1
|
Ahsan SM, Injamum-Ul-Hoque M, Das AK, Rahman MM, Mollah MMI, Paul NC, Choi HW. Plant-Entomopathogenic Fungi Interaction: Recent Progress and Future Prospects on Endophytism-Mediated Growth Promotion and Biocontrol. PLANTS (BASEL, SWITZERLAND) 2024; 13:1420. [PMID: 38794490 PMCID: PMC11124879 DOI: 10.3390/plants13101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Entomopathogenic fungi, often acknowledged primarily for their insecticidal properties, fulfill diverse roles within ecosystems. These roles encompass endophytism, antagonism against plant diseases, promotion of the growth of plants, and inhabitation of the rhizosphere, occurring both naturally and upon artificial inoculation, as substantiated by a growing body of contemporary research. Numerous studies have highlighted the beneficial aspects of endophytic colonization. This review aims to systematically organize information concerning the direct (nutrient acquisition and production of phytohormones) and indirect (resistance induction, antibiotic and secondary metabolite production, siderophore production, and mitigation of abiotic and biotic stresses) implications of endophytic colonization. Furthermore, a thorough discussion of these mechanisms is provided. Several challenges, including isolation complexities, classification of novel strains, and the impact of terrestrial location, vegetation type, and anthropogenic reluctance to use fungal entomopathogens, have been recognized as hurdles. However, recent advancements in biotechnology within microbial research hold promising solutions to many of these challenges. Ultimately, the current constraints delineate potential future avenues for leveraging endophytic fungal entomopathogens as dual microbial control agents.
Collapse
Affiliation(s)
- S. M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Ashim Kumar Das
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Md. Mahi Imam Mollah
- Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh;
| | - Narayan Chandra Paul
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
2
|
Li M, Tang S, Peng X, Sharma G, Yin S, Hao Z, Li J, Shen J, Dai C. Lycopene as a Therapeutic Agent against Aflatoxin B1-Related Toxicity: Mechanistic Insights and Future Directions. Antioxidants (Basel) 2024; 13:452. [PMID: 38671900 PMCID: PMC11047733 DOI: 10.3390/antiox13040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.
Collapse
Affiliation(s)
- Meng Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, China;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Shutao Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China;
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| |
Collapse
|
3
|
Dai C, Sharma G, Liu G, Shen J, Shao B, Hao Z. Therapeutic detoxification of quercetin for aflatoxin B1-related toxicity: Roles of oxidative stress, inflammation, and metabolic enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123474. [PMID: 38309422 DOI: 10.1016/j.envpol.2024.123474] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Zhang Z, Tian Y, Sui L, Lu Y, Cheng K, Zhao Y, Li Q, Shi W. First record of Aspergillus nomiae as a broad-spectrum entomopathogenic fungus that provides resistance against phytopathogens and insect pests by colonization of plants. Front Microbiol 2024; 14:1284276. [PMID: 38260878 PMCID: PMC10801167 DOI: 10.3389/fmicb.2023.1284276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Aspergillus nomiae is known as a pathogenic fungus that infects humans and plants but has never been reported as an entomophagous fungus (EPF) that can provide other functions as an endotype. Methods A strain of EPF was isolated and identified from diseased larvae of Spodoptera litura in a soybean field and designated AnS1Gzl-1. Pathogenicity of the strain toward various insect pests was evaluated, especially the ability to colonize plants and induce resistance against phytopathogens and insect pests. Results The isolated EPF strain AnS1Gzl-1 was identified as A. nomiae; it showed strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of Sclerotinia sclerotiorum in vitro, a causal agent of soil-borne plant disease. It colonized plants as an endophyte via root irrigation with a high colonization rate of 90%, thereby inducing plant resistance against phytopathogen infection, and disrupting the feeding selectivity of S. litura larvae. Discussion This is the first record of a natural infection of A. nomiae on insects. A. nomiae has the potential to be used as a dual biocontrol EPF because of its ability to not only kill a broad spectrum of insect pests directly but also induce resistance against phytopathogens via plant colonization.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yifan Tian
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Ke Cheng
