1
|
Valli FE, Leiva PML, Lavandera J, Contini MC, Gerstner C, Piña CI, Simoncini MS, González MA. Caiman's fat enriched with n-3 fatty acids: potential food supplement. Trop Anim Health Prod 2023; 55:194. [PMID: 37145203 DOI: 10.1007/s11250-023-03602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Broad-snouted caiman (Caiman latirostris) products (meat, fat and oil) are currently beginning to be valued as a food of special interest due to its high content of n-3 fatty acids. Thus, the objective of this study was to characterize the fats of caiman fed with diets enriched with flaxseeds (Linus usitatissimun) rich in n-3 fatty acids, lignans and antioxidants. Caimans were fed six days a week with: a control diet (C), and a diet enriched with ground flaxseed = 90% C + 10% flaxseed ground (FS), during 30 (FS30) and 60 (FS60) days. Animals fed the flaxseed-enriched diets increased linolenic acid content and reduced the n-6/n-3 ratio of fats relative to controls, and this improvement increased over time. The proportion of eicosapentaenoic acid also increased, but there was no difference at the time the enriched diets were offered. Caiman fat of the FS30 and FS60, showed a decrease in lipoperoxidation (24% and 40%) and reactive oxygen species (44% and 76%) accompanied by an increase in antioxidant systems. Consumption of a flax-enriched diet by caimans increases the content of essential fatty acids and improves the lipoperoxidative status of fat. This provides an enriched fat with potential for the development products for human consumption.
Collapse
Affiliation(s)
- Florencia E Valli
- Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas (CONICET), Avda. Rivadavia 1917, CP, C1033AAJ, Buenos Aires, Argentina
- Facultad de BioquĂmica y Ciencias BiolĂłgicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
- CICyTTP-CONICET/Prov. Entre RĂos/UADER, España 149 3105, Diamante, Entre RĂos, Argentina
- Proyecto YacarĂ©, Laboratorio de ZoologĂa Aplicada: Anexo Vertebrados, FHUC/UNL, AristĂłbulo del Valle 8700, Santa Fe, Santa Fe, Argentina
| | - Pamela M L Leiva
- Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas (CONICET), Avda. Rivadavia 1917, CP, C1033AAJ, Buenos Aires, Argentina
- Facultad de BioquĂmica y Ciencias BiolĂłgicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
- CICyTTP-CONICET/Prov. Entre RĂos/UADER, España 149 3105, Diamante, Entre RĂos, Argentina
- Proyecto YacarĂ©, Laboratorio de ZoologĂa Aplicada: Anexo Vertebrados, FHUC/UNL, AristĂłbulo del Valle 8700, Santa Fe, Santa Fe, Argentina
- Facultad de Ciencia y TecnologĂa, Universidad AutĂłnoma de Entre RĂos, Tratado del Pilar 314 3105, Entre RĂos, Diamante, Argentina
| | - Jimena Lavandera
- Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas (CONICET), Avda. Rivadavia 1917, CP, C1033AAJ, Buenos Aires, Argentina
- Facultad de BioquĂmica y Ciencias BiolĂłgicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - MarĂa C Contini
- Facultad de BioquĂmica y Ciencias BiolĂłgicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Carolina Gerstner
- Facultad de BioquĂmica y Ciencias BiolĂłgicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Carlos I Piña
- Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas (CONICET), Avda. Rivadavia 1917, CP, C1033AAJ, Buenos Aires, Argentina
- CICyTTP-CONICET/Prov. Entre RĂos/UADER, España 149 3105, Diamante, Entre RĂos, Argentina
- Proyecto YacarĂ©, Laboratorio de ZoologĂa Aplicada: Anexo Vertebrados, FHUC/UNL, AristĂłbulo del Valle 8700, Santa Fe, Santa Fe, Argentina
- Facultad de Ciencia y TecnologĂa, Universidad AutĂłnoma de Entre RĂos, Tratado del Pilar 314 3105, Entre RĂos, Diamante, Argentina
| | - Melina S Simoncini
- Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas (CONICET), Avda. Rivadavia 1917, CP, C1033AAJ, Buenos Aires, Argentina.
