1
|
Okoyeocha EOM, Tewari-Singh N. Chloropicrin induced ocular injury: Biomarkers, potential mechanisms, and treatments. Toxicol Lett 2024; 396:70-80. [PMID: 38677567 DOI: 10.1016/j.toxlet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Ocular tissue, especially the cornea, is overly sensitive to chemical exposures. The availability and adoption of chemical threat agent chloropicrin (CP) is growing in the United States as a pesticide and fumigant; thereby increasing the risk of its use in warfare, terrorist attacks and non-intentional exposure. Exposure to CP results in immediate ocular, respiratory, and dermal injury; however, we lack knowledge on its mechanism of toxicity as well as of its breakdown products like chlorine and phosgene, and effective therapies are elusive. Herein, we have reviewed the recent findings on exposure route, toxicity and likely mechanisms of CP induced ocular toxicity based on other vesicating chemical warfare agents that cause ocular injury. We have focused on the implication of their toxicity and mechanistic outcomes in the ocular tissue, especially the cornea, which could be useful in the development of broad-spectrum effective therapeutic options. We have discussed on the potential countermeasures, overall hallmarks and challenges involved in studying ocular injuries from chemical threat agent exposures. Finally, we reviewed useful available technologies and methods that can assist in the identification of effective medical countermeasures for chemical threat agents related ocular injuries.
Collapse
Affiliation(s)
- Ebenezar O M Okoyeocha
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Marzec J, Nadadur S. Countermeasures against Pulmonary Threat Agents. J Pharmacol Exp Ther 2024; 388:560-567. [PMID: 37863486 PMCID: PMC10801713 DOI: 10.1124/jpet.123.001822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Inhaled toxicants are used for diverse purposes, ranging from industrial applications such as agriculture, sanitation, and fumigation to crowd control and chemical warfare, and acute exposure can induce lasting respiratory complications. The intentional release of chemical warfare agents (CWAs) during World War I caused life-long damage for survivors, and CWA use is outlawed by international treaties. However, in the past two decades, chemical warfare use has surged in the Middle East and Eastern Europe, with a shift toward lung toxicants. The potential use of industrial and agricultural chemicals in rogue activities is a major concern as they are often stored and transported near populated areas, where intentional or accidental release can cause severe injuries and fatalities. Despite laws and regulatory agencies that regulate use, storage, transport, emissions, and disposal, inhalational exposures continue to cause lasting lung injury. Industrial irritants (e.g., ammonia) aggravate the upper respiratory tract, causing pneumonitis, bronchoconstriction, and dyspnea. Irritant gases (e.g., acrolein, chloropicrin) affect epithelial barrier integrity and cause tissue damage through reactive intermediates or by direct adduction of cysteine-rich proteins. Symptoms of CWAs (e.g., chlorine gas, phosgene, sulfur mustard) progress from airway obstruction and pulmonary edema to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which results in respiratory depression days later. Emergency treatment is limited to supportive care using bronchodilators to control airway constriction and rescue with mechanical ventilation to improve gas exchange. Complications from acute exposure can promote obstructive lung disease and/or pulmonary fibrosis, which require long-term clinical care. SIGNIFICANCE STATEMENT: Inhaled chemical threats are of growing concern in both civilian and military settings, and there is an increased need to reduce acute lung injury and delayed clinical complications from exposures. This minireview highlights our current understanding of acute toxicity and pathophysiology of a select number of chemicals of concern. It discusses potential early-stage therapeutic development as well as challenges in developing countermeasures applicable for administration in mass casualty situations.