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Saha Turna N, Comstock SS, Gangur V, Wu F. Effects of aflatoxin on the immune system: Evidence from human and mammalian animal research. Crit Rev Food Sci Nutr 2023; 64:9955-9973. [PMID: 37283041 DOI: 10.1080/10408398.2023.2219336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Shortly after its discovery in 1960, aflatoxin - a group of fungal toxins or mycotoxins produced by the fungi Aspergillus flavus and A. parasiticus in food crops such as maize, peanuts and tree nuts - was found to cause liver cancer in humans and multiple animal species. Hence, regulations on maximum allowable aflatoxin levels in food worldwide have focused on protecting humans from aflatoxin's carcinogenic effects. However, aflatoxin may also have non-carcinogenic health effects (e.g., immunotoxicity) that are particularly relevant today. Our current review highlights the growing evidence that aflatoxin exposure adversely affects immunity. Here, we comprehensively evaluated human and mammalian animal studies that link aflatoxin exposure with adverse effects on the immune system. We organized the review by organism as well as by the effects on adaptive and innate immune functions. There is abundant evidence that aflatoxin exhibits immunotoxicity, and therefore may compromise the ability of both humans and animals to resist infections. However, the reported effects of aflatoxin on certain specific immune biomarkers are inconsistent in the existing literature. The extent of the immunotoxic effects of aflatoxin must be clarified, so that the contribution of such immunotoxicity to the overall burden of aflatoxin-related diseases can be established.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Venugopal Gangur
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Wu X, Meng W, Duan C, Cao J, Wei Y, Cui X, Zhu D, Lv P, Shen H, Zhang X. AFG1-induced TNF-α-mediated inflammation enhances gastric epithelial cell injury via CYP2E1. Food Chem Toxicol 2023; 176:113756. [PMID: 36997055 DOI: 10.1016/j.fct.2023.113756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Aflatoxin G1 (AFG1), a member of the aflatoxin family with cytotoxic and carcinogenic properties, is one of the most common mycotoxins occurring in various agricultural products, animal feed, and human foods and drinks worldwide. Epithelial cells in the gastrointestinal tract are the first line of defense against ingested mycotoxins. However, the toxicity of AFG1 to gastric epithelial cells (GECs) remains unclear. In this study, we explored whether and how AFG1-induced gastric inflammation regulates cytochrome P450 to contribute to DNA damage in GECs. Oral administration of AFG1 induced gastric inflammation and DNA damage in mouse GECs associated with P450 2E1 (CYP2E1) upregulation. Treatment with the soluble TNF-α receptor sTNFR:Fc inhibited AFG1-induced gastric inflammation, and reversed CYP2E1 upregulation and DNA damage in mouse GECs. TNF-α-mediated inflammation plays an important role in AFG1-induced gastric cell damage. Using the human gastric cell line GES-1, AFG1 upregulated CYP2E1 through NF-κB, causing oxidative DNA damage in vitro. The cells were also treated with TNF-α and AFG1 to mimic AFG1-induced TNF-α-mediated inflammation. TNF-α activated the NF-κB/CYP2E1 pathway to promote AFG1 activation, which enhanced DNA cellular damage in vitro. In conclusion, AFG1 ingestion induces TNF-α-mediated gastric inflammation, which upregulates CYP2E1 to promote AFG1-induced DNA damage in GECs.
Collapse
|
8
|
Taucher E, Mykoliuk I, Lindenmann J, Smolle-Juettner FM. Implications of the Immune Landscape in COPD and Lung Cancer: Smoking Versus Other Causes. Front Immunol 2022; 13:846605. [PMID: 35386685 PMCID: PMC8978964 DOI: 10.3389/fimmu.2022.846605] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Cigarette smoking is reported in about one third of adults worldwide. A strong relationship between cigarette smoke exposure and chronic obstructive pulmonary disease (COPD) as well as lung cancer has been proven. However, about 15% of lung cancer cases, and between one fourth and one third of COPD cases, occur in never-smokers. The effects of cigarette smoke on the innate as well as the adaptive immune system have been widely investigated. It is assumed that certain immunologic features contribute to lung cancer and COPD development in the absence of smoking as the major risk factor. In this article, we review different immunological aspects of lung cancer and COPD with a special focus on non-smoking related risk factors.
Collapse
Affiliation(s)
- Elisabeth Taucher
- Division of Pulmonology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Iurii Mykoliuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, Graz, Austria
| | - Joerg Lindenmann
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, Graz, Austria
| | | |
Collapse
|
9
|
Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int J Mol Sci 2021; 22:ijms222212269. [PMID: 34830149 PMCID: PMC8619365 DOI: 10.3390/ijms222212269] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth. The interplay between mold exposure and the host immune system is still not fully elucidated. Literature research focusing on up-to-date publications is providing a heterogenous picture of evidence and opinions regarding the role of mold and mycotoxins in the development of immune diseases. While the induction of allergic immune responses by molds is generally acknowledged, other direct health effects like the toxic mold syndrome are controversially discussed. However, recent observations indicate a particular importance of mold/mycotoxin exposure in individuals with pre-existing dysregulation of the immune system, due to exacerbation of underlying pathophysiology including allergic and non-allergic chronic inflammatory diseases, autoimmune disorders, and even human immunodeficiency virus (HIV) disease progression. In this review, we focus on the impact of mycotoxins regarding their impact on disease progression in pre-existing immune dysregulation. This is complemented by experimental in vivo and in vitro findings to present cellular and molecular modes of action. Furthermore, we discuss hypothetical mechanisms of action, where evidence is missing since much remains to be discovered.
