PMCID: PMC4498100 DOI: 10.3389/fgene.2015.00239] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra Pamplona, Spain
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research Kjeller, Norway
| |
Collapse
|
16
|
Jomini S, Clivot H, Bauda P, Pagnout C. Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:196-204. [PMID: 25839943 DOI: 10.1016/j.envpol.2015.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 05/27/2023]
Abstract
In the present study, we conducted a 2 week microcosm experiment with a natural freshwater bacterial community to assess the effects of titanium dioxide nanoparticles (TiO2-NPs) at various concentrations (0, 1, 10 and 100 mg/L) on planktonic and sessile bacteria under dark conditions. Results showed an increase of planktonic bacterial abundance at the highest TiO2-NP concentration, concomitant with a decrease from that of sessile bacteria. Bacterial assemblages were most affected by the 100 mg/L TiO2-NP exposure and overall diversity was found to be lower for planktonic bacteria and higher for sessile bacteria at this concentration. In both compartments, a 100 mg/L TiO2-NPs exposure induced a decrease in the ratio between the Betaproteobacteria and Bacteroidetes. For planktonic communities, a decrease of Comamonadaceae was observed concomitant with an increase of Oxalobacteraceae and Cytophagaceae (especially Emticicia). For sessile communities, results showed a strong decrease of Betaproteobacteria and particularly of Comamonadaceae.
Collapse
Affiliation(s)
- Stéphane Jomini
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France
| | - Hugues Clivot
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France
| | - Pascale Bauda
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Europole de l'Arbois, F-13545 Aix en Provence, France
| | - Christophe Pagnout
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Europole de l'Arbois, F-13545 Aix en Provence, France.
| |
Collapse
|
17
|
Djurišić AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:26-44. [PMID: 25303765 DOI: 10.1002/smll.201303947] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/20/2014] [Indexed: 05/22/2023]
Abstract
Metal oxide nanomaterials are widely used in practical applications and represent a class of nanomaterials with the highest global annual production. Many of those, such as TiO2 and ZnO, are generally considered non-toxic due to the lack of toxicity of the bulk material. However, these materials typically exhibit toxicity to bacteria and fungi, and there have been emerging concerns about their ecotoxicity effects. The understanding of the toxicity mechanisms is incomplete, with different studies often reporting contradictory results. The relationship between the material properties and toxicity appears to be complex and diifficult to understand, which is partly due to incomplete characterization of the nanomaterial, and possibly due to experimental artefacts in the characterization of the nanomaterial and/or its interactions with living organisms. This review discusses the comprehensive characterization of metal oxide nanomaterials and the mechanisms of their toxicity.
Collapse
|
18
|
Santaella C, Allainmat B, Simonet F, Chanéac C, Labille J, Auffan M, Rose J, Achouak W. Aged TiO2-based nanocomposite used in sunscreens produces singlet oxygen under long-wave UV and sensitizes Escherichia coli to cadmium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5245-5253. [PMID: 24697310 DOI: 10.1021/es500216t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
TiO2-based nanocomposite (NC) are widely used as invisible UV protectant in cosmetics. These nanomaterials (NMs) end in the environment as altered materials. We have investigated the properties of T-Lite SF, a TiO2-NC used as sunscreen, after weathering in water and under light. We have examined the formation of ROS and their consequences on cell physiology of Escherichia coli. Our results show that aged-T-Lite SF produced singlet oxygen under low intensity long wave UV and formed hydroxyl radicals at high intensity. Despite the production of these ROS, T-Lite SF had neither effect on the viability of E. coli nor on mutant impaired in oxidative stress, did not induce mutagenesis and did not impair the integrity of membrane lipids, thus seemed safe to bacteria. However, when pre-exposed to T-Lite SF under low intensity UV, cells turned out to be more sensitive to cadmium, a priority pollutant widely disseminated in soil and surface waters. This effect was not a Trojan horse: sensitization of cells was dependent on the formation of singlet oxygen. These results provide a basis for caution, especially on NMs that have no straight environmental toxicity. It is crucial to anticipate indirect and combined effects of environmental pollutants and NMs.
Collapse
Affiliation(s)
- Catherine Santaella
- CEA, IBEB , Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen T, Yan J, Li Y. Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 2014; 22:95-104. [PMID: 24673907 PMCID: PMC9359145 DOI: 10.1016/j.jfda.2014.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 12/21/2013] [Indexed: 11/01/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2-NPs, <100 nm) are increasingly being used in pharmaceuticals and cosmetics due to the unique properties derived from their small sizes. However, their large surface-area to mass ratio and high redox potential may negatively impact human health and the environment. TiO2-NPs can cause inflammation, pulmonary damage, fibrosis, and lung tumors and they are possibly carcinogenic to humans. Because cancer is a disease involving mutation, there are a large number of studies on the genotoxicity of TiO2-NPs. In this article, we review the results that have been reported in the literature, with a focus on data generated from the standard genotoxicity assays. The data include genotoxicity results from the Ames test, in vitro and in vivo Comet assay, in vitro and in vivo micronucleus assay, sister chromatid exchange assay, mammalian cell hypoxanthine-guanine phosphoribosyl transferase gene assay, the wing somatic mutation and recombination assay, and the mouse phosphatidylinositol glycan, class A gene assay. Inconsistent results have been found in these assays, with both positive and negative responses being reported. The in vitro systems for assessing the genotoxicity of TiO2-NPs have generated a greater number of positive results than the in vivo systems, and tests for DNA and chromosome damage have produced more positive results than the assays measuring gene mutation. Nearly all tests for measuring the mutagenicity of TiO2-NPs were negative. The current data indicate that the genotoxicity of TiO2-NPs is mediated mainly through the generation of oxidative stress in cells.
Collapse
|