- CICyTTP-CONICET/Prov. Entre RĂos/UADER, España 149 3105, Diamante, Entre RĂos, Argentina.
- Proyecto YacarĂ©, Laboratorio de ZoologĂa Aplicada: Anexo Vertebrados, FHUC/UNL, AristĂłbulo del Valle 8700, Santa Fe, Santa Fe, Argentina.
- Facultad de Ciencia y TecnologĂa, Universidad AutĂłnoma de Entre RĂos, Tratado del Pilar 314 3105, Entre RĂos, Diamante, Argentina.
| | - Marcela A González
- Facultad de BioquĂmica y Ciencias BiolĂłgicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina.
| |
Collapse
|
2
|
Suzan AJ, Garcia PHD, Furlan CPB, Barba FCR, Franco YEM, Longato GB, Contesini FJ, de Oliveira Carvalho P. Oxidative stability of fish oil dietary supplements and their cytotoxic effect on cultured human keratinocytes. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Zou Y, Zhou Z, Yin S, Huang C, Tang H, Yin Z. Targeting of gallbladder megalin receptors with DHA-conjugated limonene albumin nanoparticles. NANOSCALE 2022; 14:6052-6065. [PMID: 35380143 DOI: 10.1039/d1nr07767h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gallbladder stones are a major pathogenic factor leading to cholecystitis, and it is increasingly important to explore innovative drug delivery methods for gallstones. In the present study, docosahexaenoic acid-coupled limonene bovine serum albumin nanoparticles (LIM-DHA-BSA-NPs) were constructed. The LIM-DHA-BSA-NPs are spherical structures, and the distribution was relatively uniform, and, more importantly, it has low cytotoxicity and good safety. The LIM-DHA-BSA-NPs solution shows higher uptake rates by RAW264.7 cells when compared with free limonene (LIM). The fluorescence intensity of FITC-modified BSA NPs was significantly higher than that of free FITC, which further indicated that the uptake of DHA-conjugated BSA NPs by RAW264.7 cells was stronger than that of the free drugs. Moreover, the in vivo distribution experiment showed that the enrichment of DiD-loaded BSA NPs in the gallbladder was significantly enhanced when compared with that of free DiD. The semi-quantitative fluorescence intensity results showed that the uptake of DiD-DHA-BSA-NPs was 4.5 times higher when compared with the free DiD. It is preliminarily shown that the DHA-conjugated BSA NPs that were constructed, have an ability to target the gallbladder. Furthermore, the Pearson colocalization coefficient Rcoloc from in vivo colocalization results indicates that the DHA-BSA-NPs had a good colocalization effect on the gallbladder epithelial cells (GBECs). In addition, the LIM-DHA-BSA-NPs solution not only significantly reduced the concentration of nitric oxide (NO) secreted by inflammatory model cells and the number of peripheral blood leukocytes in guinea pigs with cholecystitis, but also significantly decreased the activities of the aspartate transaminase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), glutamyl endopeptidase (GGT), total bile acid (TBA), and total bilirubin (TBIL) enzymes. Collectively, the LIM-DHA-BSA-NPs could be used as an effective anti-inflammatory agent at the cellular and animal levels. This experiment, for the first time, showed that DHA-conjugated BSA NPs could be absorbed into GBECs by megalin receptor-mediated endocytosis and then they exert an anti-cholecystitis effect because of the LIM. The active uptake of DHA-conjugated BSA NPs by the megalin receptors of the GBECs is expected to become an effective therapeutic strategy for cholecystolithiasis.