Collapse
|
10
|
Li J, Feng Z, Wang J, Huang G, Yan L. Interaction of aflatoxin G 1 with free DNA in vitro and possibility of its application in removing aflatoxin G 1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:932-940. [PMID: 34554053 DOI: 10.1080/03601234.2021.1979838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study sought to evaluate the interaction between aflatoxin G1 and free DNA in vitro through different analytical techniques. The UV-visible spectra results showed that the structure of DNA might be changed with a new aflatoxin G1-DNA complex forming, which indicated that the interacting mode between them was the intercalating mode. The DNA melting temperature increased by 12.80 °C, suggesting that the DNA double helix structure was more compact and stable through intercalation. The circular dichroism (CD) spectra results indicated that the interaction of aflatoxin G1 with DNA induced the DNA base stacking changes. The results of agarose gel electrophoresis and fluorescence microscope further verified that the interacting mode between aflatoxin G1 and DNA was intercalation mode. According to the fluorescence spectrum data, the binding constant was calculated 6.24 × 104 L·mol-1. The thermodynamic results demonstrated that the reaction of aflatoxin G1 intercalating to DNA was a spontaneous reaction. The elimination results suggested that aflatoxin G1 could be enriched and removed by DNA intercalation through magnetic beads separation, with the removal efficiency of 93.73%. The study results would provide a theoretical basis for establishing a new aflatoxin removal method based on DNA intercalation.
Collapse
Affiliation(s)
- Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Guangxi, P. R. China
| | - Zhen Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Guangxi, P. R. China
| | - Jingting Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Guangxi, P. R. China
- Qilu Institute of Technology, Jinan, Shandong, P. R. China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Guangxi, P. R. China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Guangxi, P. R. China
| |
Collapse
|
11
|
Guo H, Zhao L, Zhu J, Chen P, Wang H, Jiang M, Liu X, Sun H, Zhao W, Zheng Z, Li W, Chen B, Fang Q, Yang M, He Y, Yang Y. Microbes in lung cancer initiation, treatment, and outcome: Boon or bane? Semin Cancer Biol 2021; 86:1190-1206. [PMID: 34029741 DOI: 10.1016/j.semcancer.2021.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
Lung cancer is the top reason for cancer-related deaths worldwide. The 5-year overall survival rate of lung cancer is approximately 20 % due to the delayed diagnosis and low response rate to regular treatments. Microbiota, both host-microbiota and alien pathogenic microbiota, have been investigated to be involved in a complicated and contradictory relationship with lung cancer initiation, treatments, and prognosis. Disorders of certain host-microbiota and pathogen infection are associated with the risk of lung cancers based on epidemiological evidence, and antibiotics (ATBs) could dramatically impair anti-cancer treatment efficacy, including chemotherapy and immunotherapy. Moreover, probiotics and microbe-mediated drugs are potential approaches to enhance regular anti-tumor treatments. Therefore, the knowledge of the complex dual effect of microbes on lung cancer is beneficial to take their essence and remove their dross. This review offers insight into the current trends and advancements in microbiota or microbial components related to lung cancer.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China; Tongji University, No 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China; Tongji University, No 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China; Tongji University, No 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China; Tongji University, No 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Zixuan Zheng
- Tongji University, No 1239 Siping Road, Shanghai, 200092, People's Republic of China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Qiyu Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Menghang Yang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China; Tongji University, No 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
12
|
Zhou YB, Li DM, Houbraken J, Sun TT, de Hoog GS. Fatal Rhinofacial Mycosis Due to Aspergillus nomiae: Case Report and Review of Published Literature. Front Microbiol 2021; 11:595375. [PMID: 33414771 PMCID: PMC7782315 DOI: 10.3389/fmicb.2020.595375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background A 73-year-old female suffering from acute myeloid leukemia presented with progressive rhinofacial mycosis. Suspecting it to be mucormycosis, the antifungal amphotericin B (AMB) was administered empirically, but the patient did not respond as planned. The fungus was then isolated from the biopsied tissue and morphologically identified as a species of Aspergillus. Necrosis progressed and she died of cerebral hemorrhage. Since Aspergillus flavus is susceptible to AMB, and several other Aspergillus species can be misidentified as A. flavus, the observed resistance necessitated a re-examination of the fungal isolate. Methods The fungal strain was re-isolated and re-examined morphologically. Additionally, genomic DNA was extracted from the fungus and sequences were obtained from three genomic regions [the rDNA internal transcribed spacer (ITS) region, and portions of the β-tubulin and calmodulin genes] to more accurately identify this Aspergillus strain. Its antifungal susceptibility was assessed using multiple compounds and our findings were compared with literature data. Results The fungal culture again yielded an Aspergillus isolate morphologically identical to A. flavus. Molecular analyses, however, revealed the strain to be A. nomiae, a close relative of A. flavus in section Flavi, and it exhibited resistance to AMB. Reviewing the literature, only five other cases of A. nomiae infection in humans have been reported worldwide. Conclusion and Clinical Importance The rhinofacial mycosis of the patient was actually due to A. nomiae. The initial misidentification of the fungus, coupled with its resistance to AMB, could be the reason treatment did not help the patient. We postulate that clinical A. nomiae infections may be underreported and that accurate and speedy pathogen identification is important so that an effective antifungal regimen can be administered.