Collapse
Affiliation(s)
- Jacqui Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Srikanth Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
3
|
Ebenezar OO, Roney A, Goswami DG, Petrash JM, Sledge D, Komáromy AM, Liby KT, Tewari-Singh N. Ocular injury progression and cornea histopathology from chloropicrin vapor exposure: Relevant clinical biomarkers in mice. Exp Eye Res 2023; 230:109440. [PMID: 36933694 PMCID: PMC11658128 DOI: 10.1016/j.exer.2023.109440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
Ocular tissue is highly sensitive to chemical exposures. Chloropicrin (CP), a choking agent employed during World War I and currently a popular pesticide and fumigating agent, is a potential chemical threat agent. Accidental, occupational, or intentional exposure to CP results in severe ocular injury, especially to the cornea; however, studies on ocular injury progression and underlying mechanisms in a relevant in vivo animal model are lacking. This has impaired the development of effective therapies to treat the acute and long-term ocular toxicity of CP. To study the in vivo clinical and biological effects of CP ocular exposure, we tested different CP exposure doses and durations in mice. These exposures will aid in the study of acute ocular injury and its progression as well as identify a moderate dose to develop a relevant rodent ocular injury model with CP. The left eyes of male BALB/c mice were exposed to CP (20% CP for 0.5 or 1 min or 10% CP for 1 min) using a vapor cap, with the right eyes serving as controls. Injury progression was evaluated for 25 days post-exposure. CP-exposure caused a significant corneal ulceration and eyelid swelling which resolved by day 14 post exposure. In addition, CP-exposure caused significant corneal opacity and neovascularization. Development of hydrops (severe corneal edema with corneal bullae) and hyphema (blood accumulation in the anterior chamber) was observed as advanced CP effects. Mice were euthanized at day 25 post-CP-exposure, and the eyes were harvested to further study the corneal injury. Histopathological analyses showed a significant CP-induced decrease in corneal epithelial thickness and increased stromal thickness with more pronounced damage, including stromal fibrosis, edema, neovascularization, trapped epithelial cells, anterior and posterior synechiae, and infiltration of inflammatory cells. Loss of the corneal endothelial cells and Descemet's membrane could be associated with the CP-induced corneal edema and hydrops which could lead to long term term pathological conditions. Although exposure to 20% CP for 1 min caused more eyelid swelling, ulceration, and hyphema, similar effects were observed with all CP exposures. These novel findings following CP ocular exposure in a mouse model outline the corneal histopathologic changes that associate with the continuing ocular clinical effects. The data are useful in designing further studies to identify and correlate the clinical and biological markers of CP ocular injury progression with acute and long-term toxic effects on cornea and other ocular tissues. We take a crucial step towards CP ocular injury model development and in pathophysiological studies to identify molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Okoyeocha Om Ebenezar
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dodd Sledge
- Michigan State University Veterinary Diagnostic Laboratory, East Lansing, MI, 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Karen T Liby
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Singh SK, Goswami DG, Wright HN, Kant R, Ali IA, Braucher LN, Klein JA, Godziela MG, Ammar DA, Pate KM, Tewari-Singh N. Effect of supersaturated oxygen emulsion treatment on chloropicrin-induced chemical injury in ex vivo rabbit cornea. Toxicol Lett 2021; 349:124-133. [PMID: 34153409 DOI: 10.1016/j.toxlet.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/19/2023]
Abstract
With a possibility for the use of chemical weapons in battlefield or in terrorist activities, effective therapies against the devastating ocular injuries, from their exposure, are needed. Oxygen plays a vital role in ocular tissue preservation and wound repair. We tested the efficacy of supersaturated oxygen emulsion (SSOE) in reducing ex vivo corneal and keratocyte injury from chloropicrin (CP). CP, currently used as a pesticide, is a chemical threat agent like the vesicating mustard agents and causes severe corneal injury. Since our previous study in human corneal epithelial cells showed the treatment potential of SSOE (55 %), we further tested its efficacy in an ex vivo CP-induced rabbit corneal injury model. Corneas were exposed to CP (700 nmol) for 2 h, washed and cultured with or without SSOE for 24 h or 96 h. At 96 h post CP exposure, SSOE treatment presented a healing tendency of the corneal epithelial layer, and abrogated the CP-induced epithelial apoptotic cell death. SSOE treatment also reduced the CP induced DNA damage (H2A.X phosphorylation) and inflammatory markers (e.g. MMP9, IL-21, MIP-1β, TNFα). Further examination of the treatment efficacy of SSOE alone or in combination with other therapies in in vivo cornea injury models for CP and vesicants, is warranted.