Collapse
Affiliation(s)
- Ya Zou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Chengyuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Hesong Tang
- Sichuan Emeishan Pharmaceutical Co., Ltd, No.6 Yingbin Road, High-tech Development Zone, Leshan City, Sichuan Province, 614000, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Ngai TW, Elfar GA, Yeo P, Phua N, Hor JH, Chen S, Ho YS, Cheok CF. Nitro-Deficient Niclosamide Confers Reduced Genotoxicity and Retains Mitochondrial Uncoupling Activity for Cancer Therapy. Int J Mol Sci 2021; 22:10420. [PMID: 34638761 PMCID: PMC8508655 DOI: 10.3390/ijms221910420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Niclosamide is an oral anthelmintic drug, approved for use against tapeworm infections. Recent studies suggest however that niclosamide may have broader clinical applications in cancers, spurring increased interest in the functions and mechanisms of niclosamide. Previously, we reported that niclosamide targets a metabolic vulnerability in p53-deficient tumours, providing a basis for patient stratification and personalised treatment strategies. In the present study, we functionally characterised the contribution of the aniline 4'-NO2 group on niclosamide to its cellular activities. We demonstrated that niclosamide induces genome-wide DNA damage that is mechanistically uncoupled from its antitumour effects mediated through mitochondrial uncoupling. Elimination of the nitro group in ND-Nic analogue significantly reduced ÎłH2AX signals and DNA breaks while preserving its antitumour mechanism mediated through a calcium signalling pathway and arachidonic acid metabolism. Lipidomics profiling further revealed that ND-Nic-treated cells retained a metabolite profile characteristic of niclosamide-treated cells. Notably, quantitative scoring of drug sensitivity suggests that elimination of its nitro group enhanced the target selectivity of niclosamide against p53 deficiency. Importantly, the results also raise concern that niclosamide may impose a pleiotropic genotoxic effect, which limits its clinical efficacy and warrants further investigation into alternative drug analogues that may ameliorate any potential unwanted side effects.
Collapse
Affiliation(s)
- Tsz Wai Ngai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Gamal Ahmed Elfar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Pearlyn Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Nicholas Phua
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Jin Hui Hor
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Shuwen Chen
- Analytical Science and Technology (Metabolomics), Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (S.C.); (Y.S.H.)
| | - Ying Swan Ho
- Analytical Science and Technology (Metabolomics), Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (S.C.); (Y.S.H.)
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
5
|
Ou M, Zhang Q, Zhao H, Shu C. Polyunsaturated Fatty Acid Diet and Upregulation of Lipoxin A4 Reduce the Inflammatory Response of Preeclampsia. J Proteome Res 2020; 20:357-368. [PMID: 33131275 DOI: 10.1021/acs.jproteome.0c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effects and mechanisms of polyunsaturated fatty acids (PUFAs) and lipoxin A4 (LXA4) on preeclampsia (PE). The LXA4 level was significantly reduced in PE rats. The PUFA diet upregulated the expressions of lipoxygenase 12 (LOX12) and lipoxygenase 15 (LOX15) and downregulated those of cyclooxygenase-2, tumor necrosis factor-α (TNF-α), and endoglin. Lipopolysaccharides could inhibit cell growth and cause inflammatory response, while the presence of PUFAs inhibited the inflammatory response and promoted the expressions of LOX12, LOX15, and LXA4. Nordihydroguaiaretic acid (NDGA) regulated LXA4 expression and inflammation levels by affecting LOX. Inhibition of lipoxygenase 5 activity by NDGA upregulated the expressions of LOX12 and LOX15, while LXA4 reversed LXA4, nitric oxide downregulation, and TNF-α upregulation by NDGA. A decrease in LXA4 levels played an important role in the development and progression of PE.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Qian Zhang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Huidong Zhao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, No.71 Xinmin Street, Changchun, Jilin Province 130021, China
| |
Collapse
|
6
|