Collapse
Affiliation(s)
- Ya Bin Zhou
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Dong Ming Li
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Ting Ting Sun
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - G Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| |
Collapse
|
13
|
Guo N, Wen Y, Wang C, Kang L, Wang X, Liu X, Soulika AM, Liu B, Zhao M, Han X, Lv P, Xing L, Zhang X, Shen H. Lung adenocarcinoma-related TNF-α-dependent inflammation upregulates MHC-II on alveolar type II cells through CXCR-2 to contribute to Treg expansion. FASEB J 2020; 34:12197-12213. [PMID: 33000506 DOI: 10.1096/fj.202000166rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
MHC-II on alveolar type-II (AT-II) cells is associated with immune tolerance in an inflammatory microenvironment. Recently, we found TNF-α upregulated MHC-II in AT-II in vitro. In this study, we explored whether TNF-α-mediated inflammation upregulates MHC-II on AT-II cells to trigger Treg expansion in inflammation-driven lung adenocarcinoma (IDLA). Using urethane-induced mice IDLA model, we found that IDLA cells mainly arise from AT-II cells, which are the major source of MHC-II. Blocking urethane-induced inflammation by TNF-α neutralization inhibited tumorigenesis and reversed MHC-II upregulation on tumor cells of AT-II cellular origin in IDLA. MHC-II-dependent AT-II cells were isolated from IDLA-induced Treg expansion. In human LA samples, we found high expression of MHC-II in tumor cells of AT-II cellular origin, which was correlated with increased Foxp3+ T cells infiltration as well as CXCR-2 expression. CXCR-2 and MHC-II colocalization was observed in inflamed lung tissue and IDLA cells of AT-II cellular origin. Furthermore, at the pro-IDLA inflammatory stage, TNF-α-neutralization or CXCR-2 deficiency inhibited the upregulation of MHC-II on AT-II cells in inflamed lung tissue. Thus, tumor cells of AT-II cellular origin contribute to Treg expansion in an MHC-II-dependent manner in TNF-α-mediated IDLA. At the pro-tumor inflammatory stage, TNF-α-dependent lung inflammation plays an important role in MHC-II upregulation on AT-II cells.
Collapse
Affiliation(s)
- Ningfei Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yue Wen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Can Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.,Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Lifei Kang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.,Department of Pathology, Hebei Chest Hospital, Shijiazhuang, China
| | - Xiuqing Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyi Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
| | - Bowei Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Mei Zhao
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Han
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.,Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Han X, Liu X, Wang X, Guo W, Wen Y, Meng W, Peng D, Lv P, Zhang X, Shen H. TNF-α-dependent lung inflammation upregulates superoxide dismutase-2 to promote tumor cell proliferation in lung adenocarcinoma. Mol Carcinog 2020; 59:1088-1099. [PMID: 32673443 DOI: 10.1002/mc.23239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Manganese superoxide dismutase (SOD-2), an important primary antioxidant enzyme located in mitochondria, plays a critical role in tumor progression. Reportedly, the proinflammatory cytokine, tumor necrosis factor (TNF)-α, can increase SOD-2 expression in a human lung adenocarcinoma cell line in vitro, indicating that TNF-α-mediated inflammation may regulate SOD-2 expression, which may be related to cancer promotion. Using a urethane-induced inflammation-driven lung adenocarcinoma (IDLA) mice model, we investigated whether and how TNF-α-mediated inflammation upregulated SOD-2 expression in lung adenocarcinoma. Our results showed that SOD-2 was mostly expressed on surfactant protein-C+ AT-II cells (alveolar type II cell) and tumor cells in IDLA mice, which were surrounded by CD68+ macrophages. Blocking TNF-α-dependent inflammation downregulated SOD-2 expression in inflamed lung tissues at the protumor stage and also inhibited SOD-2 expression in tumor cells in the IDLA model. In human lung adenocarcinoma, both the number of infiltrating CD68+ macrophages and TNF-α expression correlated positively with SOD-2 expression, which is related to lymph node metastasis and TNM stage. We collected the conditioned medium from lipopolysaccharide-activated phorbol myristate acetate-induced THP1 (M1) cells to stimulate A549 and H1299 cells and observed that THP1-M1 upregulated SOD-2 by secreting TNF-α. Blocking SOD-2 expression significantly inhibited TNF-α-induced cell proliferation in A549 and H1299 cells in vitro. Thus, TNF-α-mediated lung inflammation can upregulate SOD-2 expression in lung adenocarcinoma, and macrophages contribute to SOD-2 upregulation by secreting TNF-α.