Collapse
Affiliation(s)
- Satyendra K Singh
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Dinesh G Goswami
- University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, United States
| | - Holly N Wright
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Rama Kant
- University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, United States
| | - Izza A Ali
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Leah N Braucher
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Joshua A Klein
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Madeline G Godziela
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - David A Ammar
- University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, United States
| | | | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States.
| |
Collapse
|
6
|
Goswami DG, Kant R, Ammar DA, Agarwal C, Gomez J, Agarwal R, Saba LM, Fritz KS, Tewari-Singh N. Toxic consequences and oxidative protein carbonylation from chloropicrin exposure in human corneal epithelial cells. Toxicol Lett 2020; 322:1-11. [PMID: 31884112 PMCID: PMC11249040 DOI: 10.1016/j.toxlet.2019.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Chloropicrin (CP), a warfare agent now majorly used as a soil pesticide, is a strong irritating and lacrimating compound with devastating toxic effects. To elucidate the mechanism of its ocular toxicity, toxic effects of CP (0-100 μM) were studied in primary human corneal epithelial (HCE) cells. CP exposure resulted in reduced HCE cell viability and increased apoptotic cell death with an up-regulation of cleaved caspase-3 and poly ADP ribose polymerase indicating their contribution in CP-induced apoptotic cell death. Following CP exposure, cells exhibited increased expression of heme oxygenase-1, and phosphorylation of H2A.X and p53 as well as 4-hydroxynonenal adduct formation, suggesting oxidative stress, DNA damage and lipid peroxidation. CP also caused increases in mitogen activated protein kinase-c-Jun N-terminal kinase and inflammatory mediator cyclooxygenase-2. Proteomic analysis revealed an increase in the carbonylation of 179 proteins and enrichment of pathways (including proteasome pathway and catabolic process) in HCE cells following CP exposure. CP-induced oxidative stress and lipid peroxidation can enhance protein carbonylation, prompting alterations in corneal epithelial proteins as well as perturbing signaling pathways resulting in toxic effects. Pathways and major processes identified following CP exposure could be lead-hit targets for further biochemical and molecular characterization as well as therapeutic intervention.
Collapse
Affiliation(s)
- Dinesh G Goswami
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - David A Ammar
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, 48824, USA.
| |
Collapse
|
7
|
Yin J, Wu B, Liu S, Hu S, Gong T, Cherr GN, Zhang XX, Ren H, Xian Q. Rapid and complete dehalogenation of halonitromethanes in simulated gastrointestinal tract and its influence on toxicity. CHEMOSPHERE 2018; 211:1147-1155. [PMID: 30223330 DOI: 10.1016/j.chemosphere.2018.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts in drinking water and wastewater are receiving attentions due to their high toxicity. This study applied a simulator of the human gastrointestinal tract to determine the dehalogenation processes of trichloronitromethane, bromonitromethane and bromochloronitromethane for the first time. Influence of digestion process of HNMs on gut microbiota and hepatotoxicity was further analyzed. Results showed that the three HNMs were rapidly and completely dehalogenated in the gastrointestinal tract, especially in the stomach (2 h retention Time) and small intestine (4 h retention Time). Mucin, cysteine, pancreatin and bile salts in the digestive juice played major roles in the dehalogenation process. HNMs and their dehalogenation products in the resulting fluids of stomach induced the highest toxicity followed by those in intestine and colon, exhibiting dose-dependent effects. Although most HNMs were degraded in the stomach and small intestine, residual HNMs entered into colon changed the microbial community. Abundance of several genera, such as Bacteroides, Lachnospiraceae_unassigned and Lactobacillus had high correlation with exposure concentration of HNMs. This study sheds new light on dehalogenation and toxic processes of HNMs by oral exposure, which provides basic data for their human health risk assessment.