El-Baz FK, Salama AAA, Hussein RA. Dunaliella salina microalgae oppose thioacetamide-induced hepatic fibrosis in rats. Toxicol Rep 2019; 7:36-45. [PMID: 31879596 PMCID: PMC6920116 DOI: 10.1016/j.toxrep.2019.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Several hepatic pathological conditions are correlated with the stimulation of hepatic stellate cells. This induces a cascade of events producing accretion of extracellular matrix components triggering fibrosis. Dunaliella salina, rich in carotenoids, was investigated for its potential antagonizing activity; functionally and structurally against thioacetamide (TAA) - induced hepatic fibrosis in rats. Adult male albino Wistar rats were treated with three dose levels of D. salina powder or extract (daily, p.o.); for 6 weeks, concomitantly with TAA injection. Serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), bilirubin and albumin were determined. Reduced glutathione (GSH), malondialdehyde (MDA), smooth muscle actin alpha (α-SMA) and collagen I hepatic contents were also estimated. Treatment with D. salina powder or extract caused a significant decline in serum levels of AST, ALT, ALP, bilirubin, MDA and hepatic contents of α-SMA and collagen I. Additionally, serum albumin and GSH hepatic content were highly elevated. Liver histopathological examination also indicated that D. salina reduced fibrosis, centrilobular necrosis, and inflammatory cell infiltration evoked by TAA. The results implied that D. salina exerts protective action against TAA-induced hepatic fibrosis in rats. The phytochemical investigation revealed high total carotenoid content prominently β-carotene (15.2 % of the algal extract) as well as unsaturated fatty acids as alpha-linolenic acid which accounts for the hepatoprotective activity.
Collapse
Affiliation(s)
- Farouk K El-Baz
- Plant Biochemistry Department, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Rehab A Hussein
- Pharmacognosy Department, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| |
Collapse
|
7
|
Novel Amphiphilic Cyclobutene and Cyclobutane cis-C 18 Fatty Acid Derivatives Inhibit Mycobacterium avium subsp. paratuberculosis Growth. Vet Sci 2019; 6:vetsci6020046. [PMID: 31137605 PMCID: PMC6631517 DOI: 10.3390/vetsci6020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (Map) is the etiologic agent of Johne’s disease in ruminants and has been associated with Crohn’s disease in humans. An effective control of Map by either vaccines or chemoprophylaxis is a paramount need for veterinary and possibly human medicine. Given the importance of fatty acids in the biosynthesis of mycolic acids and the mycobacterial cell wall, we tested novel amphiphilic C10 and C18 cyclobutene and cyclobutane fatty acid derivatives for Map inhibition. Microdilution minimal inhibitory concentrations (MIC) with 5 or 7 week endpoints were measured in Middlebrook 7H9 base broth media. We compared the Map MIC results with those obtained previously with Mycobacterium tuberculosis and Mycobacterium smegmatis. Several of the C18 compounds showed moderate efficacy (MICs 392 to 824 µM) against Map, while a higher level of inhibition (MICs 6 to 82 µM) was observed for M. tuberculosis for select analogs from both the C10 and C18 groups. For most of these analogs tested in M. smegmatis, their efficacy decreased in the presence of bovine or human serum albumin. Compound 5 (OA-CB, 1-(octanoic acid-8-yl)-2-octylcyclobutene) was identified as the best chemical lead against Map, which suggests derivatives with better pharmacodynamics may be of interest for evaluation in animal models.
Collapse
|
8
|
Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil's Fatty Acids on the Skin. Mar Drugs 2018; 16:E256. [PMID: 30061538 PMCID: PMC6117694 DOI: 10.3390/md16080256] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023] Open
Abstract
Fish oil has been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. There has been increasing interest in the relationship of fish oil with skin protection and homeostasis, especially with respect to the omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). The other PUFAs, such as α-linolenic acid (ALA) and linoleic acid (LA), also show a beneficial effect on the skin. The major mechanisms of PUFAs for attenuating cutaneous inflammation are the competition with the inflammatory arachidonic acid and the inhibition of proinflammatory eicosanoid production. On the other hand, PUFAs in fish oil can be the regulators that affect the synthesis and activity of cytokines for promoting wound healing. A systemic review was conducted to demonstrate the association between fish oil supplementation and the benefits to the skin. The following describes the different cosmetic and therapeutic approaches using fatty acids derived from fish oil, especially ALA, LA, DHA, and EPA. This review summarizes the cutaneous application of fish oil and the related fatty acids in the cell-based, animal-based, and clinical models. The research data relating to fish oil treatment of skin disorders suggest a way forward for generating advances in cosmetic and dermatological uses.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 33303, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Wei-Ling Chou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 33302, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan 33305, Taiwan.