Collapse
Affiliation(s)
- Xiaojing Han
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.,Department of Basic Courses, NCO School, Army Medical University, Shijiazhuang, China
| | - Xiaoyi Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiuqing Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Wenli Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yue Wen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Wei Meng
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Daijun Peng
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Wu CN, Sun LC, Chu YL, Yu RC, Hsieh CW, Hsu HY, Hsu FC, Cheng KC. Bioactive compounds with anti-oxidative and anti-inflammatory activities of hop extracts. Food Chem 2020; 330:127244. [PMID: 32526652 DOI: 10.1016/j.foodchem.2020.127244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
The aim of this study is to simultaneously evaluate anti-oxidative and anti-inflammatory activities of the hop extracts by different solvents. Hop water extract (HWE) and hop ethanol extracts (HEEs) were prepared by extracting hop pellets with hot water at 90 °C and ethanol solutions (55%, 75%, and 95%), respectively. Bioactive compound such as α-acid, β-acid, total phenolic, and total flavonoid contents were determined. All the HEEs showed higher anti-oxidative activities than the HWEs. The HEEs showing the highest anti-oxidative activities are different in the experiments with different free radicals. For anti-inflammatory activities, both the HWE and HEEs decreased NO productions. HWE decreased TNF-α and IL-6 secretion but showed no effect on IL-1β, while HEEs decreased IL-1β and IL-6 secretion but increased TNF-α secretion. Except for TNF-α secretion, the HEEs showed higher anti-inflammatory activities than the HWE. Future work is to explore the possible mechanism to improve the ethanol extraction procedure.
Collapse
Affiliation(s)
- Chun-Nan Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Chin Sun
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yung-Lin Chu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Roch-Chui Yu
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Fu-Chiun Hsu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
16
|
Kang L, Guo N, Liu X, Wang X, Guo W, Xie SM, Liu C, Lv P, Xing L, Zhang X, Shen H. High mobility group box-1 protects against Aflatoxin G 1-induced pulmonary epithelial cell damage in the lung inflammatory environment. Toxicol Lett 2020; 331:92-101. [PMID: 32446815 DOI: 10.1016/j.toxlet.2020.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Aflatoxin G1 (AFG1) is a member of the carcinogenic aflatoxin family. Our previous studies indicated that oral administration of AFG1 caused tumor necrosis factor (TNF)-α-dependent inflammation that enhanced oxidative DNA damage in alveolar epithelial cells, which may be related to AFG1-induced lung carcinogenesis. High mobility group box-1 (HMGB1) is a nuclear DNA-binding protein; the intracellular and extracellular roles of HMGB1 have been shown to contribute to DNA repair and sterile inflammation. The role of HMGB1 in DNA damage in an aflatoxin-induced lung inflammatory environment was investigated in this study. Upregulation of HMGB1, TLR2, and RAGE was observed in AFG1-induced lung inflamed tissues and adenocarcinoma. Blocking AFG1-induced inflammation by neutralization of TNF-α inhibited the upregulation of HMGB1 in mouse lung tissues, suggesting that AFG1-induced TNF-α-dependent inflammation regulated HMGB1 expression. In the in vitro human pulmonary epithelial cell line model, Beas-2b, AFG1 directly enhanced the cytosolic translocation of HMGB1 and its extracellular secretion. The addition of extracellular soluble HMGB1 protected AFG1-induced DNA damage through the TLR2/NF-κB pathway in Beas-2b cells. In addition, blockade of endogenous HMGB1 by siRNA significantly enhanced AFG1-induced damage. Thus, our findings showed that both extracellularly-released and nuclear and cytosolic HMGB1 could protect the cell from AFG1-induced cell damage in a TNF-α-dependent lung inflammatory environment.
Collapse
Affiliation(s)
- Lifei Kang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, Hebei Chest Hospital, Shijiazhuang, China
| | - Ningfei Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyi Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiuqing Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Wenli Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shelly M Xie
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Chunping Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
17
|
Matumba L, Kimanya M, Chunga-Sambo W, Munthali M, Ayalew A. Probabilistic dietary based estimation of the burden of aflatoxin-induced hepatocellular carcinoma among adult Malawians. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The risk of aflatoxin-induced hepatocellular carcinoma (HCC) among adults (average body weight of 60 kg) in Malawi was assessed based on aflatoxin B1 (AFB1) exposure through groundnut and maize consumption, by Monte Carlo simulation. The risk (cases per year per 100,000 people) of aflatoxin-induced HCC was estimated based on the AFB1 exposures estimated by this study and hepatitis B virus infection prevalence published for Malawi. AFB1 exposures were estimated by probabilistically combining data of AFB1 contamination in 338 groundnut and 604 maize samples with data of per capita groundnut and maize consumption in 274 households. Aflatoxins in the samples were analysed using validated LC-MS/MS, HPLC and VICAM based methods. The groundnut and maize consumption survey was based on household expenditure technique. The simulated mean AFB1 exposures through consumption of groundnuts, maize, and combination thereof were 28±65, 42±174, and 71±211 ng/kg. body weight (bw)/day, respectively. The estimated HCC risks were 1.26±2.72, 1.86±6.66 and 3.10±6.85 cases per 100,000 persons per year, respectively. Further, hypothetical eradication of hepatitis B virus (HBV) reduced the risk of HCC by 78%. This reaffirms the need for integrating HBV vaccination in the fight of aflatoxin induced HCC.