Collapse
Affiliation(s)
- Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Gary N Cherr
- Bodega Marine Laboratory, Departments of Environmental Toxicology and Nutrition, University of California, Davis, CA, USA
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Lizardo-Huerta JC, Sirjean B, Verdier L, Fournet R, Glaude PA. Combustion and Pyrolysis Kinetics of Chloropicrin. J Phys Chem A 2018; 122:5735-5741. [PMID: 29890832 DOI: 10.1021/acs.jpca.8b04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloropicrin (CCl3NO2) is widely used in agriculture as a pesticide, weed-killer, fungicide or nematicide. It has also been used as a chemical agent during World War I. The precise understanding of its combustion chemistry for destruction processes or in the event of accidental fire of stored reserves is a major safety issue. A detailed chemical kinetic model for the combustion and pyrolysis of chloropicrin is proposed for the first time. A large number of thermo-kinetic parameters were calculated using quantum chemistry and reaction rate theory. The model was validated against experimental pyrolysis data available in the literature. It was shown that the degradation of chloropicrin is ruled by the breaking of the C-N bond followed by the oxidation of the trichloromethyl radical by NO2 through the formation of the adduct CCl3ONO, which can decompose to NO, chlorine atom, and phosgene. Phosgene is much more stable than chloropicrin and its decomposition starts at much higher temperatures. Combustion and pyrolysis simulations were also compared and demonstrated that the addition of oxygen has very little effect on the reactivity or product distribution due to the absence of hydrogen atoms in chloropicrin.
Collapse
Affiliation(s)
- J-C Lizardo-Huerta
- Laboratoire Réactions et Génie des Procédés, CNRS , Université de Lorraine , 1 rue Grandville BP 20451 , 54001 Nancy Cedex , France
| | - B Sirjean
- Laboratoire Réactions et Génie des Procédés, CNRS , Université de Lorraine , 1 rue Grandville BP 20451 , 54001 Nancy Cedex , France
| | - L Verdier
- Site du Bouchet , DGA Maîtrise NRBC , 5 rue Lavoisier, BP No. 3 , 91710 Vert le Petit , France
| | - R Fournet
- Laboratoire Réactions et Génie des Procédés, CNRS , Université de Lorraine , 1 rue Grandville BP 20451 , 54001 Nancy Cedex , France
| | - P-A Glaude
- Laboratoire Réactions et Génie des Procédés, CNRS , Université de Lorraine , 1 rue Grandville BP 20451 , 54001 Nancy Cedex , France
| |
Collapse
|
9
|
Lehman JG, Causey RD, LaGrasta CV, Ruff AL. High Throughput SiRNA Screening for Chloropicrin and Hydrogen Fluoride-Induced Cornea Epithelial Cell Injury. J Vis Exp 2018:57372. [PMID: 29985346 PMCID: PMC6101754 DOI: 10.3791/57372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Toxicant-induced ocular injury is a true ocular emergency because chemicals have the potential to rapidly inflict significant tissue damage. Treatments for toxicant-induced corneal injury are generally supportive as no specific therapeutics exist to treat these injuries. In the efforts to develop treatments and therapeutics to care for exposure, it can be important to understand the molecular and cellular mechanisms of these injuries. We propose that utilization of high throughput small inhibitory RNA (siRNA) screening can be an important tool that could help to more rapidly elucidate the molecular mechanisms of chemical cornea epithelial injury. siRNA are double stranded RNA molecules that are 19-25 nucleotides long and utilize the post-transcriptional gene silencing pathway to degrade mRNA which have homology to the siRNA. The resulting reduction of expression of the specific gene can then be studied in toxicant exposed cells to ascertain the function of that gene in the cellular response to the toxicant. The development and validation of in vitro exposure models and methods for the high throughput screening (HTS) of hydrogen fluoride- (HF) and chloropicrin- (CP) induced ocular injury are presented in this article. Although we selected these two toxicants, our methods are applicable to the study of other toxicants with minor modifications to the toxicant exposure protocol. The SV40 large T antigen immortalized human corneal epithelial cell line SV40-HCEC was selected for study. Cell viability and IL-8 production were selected as endpoints in the screening protocol. Several challenges associated with the development of toxicant exposure and cell culture methods suitable for HTS studies are presented. The establishment of HTS models for these toxicants allows for further studies to better understand the mechanism of injury and to screen for potential therapeutics for chemical ocular injury.