| |
Collapse
|
9
|
Flynn KR, Sutti A, Martin LL, Leigh Ackland M, Torriero AAJ. Critical effects of polar fluorescent probes on the interaction of DHA with POPC supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1135-1142. [PMID: 29338975 DOI: 10.1016/j.bbamem.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Abstract
The understanding of lipid bilayer structure and function has been advanced by the application of molecular fluorophores. However, the effects of these probe molecules on the physicochemical properties of membranes being studied are poorly understood. A quartz crystal microbalance with dissipation monitoring instrument was used in this work to investigate the impact of two commonly used fluorescent probes, 1‑palmitoyl‑2‑{12‑[(7‑nitro‑2‑1,3‑benzoxadiazol‑4‑yl)amino]dodecanoyl}‑sn‑glycero‑3‑phosphocholine (NBD-PC) and 1,2‑dipalmitoyl‑sn‑glycero‑3‑phosphoethanolamine‑n‑(lissamine rhodamine‑B‑sulfonyl) (Lis-Rhod PE), on the formation and physicochemical properties of a 1‑palmitoyl‑2‑oleoyl‑sn‑glycero‑3‑phosphocholine supported lipid bilayer (POPC-SLB). The interaction of the POPC-SLB and fluorophore-modified POPC-SLB with docosahexaenoic acid, DHA, was evaluated. The incorporation of DHA into the POPC-SLB was observed to significantly decrease in the presence of the Lis-Rhod PE probe compared with the POPC-SLB. In addition, it was observed that the small concentration of DHA incorporated into the POPC:NBD-PC SLB can produce rearrangement processes followed by the lost not only of DHA but also of POPC or NBD-PC molecules or both during the washing step. This work has significant implications for the interpretation of data employing fluorescent reporter molecules within SLBs.
Collapse
Affiliation(s)
- Kiera R Flynn
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Alessandra Sutti
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | | | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Angel A J Torriero
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| |
Collapse
|
10
|
Flynn KR, Martin LL, Ackland ML, Torriero AAJ. Real-Time Quartz Crystal Microbalance Monitoring of Free Docosahexaenoic Acid Interactions with Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11717-11727. [PMID: 27728769 DOI: 10.1021/acs.langmuir.6b01984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Docosahexaenoic acid (DHA) is the most abundant polyunsaturated omega-3 fatty acid found in mammalian neuronal cell membranes. Although DHA is known to be important for neuronal cell survival, little is know about how DHA interacts with phospholipid bilayers. This study presents a detailed quartz crystal microbalance with dissipation monitoring (QCM-D) analysis of free DHA interactions with individual and mixed phospholipid supported lipid bilayers (SLB). DHA incorporation and subsequent changes to the SLBs viscoelastic properties were observed to be concentration-dependent, influenced by the phospholipid species, the headgroup charge, and the presence or absence of calcium ions. It was observed that 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) SLBs incorporated the greatest amount of DHA concentration, whereas the presence of phospholipids, phosphatidylserine (PS), and phosphatidylinositol (PI) in a POPC SLB significantly reduced DHA incorporation and changed the SLBs physicochemical properties. These observations are hypothesized to be due to a substitution event occurring between DHA and phospholipid species. PS domain formation in POPC/PS 8:2 SLBs was observed in the presence of calcium ions, which favored DHA incorporation to a similar level as for a POPC only SLB. The changes in SLB thickness observed with different DHA concentrations are also presented. This work contributes to an understanding of the physical changes induced in a lipid bilayer as a consequence of its exposure to different DHA concentrations (from 50 to 200 ÎĽM). The capacity of DHA to influence the physical properties of SLBs indicates the potential for dietary DHA supplementation to cause changes in cellular membranes in vivo, with subsequent physiological consequences for cell function.