Collapse
Affiliation(s)
- L. Matumba
- Food Technology and Nutrition Group, Lilongwe University of Agriculture and Natural Resources, (LUANAR), NRC campus, P.O. Box 143, Lilongwe, Malawi
| | - M. Kimanya
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
- Department of Food Biotechnology and Nutritional Sciences, Nelson Mandela – African Institution of Science and Technology, Arusha, Tanzania
| | - W. Chunga-Sambo
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
| | - M. Munthali
- Department of Agricultural Research Services, Chitedze Agricultural Research Station, P.O. Box 158, Lilongwe, Malawi
| | - A. Ayalew
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Lin X, Hu X, Zhang Y, Xia Y, Zhang M. Bioaccessibility in daily diet and bioavailability in vitro of aflatoxins from maize after cooking. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bioavailability is not a constant percentage of a contaminant in food but is affected by many factors, such as food type, treatment, diet structure and interaction with other compounds. To evaluate these influences, we measured the bioaccessibility of aflatoxins from nine naturally polluted maize samples, collected from southeast China, using an in vitro digestion model, and analysed the intestinal transport of aflatoxins by a Caco-2 cell model. Steam cooking treatment could reduce the aflatoxin levels in maize bread. The degradation rates of aflatoxin B1, aflatoxin B2, aflatoxin G1, and aflatoxin G2 ranged from 24.9±3.2 to 33.9±3.5%, 27.0±2.0 to 39.0±1.8%, 27.9±7.9 to 34.4±8.2% and 25.6±3.6 to 37.2±6.5%, respectively. As a result, the bioaccessibility of aflatoxins determined by an in vitro digestion model (41.5-63.3%) was much lower than the previously reported 80%. Edible oil could increase the bioaccessibility of aflatoxin, whereas lettuce would decrease the exposure amount from maize. With a Caco-2 cell model, the apparent permeability coefficient exceeding 10-5 cm/s indicated that there is high absorption of aflatoxins in the human body, while the intestinal transport can be effectively restrained in the presence of chlorophyll.
Collapse
Affiliation(s)
- X. Lin
- Physics and Chemistry department, Tianjin Centre for Disease Control and Prevention, Tianjin 300170, China P.R
| | - X. Hu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Logistics College of Chinese People’s Armed Police Forces, Tianjin 300162, China P.R
| | - Y. Zhang
- Physics and Chemistry department, Tianjin Centre for Disease Control and Prevention, Tianjin 300170, China P.R
| | - Y. Xia
- Physics and Chemistry department, Tianjin Centre for Disease Control and Prevention, Tianjin 300170, China P.R
| | - M. Zhang
- Physics and Chemistry department, Tianjin Centre for Disease Control and Prevention, Tianjin 300170, China P.R
| |
Collapse
|
19
|
Shao P, Guo N, Wang C, Zhao M, Yi L, Liu C, Kang L, Cao L, Lv P, Xing L, Zhang X, Shen H. Aflatoxin G
1
induced TNF‐α‐dependent lung inflammation to enhance DNA damage in alveolar epithelial cells. J Cell Physiol 2018; 234:9194-9206. [PMID: 30478833 DOI: 10.1002/jcp.27596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Peilu Shao
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Ningfei Guo
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Can Wang
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Mei Zhao
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Li Yi
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Chunping Liu
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Lifei Kang
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Lei Cao
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Ping Lv
- Department of Pharmacology Hebei Medical University Shijiazhuang China
| | - Lingxiao Xing
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Xianghong Zhang
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Haitao Shen
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| |
Collapse
|
20
|
Abdelhady D, El-Abasy M, Abou-Asa S, Elbialy Z, Shukry M, Hussein A, Saleh A, El-Magd M. The ameliorative effect of Aspergillus awamori on aflatoxin B1-induced hepatic damage in rabbits. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the effect of dietary supplementation of Aspergillus awamori on aflatoxin B1 (AFB1)-induced liver damage in rabbits. Administration of AFB1 (0.3 mg/kg diet) led to a significant reduction in body weight, body weight gain, total feed intake, total serum proteins, albumin, high density lipoprotein-cholesterol, phagocytic activity, phagocytic index, and the antioxidant enzyme, glutathione peroxidase (GPx). Moreover, AFB1 administration was associated with a significant increase in feed conversion ratio, lipid peroxidation and serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, lactate dehydrogenase and total bilirubin. In addition, livers of AFB1-supplemented animals showed fatty degeneration with vacuolisation, focal areas of necrosis, mononuclear cells infiltration hyperplasia of bile ducts and sinusoids. A significant increase in the hepatic expression of the biotransformation gene (Cyp3A6), stress-sensitive genes (HO1 and SOD1), and inflammation-related genes (IL6, TNFa, NF-kB, and Cox2) was also observed. Supplementation of the diets with 0.05, 0.1 or 0.15% A. awamori ameliorated all AFB1 deleterious effects with the best improvement observed at the lowest concentration. This is the first investigation to report that supplementation of rabbit diets with A. awamori has an ameliorative effect against AFB1-induced liver damage possibly through preventing hepatic oxidative stress, promoting the antioxidant defence systems, and inhibiting expression of Cyp3A6, HO1, SOD1, IL6, TNFa, NF-kB, and Cox2. Therefore, A. awamori could be used as a potential preventive or therapeutic agent for aflatoxicosis.