Collapse
Affiliation(s)
- John G Lehman
- US Army Medical Research Institute of Chemical Defense
| | | | | | - Albert L Ruff
- US Army Medical Research Institute of Chemical Defense;
| |
Collapse
|
10
|
Yin J, Wu B, Zhang XX, Xian Q. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method. CHEMOSPHERE 2017; 185:20-28. [PMID: 28683333 DOI: 10.1016/j.chemosphere.2017.06.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts have been widely found in drinking water. In vitro test found HNMs could induce higher cytotoxicity and genotoxicity than trihalomethanes and haloacetic acids. However, data on toxic effect from in vivo experiment is limited. In this study, bromonitromethane (BNM), bromochloronitromethane (BCNM) and trichloronitromethane (TCNM) were chosen as target HNMs, and exposed to mice for 30 d. Hepatic toxicity and serum metabolic profiles were determined to reveal toxic effects and mechanisms of the three HNMs. Results showed the three HNMs significantly decreased relative liver weight, indicating liver is one of the target organs. Further, the three HNMs exposure damaged hepatic antioxidant defense system, and increased oxidative DNA damage. Nuclear magnetic resonance based metabolomics analysis found amino acid metabolism and carbohydrate metabolism were disturbed by HNMs exposure. Some metabolites in these metabolisms are related to oxidative stress and damage. Combined with above results, BNM had the highest toxicity, followed by BCNM and TCNM, indicating bromo-HNMs had higher toxicity than chloro-HNMs. Induction of oxidative stress is one of the toxicity mechanisms of HNMs. This study firstly provides the insight into in vivo toxicity of HNMs and their underlying mechanisms based on metabolomics methods, which is very useful for their health risk assessment in drinking water.
Collapse
Affiliation(s)
- Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Pesonen M, Rysä J, Storvik M, Rilla K, Pasanen M, Vähäkangas K. Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro 2017; 42:247-254. [DOI: 10.1016/j.tiv.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/02/2017] [Accepted: 05/02/2017] [Indexed: 01/19/2023]
|
12
|
McElroy CS, Day BJ. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals. Biochem Pharmacol 2016; 100:1-11. [PMID: 26476351 PMCID: PMC4744107 DOI: 10.1016/j.bcp.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising.
Collapse
Affiliation(s)
- Cameron S McElroy
- Department of Medicine, National Jewish Health, Denver, CO 80206, United States; Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, United States
| | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO 80206, United States; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, United States; Department of Immunology, University of Colorado Denver, Aurora, CO 80045, United States; Department of Environmental & Occupational Health Sciences, University of Colorado Denver, Aurora, CO 80045, United States; Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, United States.
| |
Collapse
|
13
|
Halme M, Pesonen M, Salo H, Söderström M, Pasanen M, Vähäkangas K, Vanninen P. Comparison of in vitro metabolism and cytotoxicity of capsaicin and dihydrocapsaicin. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:17-24. [DOI: 10.1016/j.jchromb.2015.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022]
|
14
|
Pesonen M, Storvik M, Kokkola T, Rysä J, Vähäkangas K, Pasanen M. Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment. Chem Res Toxicol 2015; 28:1926-35. [PMID: 26352163 DOI: 10.1021/acs.chemrestox.5b00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chloropicrin is a vaporizing toxic irritant that poses a risk to human health if inhaled, but the mechanism of its toxicity in the respiratory tract is poorly understood. Here, we exposed human primary bronchial epithelial cells (HBEpC) to two concentrations of chloropicrin (10-50 μM) for 6 or 48 h and used genomic microarray, flow cytometry, and TEM-analysis to monitor cellular responses to the exposures. The overall number of differentially expressed transcripts with a fold-change > ± 2 compared to controls increased with longer exposure times. The initial response was activation of genes with a higher number of up- (512 by 10 μM and 408 by 40 μM chloropicrin) rather than down-regulated transcripts (40 by 10 μM and 215 by 40 μM chloropicrin) at 6 h seen with both exposure concentrations. The number of down-regulated transcripts, however, increased with the exposure time. The differentially regulated transcripts were further examined for enriched Gene Ontology Terms (GO) and KEGG-pathways. According to this analysis, the "ribosome" and "oxidative phosphorylation" were the KEGG-pathways predominantly affected by the exposure. The predominantly affected (GO) biological processes were "protein metabolic process" including "translation," "cellular protein complex assembly," and "response to unfolded protein." Furthermore, the top pathways, "NRF2-activated oxidative stress" and "Ah-receptor signaling," were enriched in our data sets by IPA-analysis. Real time qPCR assay of six selected genes agreed with the microarray analysis. In addition, chloropicrin exposure increased the numbers of late S and/or G2/M-phase cells as analyzed by flow cytometry and induced autophagy as revealed by electron microscopy. The targets identified are critical for vital cellular functions reflecting acute toxic responses and are potential causes for the reduced viability of epithelial cells after chloropicrin exposure.
