1
|
Paege N, Feustel S, Marx-Stoelting P. Toxicological evaluation of microbial secondary metabolites in the context of European active substance approval for plant protection products. Environ Health 2024; 23:52. [PMID: 38835048 DOI: 10.1186/s12940-024-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).
Collapse
Affiliation(s)
- Norman Paege
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Sabrina Feustel
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | |
Collapse
|
2
|
Morikawa C, Sugiura K, Kondo K, Yamamoto Y, Kojima Y, Ozawa Y, Yoshioka H, Miura N, Piao J, Okada K, Hanamatsu H, Tsuda M, Tanaka S, Furukawa JI, Shinohara Y. Evaluation of the context of downstream N- and free N-glycomic alterations induced by swainsonine in HepG2 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130168. [PMID: 35594965 DOI: 10.1016/j.bbagen.2022.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
Swainsonine (SWA), a potent inhibitor of class II α-mannosidases, is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. The mechanisms underlying SWA-induced animal poisoning are not fully understood. In this study, we analyzed the alterations that occur in N- and free N-glycomic upon addition of SWA to HepG2 cells to understand better SWA-induced glycomic alterations. After SWA addition, we observed the appearance of SWA-specific glycomic alterations, such as unique fucosylated hybrid-type and fucosylated M5 (M5F) N-glycans, and a remarkable increase in all classes of Gn1 FNGs. Further analysis of the context of these glycomic alterations showed that (fucosylated) hybrid type N-glycans were not the precursors of these Gn1 FNGs and vice versa. Time course analysis revealed the dynamic nature of glycomic alterations upon exposure of SWA and suggested that accumulation of free N-glycans occurred earlier than that of hybrid-type N-glycans. Hybrid-type N-glycans, of which most were uniquely core fucosylated, tended to increase slowly over time, as was observed for M5F N-glycans. Inhibition of swainsonine-induced unique fucosylation of hybrid N-glycans and M5 by coaddition of 2-fluorofucose caused significant increases in paucimannose- and fucosylated paucimannose-type N-glycans, as well as paucimannose-type free N-glycans. The results not only revealed the gross glycomic alterations in HepG2 cells induced by swainsonine, but also provide information on the global interrelationships between glycomic alterations.
Collapse
Affiliation(s)
- Chie Morikawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Kanako Sugiura
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Keina Kondo
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yurie Yamamoto
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yuma Kojima
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yurika Ozawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Jinhua Piao
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Kazue Okada
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan.
| |
Collapse
|
3
|
Liu M, Xu M, Wang M, Wang S, Li K, Cheng X, Wu Y, Wang Y, Zhu X, Zhao S. Maternal exposure to swainsonine impaired the early postnatal development of mouse dentate gyrus of offspring. Neurochem Int 2019; 129:104511. [PMID: 31348968 DOI: 10.1016/j.neuint.2019.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/28/2023]
Abstract
Neurogenesis in the dentate gyrus (DG) plays a key role in the normal of structure and function of the hippocampus-learning and memory. After eating the locoweeds, animals develop a chronic neurological disease called "locoism". Swainsonine (SW) is the main toxin in locoweeds. Studies have shown that SW induces neuronal apoptosis in vitro and impairs learning and memory in adult mouse. The present study explored effects of SW exposure to dams on the postnatal neurogenesis of DG of offspring. Pregnant ICR mice were orally gavaged with SW at a dose of 0, 5.6 or 8.4 mg/kg/day from gestation day 10 to postnatal day (PND) 21, respectively. We found that SW impaired the proliferation capacity of neural progenitor cells in the DG so that the number of newborn cells was reduced at PND 8. Using the postnatal in vivo electroporation, we showed that the dendritic branching and total length of granule cells were significantly decreased due to SW exposure. In addition, on PND 21, the density of NeuN-positive and Reelin-positive interneurons increased in the hilus, implying the disorder of neuronal migration. These results suggest that maternal exposure to SW, the neurogenesis of DG on offspring was disrupted, finally leading to the functional disorder of DG.