Collapse
Affiliation(s)
- Kiera R Flynn
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University , Melbourne, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University , Clayton 3800, Victoria, Australia
| | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University , Melbourne, Australia
| | - Angel A J Torriero
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University , Burwood, Victoria 3125, Australia
| |
Collapse
|
11
|
Delgado Y, Morales-Cruz M, Figueroa CM, Hernández-Román J, Hernández G, Griebenow K. The cytotoxicity of BAMLET complexes is due to oleic acid and independent of the α-lactalbumin component. FEBS Open Bio 2015; 5:397-404. [PMID: 26101738 PMCID: PMC4430638 DOI: 10.1016/j.fob.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/16/2015] [Indexed: 11/17/2022] Open
Abstract
We synthesized three different BAMLET complexes consisting of oleic acid coupled to bovine α-lactalbumin. Oleic acid micelles alone are tumoricidal at equimolar concentrations of oleic acid bound in the BAMLET complexes. α-Lactalbumin is non-toxic to cells even when delivered to their cytoplasm. Both, BAMLET and oleic acid micelles showed no selective cytotoxicity to cancer cells.
Lipid–protein complexes comprised of oleic acid (OA) non-covalently coupled to human/bovine α-lactalbumin, named HAMLET/BAMLET, display cytotoxic properties against cancer cells. However, there is still a substantial debate about the role of the protein in these complexes. To shed light into this, we obtained three different BAMLET complexes using varying synthesis conditions. Our data suggest that to form active BAMLET particles, OA has to reach critical micelle concentration with an approximate diameter of 250 nm. Proteolysis experiments on BAMLET show that OA protects the protein and is probably located on the surface, consistent with a micelle-like structure. Native or unfolded α-lactalbumin without OA lacked any tumoricidal activity. In contrast, OA alone killed cancer cells with the same efficiency at equimolar concentrations as its formulation as BAMLET. Our data show unequivocally that the cytotoxicity of the BAMLET complex is exclusively due to OA and that OA alone, when formulated as a micelle, is as toxic as the BAMLET complex. The contradictory literature results on the cytotoxicity of BAMLET might be explained by our finding that it was imperative to sonicate the samples to obtain toxic OA.
Collapse
Key Words
- BAMLET
- BAMLET, bovine α-lactalbumin made lethal to tumor cells
- Cancer therapy
- DLS, dynamic light scattering
- EPR, enhanced permeability and retention
- FA, fatty acid
- Fatty acid
- FoA, folic acid
- HAMLET
- HAMLET, human α-lactalbumin made lethal to tumor cells
- MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
- NP, nanoparticles
- OA, oleic acid
- Oleic acid
- PMS, phenazine methosulfate
- SEM, scanning electron microscopy
- α-LA, α-lactalbumin
- α-Lactalbumin
Collapse
Affiliation(s)
- Yamixa Delgado
- Department of Biology, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Moraima Morales-Cruz
- Department of Biology, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Cindy M. Figueroa
- Department of Chemistry, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - José Hernández-Román
- Department of Biology, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Glinda Hernández
- Department of Biology, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Kai Griebenow
- Department of Biology, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
- Department of Chemistry, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
- Corresponding author at: Department of Chemistry, University of Puerto Rico, RĂo Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico. Tel.: +1 (787) 764 0000x7374; fax: +1 (787) 756 8242.