Collapse
Affiliation(s)
- D.H. Abdelhady
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - M.A. El-Abasy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - S.S.E. Abou-Asa
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Z.I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - M. Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - A.H. Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, 0045 Zagazig, Egypt
| | - A.A. Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, 0045 Zagazig, Egypt
| | - M.A. El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| |
Collapse
|
21
|
Yi L, Shen H, Zhao M, Shao P, Liu C, Cui J, Wang J, Wang C, Guo N, Kang L, Lv P, Xing L, Zhang X. Inflammation-mediated SOD-2 upregulation contributes to epithelial-mesenchymal transition and migration of tumor cells in aflatoxin G 1-induced lung adenocarcinoma. Sci Rep 2017; 7:7953. [PMID: 28801561 PMCID: PMC5554181 DOI: 10.1038/s41598-017-08537-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/11/2017] [Indexed: 11/09/2022] Open
Abstract
Tumor-associated inflammation plays a critical role in facilitating tumor growth, invasion and metastasis. Our previous study showed Aflatoxin G1 (AFG1) could induce lung adenocarcinoma in mice. Chronic lung inflammation associated with superoxide dismutase (SOD)-2 upregulation was found in the lung carcinogenesis. However, it is unclear whether tumor-associated inflammation mediates SOD-2 to contribute to cell invasion in AFG1-induced lung adenocarcinoma. Here, we found increased SOD-2 expression associated with vimentin, α-SMA, Twist1, and MMP upregulation in AFG1-induced lung adenocarcinoma. Tumor-associated inflammatory microenvironment was also elicited, which may be related to SOD-2 upregulation and EMT in cancer cells. To mimic an AFG1-induced tumor-associated inflammatory microenvironment in vitro, we treated A549 cells and human macrophage THP-1 (MΦ-THP-1) cells with AFG1, TNF-α and/or IL-6 respectively. We found AFG1 did not promote SOD-2 expression and EMT in cancer cells, but enhanced TNF-α and SOD-2 expression in MΦ-THP-1 cells. Furthermore, TNF-α could upregulate SOD-2 expression in A549 cells through NF-κB pathway. Blocking of SOD-2 by siRNA partly inhibited TNF-α-mediated E-cadherin and vimentin alteration, and reversed EMT and cell migration in A549 cells. Thus, we suggest that tumor-associated inflammation mediates SOD-2 upregulation through NF-κB pathway, which may contribute to EMT and cell migration in AFG1-induced lung adenocarcinoma. INTRODUCTION
Collapse
Affiliation(s)
- Li Yi
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Mei Zhao
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Peilu Shao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Chunping Liu
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China.,Department of Dermatology,The Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Can Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ningfei Guo
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lifei Kang
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China. .,Lab of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
22
|
Slamecka J, Capcarova M, Jurcik R, Sladecek T, Argente MJC, Gren A, Massanyi P. Seasonal, age and sex fluctuations in aflatoxin B 1 content in the liver and kidney of brown hares (Lepus europaeus Pall). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:466-470. [PMID: 28095185 DOI: 10.1080/10934529.2016.1271671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The goal of this study was to monitor the accumulation of aflatoxin B1 in the liver and kidney of brown hares (Lepus europaeus Pall) in the region of south-western Slovakia. A total of 65 samples were involved for analysis by RIA method. Brown hares were divided into the groups according to age, sex and season (month). The sex was determined visually after shooting, and the age was assigned from dried eye lens. The average concentration of AFB1 in the liver of hares was 0.54 ± 0.053 µg/kg, and lower values were measured in the kidney (0.41 ± 0.038 µg/kg). The significantly (P < 0.05) higher values were found in winter months when compared to summer months. According to the age, juvenile animals showed significant higher accumulation of B1 in both organs than adults (P < 0.05). Wild animals can serve as a good model of real environmental contamination. Thus, monitoring of risk factors such as mycotoxins in the environment is important with regard to public health, as game animals constitute an important part of food chain for humans.
Collapse
Affiliation(s)
- Jaroslav Slamecka
- a National Agricultural and Food Centre Nitra, Animal Production Research Centre Nitra , Luzianky , Slovak Republic
| | - Marcela Capcarova
- b Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences , Department of Animal Physiology , Nitra , Slovak Republic
| | - Rastislav Jurcik
- a National Agricultural and Food Centre Nitra, Animal Production Research Centre Nitra , Luzianky , Slovak Republic
| | - Tomas Sladecek
- a National Agricultural and Food Centre Nitra, Animal Production Research Centre Nitra , Luzianky , Slovak Republic
| | | | - Agnieszka Gren
- d Pedagogical University of Cracow, Institute of Biology , Kraków , Poland
| | - Peter Massanyi
- b Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences , Department of Animal Physiology , Nitra , Slovak Republic
| |
Collapse
|
23
|
Sunil VR, Vayas KN, Fang M, Zarbl H, Massa C, Gow AJ, Cervelli JA, Kipen H, Laumbach RJ, Lioy PJ, Laskin JD, Laskin DL. World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung. Exp Mol Pathol 2016; 102:50-58. [PMID: 27986442 DOI: 10.1016/j.yexmp.2016.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20μg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Mingzhu Fang
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Helmut Zarbl
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Christopher Massa
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Howard Kipen
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Robert J Laumbach
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Paul J Lioy
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| |
Collapse
|
24
|
Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis 2016; 11:1391-401. [PMID: 27382275 PMCID: PMC4922809 DOI: 10.2147/copd.s106009] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials) and those of heavy metals (from paint) are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles) or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7) may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections.