Collapse
Affiliation(s)
- Mengmeng Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Mingrui Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengli Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Shuzhong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Kaikai Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Xinran Cheng
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Yi Wang
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen, 518057, PR China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
4
|
Boschetti E, Hernández-Castellano LE, Righetti PG. Progress in farm animal proteomics: The contribution of combinatorial peptide ligand libraries. J Proteomics 2019; 197:1-13. [DOI: 10.1016/j.jprot.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
|
5
|
Xu M, Huang Y, Li K, Cheng X, Li G, Liu M, Nie Y, Geng S, Zhao S. Developmental exposure of decabromodiphenyl ether impairs subventricular zone neurogenesis and morphology of granule cells in mouse olfactory bulb. Arch Toxicol 2017; 92:529-539. [DOI: 10.1007/s00204-017-2059-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
|
6
|
Li K, Cheng X, Jiang J, Wang J, Xie J, Hu X, Huang Y, Song L, Liu M, Cai L, Chen L, Zhao S. The toxic influence of paraquat on hippocampal neurogenesis in adult mice. Food Chem Toxicol 2017; 106:356-366. [PMID: 28576469 DOI: 10.1016/j.fct.2017.05.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023]
Abstract
Paraquat, a fast-acting non-selective contact herbicide, is considered an etiological factor related to Parkinson's disease. This study investigated its effects on hippocampal neurogenesis and cognition in adult mice as well as possible mechanisms for the effects. We administered paraquat (1.25 mg/kg, intraperitoneal injection, i.p.) and an equal volume of normal saline for 3 weeks to adult male C57BL/6J mice. The results showed that hippocampus-dependent spatial learning and memory was significantly impaired in paraquat-treated mice. Moreover, paraquat administration inhibited the proliferation of neural progenitor cells, and impaired the survival and altered the fate decision of newly generated cells in the hippocampus. The expression levels of caspase-3 and glial fibrillary acidic protein were significantly higher in paraquat-treated mice than in control mice. Interestingly, paraquat reduced the phosphorylation of Akt, but did not affect the total amount of Akt. In conclusion, our findings suggest that paraquat negatively affected adult hippocampal neurogenesis and cognition function.
Collapse
Affiliation(s)
- Kaikai Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xinran Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jinhua Jiang
- Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, People's Republic of China.
| | - Jiutao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, People's Republic of China.
| | - Jiongfang Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yingxue Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Lingzhen Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Mengmeng Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Leiming Cai
- Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, People's Republic of China.
| | - Liezhong Chen
- Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, People's Republic of China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
7
|
iTRAQ-based quantitative proteomics discovering potential serum biomarkers in locoweed poisoned rabbits. Chem Biol Interact 2017; 268:111-118. [DOI: 10.1016/j.cbi.2017.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/23/2017] [Indexed: 11/23/2022]
|
8
|
Kaczorowski RL, Markman S. Nectar alkaloids of tree tobacco can reduce Palestine sunbird foraging performance in a colour discrimination task. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Wang Y, Zhai A, Zhang Y, Qiu K, Wang J, Li Q. Degradation of Swainsonine by the NADP-Dependent Alcohol Dehydrogenase A1R6C3 in Arthrobacter sp. HW08. Toxins (Basel) 2016; 8:toxins8050145. [PMID: 27196926 PMCID: PMC4885060 DOI: 10.3390/toxins8050145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 12/02/2022] Open
Abstract
Swainsonine is an indolizidine alkaloid that has been found in locoweeds and some fungi. Our previous study demonstrated that Arthrobacter sp. HW08 or its crude enzyme extract could degrade swainsonie efficiently. However, the mechanism of swainsonine degradation in bacteria remains unclear. In this study, we used label-free quantitative proteomics method based on liquid chromatography-electrospray ionization-tandem mass spectrometry to dissect the mechanism of swainsonine biodegradation by Arthrobacter sp. HW08. The results showed that 129 differentially expressed proteins were relevant to swainsonine degradation. These differentially expressed proteins were mostly related to the biological process of metabolism and the molecular function of catalytic activity. Among the 129 differentially expressed proteins, putative sugar phosphate isomerase/epimerase A1R5X7, Acetyl-CoA acetyltransferase A0JZ95, and nicotinamide adenine dinucleotide phosphate (NADP)-dependent alcohol dehydrogenase A1R6C3 were found to contribute to the swainsonine degradation. Notably, NADP-dependent alcohol dehyrodgenase A1R6C3 appeared to play a major role in degrading swainsonine, but not as much as Arthrobacter sp. HW08 did. Collectively, our findings here provide insights to understand the mechanism of swainsonine degradation in bacteria.
Collapse
Affiliation(s)
- Yan Wang
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - A'guan Zhai
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - Yanqi Zhang
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - Kai Qiu
- Hulun Buir Animal Epidemic Prevention and Control Center, Hulun Buir 021000, China.
| | - Jianhua Wang
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| |
Collapse
|
10
|
Wang J, Song L, Li K, Yan R, Hu X, Zhang W, Yin Y, Zhao S. Protective effects of lithium against lead-induced toxicities in multiple systems of adult mouse. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00071h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Occupational and environmental exposures to lead (Pb), one of the toxic metal pollutants, is of global concern.
Collapse
Affiliation(s)
- Jiutao Wang
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Lingzhen Song
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Kaikai Li
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Runchuan Yan
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Xinde Hu
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Wei Zhang
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Yupeng Yin
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- People's Republic of China
| |
Collapse
|