| |
Collapse
|
12
|
Impact of DHA on metabolic diseases from womb to tomb. Mar Drugs 2014; 12:6190-212. [PMID: 25528960 PMCID: PMC4278225 DOI: 10.3390/md12126190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
Long chain polyunsaturated fatty acids (LC-PUFAs) are important mediators in improving and maintaining human health over the total lifespan. One topic we especially focus on in this review is omega-3 LC-PUFA docosahexaenoic acid (DHA). Adequate DHA levels are essential during neurodevelopment and, in addition, beneficial in cognitive processes throughout life. We review the impact of DHA on societal relevant metabolic diseases such as cardiovascular diseases, obesity, and diabetes mellitus type 2 (T2DM). All of these are risk factors for cognitive decline and dementia in later life. DHA supplementation is associated with a reduced incidence of both stroke and atherosclerosis, lower bodyweight and decreased T2DM prevalence. These findings are discussed in the light of different stages in the human life cycle: childhood, adolescence, adulthood and in later life. From this review, it can be concluded that DHA supplementation is able to inhibit pathologies like obesity and cardiovascular disease. DHA could be a dietary protector against these metabolic diseases during a person’s entire lifespan. However, supplementation of DHA in combination with other dietary factors is also effective. The efficacy of DHA depends on its dose as well as on the duration of supplementation, sex, and age.
Collapse
|
13
|
De Carlo F, Witte TR, Hardman WE, Claudio PP. Omega-3 eicosapentaenoic acid decreases CD133 colon cancer stem-like cell marker expression while increasing sensitivity to chemotherapy. PLoS One 2013; 8:e69760. [PMID: 23874993 PMCID: PMC3713061 DOI: 10.1371/journal.pone.0069760] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 01/29/2023] Open
Abstract
Colorectal cancer is the third leading cause of cancer-related death in the western world. In vitro and in vivo experiments showed that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can attenuate the proliferation of cancer cells, including colon cancer, and increase the efficacy of various anticancer drugs. However, these studies address the effects of n-3 PUFAs on the bulk of the tumor cells and not on the undifferentiated colon cancer stem-like cells (CSLCs) that are responsible for tumor formation and maintenance. CSLCs have also been linked to the acquisition of chemotherapy resistance and to tumor relapse. Colon CSLCs have been immunophenotyped using several antibodies against cellular markers including CD133, CD44, EpCAM, and ALDH. Anti-CD133 has been used to isolate a population of colon cancer cells that retains stem cells properties (CSLCs) from both established cell lines and primary cell cultures. We demonstrated that the n-3 PUFA, eicosapentaenoic acid (EPA), was actively incorporated into the membrane lipids of COLO 320 DM cells. 25 uM EPA decreased the cell number of the overall population of cancer cells, but not of the CD133 (+) CSLCs. Also, we observed that EPA induced down-regulation of CD133 expression and up-regulation of colonic epithelium differentiation markers, Cytokeratin 20 (CK20) and Mucin 2 (MUC2). Finally, we demonstrated that EPA increased the sensitivity of COLO 320 DM cells (total population) to both standard-of-care chemotherapies (5-Fluorouracil and oxaliplatin), whereas EPA increased the sensitivity of the CD133 (+) CSLCs to only 5-Fluorouracil.
Collapse
Affiliation(s)
- Flavia De Carlo
- Department of Biochemistry and Microbiology, Joan Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- McKown Translational Genomic Research Institute, Joan Edwards School of Medicine Marshall University, Huntington, West Virginia, United States of America
| | - Theodore R. Witte
- Department of Biochemistry and Microbiology, Joan Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- McKown Translational Genomic Research Institute, Joan Edwards School of Medicine Marshall University, Huntington, West Virginia, United States of America
| | - W. Elaine Hardman
- Department of Biochemistry and Microbiology, Joan Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- McKown Translational Genomic Research Institute, Joan Edwards School of Medicine Marshall University, Huntington, West Virginia, United States of America
| | - Pier Paolo Claudio
- Department of Biochemistry and Microbiology, Joan Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- McKown Translational Genomic Research Institute, Joan Edwards School of Medicine Marshall University, Huntington, West Virginia, United States of America
- Department of Surgery, Joan Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|