Collapse
Affiliation(s)
- John Wong
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Bruce E Magun
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Lisa J Wood
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
25
|
Garcia JM, Teixeira P. Organic versus conventional food: A comparison regarding food safety. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1196490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Crosstalk-eliminated quantitative determination of aflatoxin B1-induced hepatocellular cancer stem cells based on concurrent monitoring of CD133, CD44, and aldehyde dehydrogenase1. Toxicol Lett 2015; 243:31-9. [PMID: 26739636 DOI: 10.1016/j.toxlet.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 01/22/2023]
Abstract
Cancer stem cells (CSCs), known as tumor initiating cells, have become a critically important issue for cancer therapy. Although much research has demonstrated the induction of hepato cellular carcinoma by aflatoxin B1, the formation of hepatocellular CSCs and their quantitative determination is hardly reported. In this work, it was found that hepatocellular CSCs were produced from HepG2 cells by aflatoxin B1-induced mutation, and their amount was quantitatively determined using crosstalk-eliminated multicolor cellular imaging based on quantum dot (Qdot) nanoprobes and an acousto-optical tunable filter (AOTF). Hepatocellular CSCs were acquired via magnetic bead-based sorting and observed using concurrent detection of three different markers: CD133, CD44, and aldehyde dehydrogenase1 (ALDH1). The DNA mutation of HepG2 cells caused by aflatoxin B1 was quantitatively observed via absorbance spectra of aflatoxin B1-8, 9-epoxide-DNA adducts. The percentages of hepatocellular CSCs formed in the entire HepG2 cells were determined to be 9.77±0.65%, 10.9±1.39%, 11.4±1.32%, and 12.8±0.7%, respectively, at 0 μM, 5 μM, 10 μM, and 20 μM of aflatoxin B1. The results matched well with those obtained utilizing flow cytometry. This study demonstrates that aflatoxin mediated mutation induced the conversion of hepatic cancer cell to hepatic CSCs by using a Qdot based constructed multicolor cellular imaging system.
Collapse
|
27
|
Aflatoxins ingestion and canine mammary tumors: There is an association? Food Chem Toxicol 2015; 84:74-8. [DOI: 10.1016/j.fct.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/29/2023]
|
28
|
Trebak F, Alaoui A, Alexandre D, El Ouezzani S, Anouar Y, Chartrel N, Magoul R. Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior. Neurotoxicology 2015; 49:165-73. [PMID: 26141519 DOI: 10.1016/j.neuro.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/17/2023]
Abstract
The presence of mycotoxins in food is a major problem of public health as they produce immunosuppressive, hepatotoxic and neurotoxic effects. Mycotoxins also induce mutagenic and carcinogenic effects after long exposure. Among mycotoxins that contaminate food are aflatoxins (AF) such as AFB1, which is the most powerful natural carcinogen. The AF poisoning results in symptoms of depression, anorexia, diarrhea, jaundice or anemia that can lead to death, but very few studies have explored the impact of AF on neuroendocrine regulations. To better understand the neurotoxic effects of AF related to anorexia, we explored in rat the impact of AFB1 on the major hypothalamic neuropeptides regulating feeding behavior, either orexigenic (NPY, Orexin, AgRP, MCH) or anorexigenic (α-MSH, CART, TRH). We also studied the effect of AFB1 on a novel neuropeptide, the secretogranin II (SgII)-derived peptide EM66, which has recently been linked to the control of food intake. For this, adult male rats were orally treated twice a week for 5 weeks with a low dose (150 μg/kg) or a high dose (300 μg/kg) of AFB1 dissolved in corn oil. Repeated exposure to AFB1 resulted in reduced body weight gain, which was highly significant for the high dose of AF. Immunocytochemical and quantitative PCR experiments revealed a dose-related decrease in the expression of all the hypothalamic neuropeptides studied in response to AFB1. Such orexigenic and anorexigenic alterations may underlie appetite disorders as they are correlated to a dose-dependent decrease in body weight gain of treated rats as compared to controls. We also found a decrease in the number of EM66-containing neurons in the arcuate nucleus of AFB1-treated animals, which was associated with a lower expression of its precursor SgII. These findings show for the first time that repeated consumption of AFB1 disrupts the hypothalamic regulation of neuropeptides involved in feeding behavior, which may contribute to the lower body weight gain associated to AF exposure.
Collapse
Affiliation(s)
- Fatima Trebak
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco; INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France
| | - Abdelilah Alaoui
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco
| | - David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France
| | - Seloua El Ouezzani
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France.
| | - Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France
| | - Rabia Magoul
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco
| |
Collapse
|