Collapse
Affiliation(s)
- Maija Pesonen
- Research and Development, Centre for Military Medicine, Finnish Defence Forces , Tukholmankatu 8A, PL 50, 00301 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
15
|
Halme M, Pesonen M, Grandell T, Kuula M, Pasanen M, Vähäkangas K, Vanninen P. Analysis of nitromethane from samples exposed in vitro to chloropicrin by stable isotope dilution headspace gas chromatography with mass spectrometry. J Sep Sci 2015; 38:3383-9. [DOI: 10.1002/jssc.201500457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/17/2015] [Accepted: 07/19/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Mia Halme
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry; University of Helsinki; P.O. Box 55 FI Finland
| | - Maija Pesonen
- Research and Development, Centre for Military Medicine; Finnish Defence Forces; P.O Box 50 FI Helsinki Finland
- School of Pharmacy/Toxicology, Faculty of Health Sciences; University of Eastern Finland; P.O. Box 1627 FI Kuopio Finland
| | - Toni Grandell
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry; University of Helsinki; P.O. Box 55 FI Finland
| | - Matti Kuula
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry; University of Helsinki; P.O. Box 55 FI Finland
| | - Markku Pasanen
- School of Pharmacy/Toxicology, Faculty of Health Sciences; University of Eastern Finland; P.O. Box 1627 FI Kuopio Finland
| | - Kirsi Vähäkangas
- School of Pharmacy/Toxicology, Faculty of Health Sciences; University of Eastern Finland; P.O. Box 1627 FI Kuopio Finland
| | - Paula Vanninen
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry; University of Helsinki; P.O. Box 55 FI Finland
| |
Collapse
|
16
|
Kokkola T, Suuronen T, Pesonen M, Filippakopoulos P, Salminen A, Jarho EM, Lahtela-Kakkonen M. BET Inhibition Upregulates SIRT1 and Alleviates Inflammatory Responses. Chembiochem 2015. [PMID: 26212199 PMCID: PMC4600234 DOI: 10.1002/cbic.201500272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Control of histone acetylation is a part of the epigenetic mechanism that regulates gene expression and chromatin architecture. The members of the bromodomain and extra terminal domain (BET) protein family are a group of epigenetic readers that recognize histone acetylation, whereas histone deacetyl- ases such as sirtuin 1 (SIRT1) function as epigenetic erasers. We observed that BET inhibition by the specific inhibitor JQ1 upregulated SIRT1 expression and activated SIRT1. Moreover, we observed that BET inhibition functionally reversed the pro-inflammatory effect of SIRT1 inhibition in a cellular lung disease model. SIRT1 activation is desirable in many age-related, metabolic and inflammatory diseases; our results suggest that BET protein inhibition would be beneficial in treatment of those conditions. Most importantly, our findings demonstrate a novel mechanism of SIRT1 activation by inhibition of the BET proteins.
Collapse
Affiliation(s)
- Tarja Kokkola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland. .,Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland.
| | - Tiina Suuronen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Maija Pesonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | | | - Antero Salminen
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Elina M Jarho
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Maija Lahtela-Kakkonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| |
Collapse
|